CN102737713A - Two-dimensional integrated optical fiber online storage based on linear array multi-core optical fiber - Google Patents
Two-dimensional integrated optical fiber online storage based on linear array multi-core optical fiber Download PDFInfo
- Publication number
- CN102737713A CN102737713A CN2012102355729A CN201210235572A CN102737713A CN 102737713 A CN102737713 A CN 102737713A CN 2012102355729 A CN2012102355729 A CN 2012102355729A CN 201210235572 A CN201210235572 A CN 201210235572A CN 102737713 A CN102737713 A CN 102737713A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- core
- fiber
- metal
- gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 66
- 229910052751 metal Inorganic materials 0.000 claims abstract description 60
- 239000002184 metal Substances 0.000 claims abstract description 60
- 239000000835 fiber Substances 0.000 claims abstract description 54
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 8
- 238000005459 micromachining Methods 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract description 3
- 230000004807 localization Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 238000005253 cladding Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明提供的是一种基于线性阵列多芯光纤的二维集成式光纤在线存储器。由单模光纤(7)连接一段阵列多芯侧抛光纤(2)构成,利用光学微加工技术在裸露的多个纤芯(3)表面形成金属梯度光栅结构(4)。本发明的原理是基于彩虹局域效应,即利用梯度光栅的色散效应将不同波长的等离激元谐振局域在不同的空间位置,不同波段的光将停在光纤侧抛平面不同的二维空间位置,可以实现可见光到红外波段的光信号在线二维存储。该器件体积小,结构简单,集成度高,易于实现全光纤集成,在光纤在线存储领域中具有重要应用。
The invention provides a two-dimensional integrated optical fiber online storage based on a linear array multi-core optical fiber. It consists of a single-mode optical fiber (7) connected to an array of multi-core side-polished optical fibers (2), and uses optical micromachining technology to form a metal gradient grating structure (4) on the surface of multiple exposed fiber cores (3). The principle of the present invention is based on the rainbow localization effect, that is, using the dispersion effect of the gradient grating to localize the plasmon resonances of different wavelengths at different spatial positions, and the light of different wavebands will stop at different two-dimensional planes on the fiber side. The spatial location can realize online two-dimensional storage of optical signals in the visible light to infrared band. The device is small in size, simple in structure, high in integration, easy to realize all-fiber integration, and has important applications in the field of optical fiber online storage.
Description
技术领域 technical field
本发明涉及的是一种光纤在线存储器,特别涉及一种基于线性阵列多芯光纤的二维集成式光纤在线存储器,主要用于光存储及通信中的滤波器。The invention relates to an optical fiber online storage, in particular to a two-dimensional integrated optical fiber online storage based on a linear array multi-core optical fiber, which is mainly used as a filter in optical storage and communication.
背景技术 Background technique
表面等离子体激元(Surface Plasmon Polaritons,SPPs)是由外部电磁场与金属表面自由电子相互作用形成的一种相干共振,具有巨大的局部场增强效应。它能够克服衍射极限,产生许多新颖的光学现象,如负折射、超高分辨率成像、透射增强等。这些复杂的现象有可能预示着新原理、新理论、新技术。当改变金属表面结构时,表面等离子体激元的性质、色散关系、激发模式、耦合效应等都将产生重大的变化。通过SPPs与光场之间相互作用,能够实现对光传播的主动操控。利用表面等离子体激元开发的光子器件在小型化方面具有明显的优势。SPPs为发展新型光子器件、宽带通讯系统、表面等离子体光子芯片、微小光子回路、调制器和开关、数据存储、显微镜、新型光源、太阳能电池、新型光子传感器等提供了可能。目前,基于SPPs的亚波长光学成为光学和光子学中发展最为迅速的研究方向之一。金属表面等离子体的光学器件受到了越来越多的关注。Surface plasmon polaritons (Surface Plasmon Polaritons, SPPs) are a kind of coherent resonance formed by the interaction between an external electromagnetic field and free electrons on the metal surface, which has a huge local field enhancement effect. It can overcome the diffraction limit and generate many novel optical phenomena, such as negative refraction, ultra-high resolution imaging, transmission enhancement, etc. These complex phenomena may herald new principles, new theories, and new technologies. When the metal surface structure is changed, the properties of surface plasmons, dispersion relations, excitation modes, coupling effects, etc. will all have significant changes. Active manipulation of light propagation can be achieved through the interaction between SPPs and light fields. Photonic devices developed using surface plasmons offer clear advantages in terms of miniaturization. SPPs provide possibilities for the development of new photonic devices, broadband communication systems, surface plasmon photonic chips, tiny photonic circuits, modulators and switches, data storage, microscopes, new light sources, solar cells, and new photonic sensors. At present, subwavelength optics based on SPPs has become one of the most rapidly developing research directions in optics and photonics. Optics based on metal surface plasmons have received increasing attention.
光纤表面等离子传感器(见美国专利No.5,647,030和No.5,327,225)亦有很多报道。利用金属光栅实现耦合激发表面等离子激元也有报道,但均是用于单峰波长调制器件,是透射或反射式器件,不具有存储功能。传统波导基底上利用金属微纳光栅结构的表面等离子产生的彩虹捕获效应在可见光波段已得到了实验验证(Applied Physics Letters,2011,98,251103),该效应将在下一代光存储中具有重要意义。但目前的结构很难与现有光通信系统进行互联,且多数是一维束缚,将彩虹局域效应应用到光纤器件中还未见报道。Fiber optic surface plasmon sensors (see US Patent No. 5,647,030 and No. 5,327,225) have also been reported a lot. It has also been reported that metal gratings are used to couple and excite surface plasmons, but they are all used in single-peak wavelength modulation devices, which are transmissive or reflective devices and do not have storage functions. The rainbow trapping effect produced by the surface plasmon of the metal micro-nano grating structure on the traditional waveguide substrate has been experimentally verified in the visible light band (Applied Physics Letters, 2011, 98, 251103), and this effect will be of great significance in the next generation of optical storage . However, the current structure is difficult to interconnect with existing optical communication systems, and most of them are one-dimensional constraints, and the application of the rainbow localization effect to optical fiber devices has not been reported.
发明内容 Contents of the invention
本发明的目的在于提供一种可以实现可见光到红外波段的光信号在线二维存储的基于线性阵列多芯光纤的二维集成式光纤在线存储器。The purpose of the present invention is to provide a two-dimensional integrated optical fiber online storage based on a linear array multi-core optical fiber that can realize online two-dimensional storage of optical signals in the visible light to infrared band.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
基于线性阵列多芯光纤的二维集成式光纤在线存储器由单模光纤7连接一段阵列多芯侧抛光纤2构成,利用光学微加工技术在裸露的多个纤芯3表面形成金属梯度光栅结构4。A two-dimensional integrated optical fiber online storage based on a linear array of multi-core optical fibers is composed of a single-mode optical fiber 7 connected to an array of multi-core side-polished
所述梯度金属光栅结构4是在侧抛光纤纤芯表面直接制作突起的梯度金属光栅结构;或是埋入式金属光栅结构,即先利用光刻技术在侧抛光纤纤芯表面刻梯度光栅结构的微槽,然后将金属沉积在微槽中。The gradient
所述梯度金属光栅结构是指金属光栅周期Λ和金属光栅单元5的栅宽t是定值,金属光栅单元5的栅高h是梯度变化的。The gradient metal grating structure means that the period Λ of the metal grating and the grid width t of the
金属材料为金、银、铝等。The metal material is gold, silver, aluminum or the like.
金属光栅4周期Λ范围200-700纳米,金属光栅单元5的栅高h为5-1000纳米,金属光栅单元5的栅宽t为10-300纳米。The period Λ of the metal grating has a range of 200-700 nanometers, the height h of the
阵列多芯光纤与单模光纤的耦合是在阵列多芯光纤梯度金属光栅高度h较小的一侧与单模光纤通过熔融拉锥在来实现的。The coupling between the arrayed multi-core fiber and the single-mode fiber is realized on the side where the height h of the arrayed multi-core fiber gradient metal grating is smaller and the single-mode fiber is fused and tapered.
阵列多芯侧抛光纤2的各个纤芯上的金属梯度光栅结构具有相同的梯度。The metal gradient grating structures on each core of the arrayed multi-core side-polished
阵列多芯侧抛光纤2的各个纤芯上的金属梯度光栅结构的梯度不同。The gradients of the metal gradient grating structures on each fiber core of the arrayed multi-core side-polished
所述的阵列多芯光纤各个纤芯间距d值较大,保证各个纤芯间无串扰;各个纤芯的尺寸可以相同,也可以不同;各个纤芯的折射率可以相同,也可以不同。The distance d between the cores of the arrayed multi-core optical fiber is relatively large to ensure no crosstalk among the cores; the size of the cores can be the same or different; the refractive index of the cores can be the same or different.
本发明的的全光纤的基于彩虹局域效应的二维集成式光纤在线存储器的原理与传统光存储器不同,它是基于彩虹局域效应,即利用梯度光栅将不同波长的等离激元谐振局域在不同的空间位置,不同波段的光将停在不同的二维空间位置,可以实现可见光到红外波段的光信号在线二维存储。The principle of the all-fiber two-dimensional integrated optical fiber online storage based on the rainbow local effect of the present invention is different from the traditional optical storage. It is based on the rainbow local effect, that is, the plasmon resonance of different wavelengths is localized In different spatial positions, the light of different wavelength bands will stop at different two-dimensional spatial positions, and online two-dimensional storage of optical signals from visible light to infrared bands can be realized.
与现有技术相比,本发明的优点为:Compared with prior art, the advantage of the present invention is:
1、该存储器体积小,结构简单,易于实现全光纤集成,与现有光纤技术进行互联,在光纤在线存储领域中具有重要应用;1. The memory is small in size, simple in structure, easy to realize all-fiber integration, interconnected with existing optical fiber technology, and has important applications in the field of optical fiber online storage;
2、该存储器可以实现可见光到红外波段的光信号在线存储;2. The memory can realize online storage of optical signals from visible light to infrared band;
3、该存储器可以实现二维在线存储集成。3. The memory can realize two-dimensional online storage integration.
附图说明 Description of drawings
图1(a)是梯度金属光栅突起结构的光纤二维在线存储器结构示意图;Figure 1(a) is a schematic diagram of the structure of the optical fiber two-dimensional online memory with the protrusion structure of the gradient metal grating;
图1(b)是金属光栅突起结构的光纤二维在线存储器侧抛图;Figure 1(b) is a side-throw diagram of an optical fiber two-dimensional online memory with a metal grating protrusion structure;
图1(c)是金属光栅单元示意图;Figure 1(c) is a schematic diagram of the metal grating unit;
图1(d)是金属光栅突起结构的光纤二维在线存储器俯视图;Figure 1(d) is a top view of the optical fiber two-dimensional online memory with metal grating protrusion structure;
图1(e)是侧抛多芯光纤横截面;Figure 1(e) is the cross-section of the side-throwing multi-core fiber;
图1(f)是单模光纤与多芯光纤的耦合示意图;Figure 1(f) is a schematic diagram of the coupling of single-mode fiber and multi-core fiber;
图2(a)是各个纤芯具有相同尺寸的阵列多芯光纤横截面;Figure 2(a) is the cross-section of an arrayed multi-core fiber with each core having the same size;
图2(b)是各个纤芯尺寸周期变化的阵列多芯光纤横截面;Figure 2(b) is the cross-section of an arrayed multi-core fiber with periodic changes in each core size;
图2(c)是各个纤芯尺寸线形变化的阵列多芯光纤横截面;Figure 2(c) is the cross-section of the arrayed multi-core fiber with the linear change of each core size;
图3(a)是各个纤芯上的金属梯度光栅结构具有不同梯度的俯视图;Figure 3(a) is a top view of the metal gradient grating structure on each fiber core with different gradients;
图3(b)是纤芯4-1上的金属梯度光栅的侧抛图;Fig. 3(b) is a side throwing diagram of the metal gradient grating on the fiber core 4-1;
图3(c)是纤芯4-2上的金属梯度光栅的侧抛图;Fig. 3(c) is a side throwing diagram of the metal gradient grating on the fiber core 4-2;
图4是金属光栅埋入式二维在线存储器侧抛图。Fig. 4 is a side-thrown view of a metal grating embedded two-dimensional online memory.
具体实施方式 Detailed ways
下面结合附图举例对本发明做更详细地描述:The present invention is described in more detail below in conjunction with accompanying drawing example:
实施例1:Example 1:
基于线性阵列多芯光纤的二维集成式光纤在线存储器结构如图1所示,由单模光纤7连接一段阵列7芯光纤1构成,其中阵列7芯光纤1被加工成侧抛光纤2,即光纤包层5和纤芯均被抛掉一半,裸露于外界的多个纤芯3利用光学微加工技术在表面形成突起的金属梯度光栅结构4。7个纤芯3具有相同的折射率和相同的尺寸,纤芯直径4000纳米,7个纤芯表面的梯度金属光栅均相同,其周期Λ和金属光栅单元5的栅宽t为定值,分别为340纳米和110纳米。金属光栅单元5的栅高5-785纳米共40个周期,栅高梯度为20纳米。阵列多芯光纤1与单模光纤7的耦合是在阵列多芯光纤梯度金属光栅高度h较小的一侧与单模光纤通过熔融拉锥使各个纤芯功率相同。多波长光源从单模光纤一端注入,不同波长的光将被局域在不同的空间位置,波长较短的光停在金属光栅高度h较小的一侧,波长λ1和λ2分别停在光纤轴向不同位置,实现二维在线存储。The structure of a two-dimensional integrated optical fiber online storage based on a linear array of multi-core optical fibers is shown in Figure 1. It consists of a single-mode optical fiber 7 connected to an array of 7-core
实施例2:Example 2:
基于线性阵列多芯光纤的二维集成式光纤在线存储器结构如图1和4所示,由单模光纤7连接一段阵列5芯光纤1构成,其中阵列5芯光纤1被加工成侧抛光纤2,即光纤包层5和纤芯均被抛掉一半,裸露于外界的多个纤芯3利用光学微加工技术在表面形成埋入式金属梯度光栅结构4。5个纤芯具有相同的折射率但不同的尺寸,纤芯直径从3000-4000纳米,5个纤芯表面的梯度金属光栅均相同,其周期Λ和金属光栅单元5的栅宽t为定值,分别为340纳米和110纳米。金属光栅单元5的栅高5-785纳米共40个周期,栅高梯度为20纳米。阵列多芯光纤1与单模光纤7的耦合是在阵列多芯光纤梯度金属光栅高度h较小的一侧与单模光纤通过熔融拉锥使各个纤芯功率相同。多波长光源从单模光纤一端注入,因各个纤芯尺寸不同,其相应的有效折射率会有所不同,不同波长的光将被局域在不同的二维空间位置,波长λ1和λ2分别停在光纤抛面的不同位置,实现真正的二维在线存储。The two-dimensional integrated optical fiber online storage structure based on a linear array of multi-core optical fibers is shown in Figures 1 and 4. It consists of a single-mode optical fiber 7 connected to an array of 5-core
实施例3:Example 3:
基于线性阵列多芯光纤的二维集成式光纤在线存储器结构如图1和3所示,由单模光纤7连接一段阵列5芯光纤1构成,其中阵列5芯光纤1被加工成侧抛光纤2,即光纤包层5和纤芯均被抛掉一半,裸露于外界的多个纤芯3利用光学微加工技术在表面形成埋入式金属梯度光栅结构4。5个纤芯具有相同的折射率和相同的尺寸,纤芯直径为4000纳米,5个纤芯表面的梯度金属光栅其周期Λ和金属光栅单元5的栅宽t为定值,分别为340纳米和110纳米。但金属光栅栅高梯度各不相同。阵列多芯光纤1与单模光纤7的耦合是在阵列多芯光纤梯度金属光栅高度h较小的一侧与单模光纤通过熔融拉锥使各个纤芯功率相同。多波长光源从单模光纤一端注入,因各个纤芯表面光栅4-1,4-2,4-3,4-4,4-5栅高梯度不同,每个纤芯金属光栅的色散也不同,不同波长的光将被局域在不同的二维空间位置,波长λ1、λ2、λ3和λ4分别停在光纤抛面的不同位置,实现真正的二维在线存储。The two-dimensional integrated optical fiber online storage structure based on a linear array of multi-core optical fibers is shown in Figures 1 and 3. It consists of a single-mode optical fiber 7 connected to an array of 5-core
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210235572.9A CN102737713B (en) | 2012-07-09 | 2012-07-09 | Based on the two-dimentional integrated form optical fiber on-line memory of linear array multi-core fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210235572.9A CN102737713B (en) | 2012-07-09 | 2012-07-09 | Based on the two-dimentional integrated form optical fiber on-line memory of linear array multi-core fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102737713A true CN102737713A (en) | 2012-10-17 |
CN102737713B CN102737713B (en) | 2015-08-12 |
Family
ID=46993043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210235572.9A Expired - Fee Related CN102737713B (en) | 2012-07-09 | 2012-07-09 | Based on the two-dimentional integrated form optical fiber on-line memory of linear array multi-core fiber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102737713B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102842744A (en) * | 2012-09-21 | 2012-12-26 | 东南大学 | Adjustable and controllable rainbow local area network controller |
CN104157934A (en) * | 2014-07-21 | 2014-11-19 | 南京航空航天大学 | Ultra wide band plasma filter provided with artificial surface |
CN107315223A (en) * | 2017-07-14 | 2017-11-03 | 上海交通大学 | Collect the optical interconnection device of Polarization filter and the impartial coupler of interlayer |
CN111048133A (en) * | 2019-11-12 | 2020-04-21 | 武汉大学 | Optical storage device and method based on metal super-surface structure |
CN114142921A (en) * | 2021-12-09 | 2022-03-04 | 中山水木光华电子信息科技有限公司 | All-optical storage system and method based on different central wavelength optical fiber codes |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090303489A1 (en) * | 2006-07-13 | 2009-12-10 | Aston University | Surface Plasmons |
CN201382778Y (en) * | 2009-04-22 | 2010-01-13 | 东南大学 | Optical Fiber Bragg Grating Sensor for Strain and Temperature Simultaneous Measurement |
-
2012
- 2012-07-09 CN CN201210235572.9A patent/CN102737713B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090303489A1 (en) * | 2006-07-13 | 2009-12-10 | Aston University | Surface Plasmons |
CN201382778Y (en) * | 2009-04-22 | 2010-01-13 | 东南大学 | Optical Fiber Bragg Grating Sensor for Strain and Temperature Simultaneous Measurement |
Non-Patent Citations (2)
Title |
---|
朱晓亮 等: "平行阵列芯光纤的超模耦合特性", 《中国激光》 * |
陈林: "基于金属纳米结构的光波传输与远场超分辨成像", 《中国优秀博士学位论文全文库》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102842744A (en) * | 2012-09-21 | 2012-12-26 | 东南大学 | Adjustable and controllable rainbow local area network controller |
CN104157934A (en) * | 2014-07-21 | 2014-11-19 | 南京航空航天大学 | Ultra wide band plasma filter provided with artificial surface |
CN107315223A (en) * | 2017-07-14 | 2017-11-03 | 上海交通大学 | Collect the optical interconnection device of Polarization filter and the impartial coupler of interlayer |
CN107315223B (en) * | 2017-07-14 | 2019-11-15 | 上海交通大学 | Optical interconnection device integrating polarization filter and interlayer equal coupler |
CN111048133A (en) * | 2019-11-12 | 2020-04-21 | 武汉大学 | Optical storage device and method based on metal super-surface structure |
CN111048133B (en) * | 2019-11-12 | 2021-10-22 | 武汉大学 | A kind of optical storage device and method based on metal metasurface structure |
CN114142921A (en) * | 2021-12-09 | 2022-03-04 | 中山水木光华电子信息科技有限公司 | All-optical storage system and method based on different central wavelength optical fiber codes |
CN114142921B (en) * | 2021-12-09 | 2023-02-28 | 中山水木光华电子信息科技有限公司 | All-optical storage system and method based on different central wavelength optical fiber codes |
Also Published As
Publication number | Publication date |
---|---|
CN102737713B (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Metamaterial‐based maxwell's fisheye lens for multimode waveguide crossing | |
Xu et al. | Ultra‐sharp multi‐mode waveguide bending assisted with metamaterial‐based mode converters | |
Baron et al. | Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons | |
Markov et al. | Fiber-to-chip coupler designed using an optical transformation | |
JP4132963B2 (en) | Optical element using one-dimensional photonic crystal and spectroscopic device using the same | |
CN102737713B (en) | Based on the two-dimentional integrated form optical fiber on-line memory of linear array multi-core fiber | |
Sorace-Agaskar et al. | Multi-layer integrated photonics from the ultraviolet to the infrared | |
Shi et al. | Photonic crystal and quasi-crystals providing simultaneous light coupling and beam splitting within a low refractive-index slab waveguide | |
Schmid et al. | Subwavelength Grating Structures in Silicon‐on‐Insulator Waveguides | |
Augenstein et al. | Inverse design of cavities for Bloch Surface Waves interfaced to integrated waveguides | |
JP3857288B2 (en) | Photonic crystal optical waveguide | |
CN102768837A (en) | Optical Fiber Online Storage Based on Rainbow Local Effect | |
CN111090147A (en) | An integrated optical waveguide integrating periodic arrays of nanostructures | |
CN102768386B (en) | Micro-nano fiber downloading filter based on rainbow local effect | |
Galán | Addressing fiber-to-chip coupling issues in silicon photonics | |
Boltasseva et al. | Propagation of long-range surface plasmon polaritons in photonic crystals | |
Yücel | Coupling of Photonic Crystal Surface Modes | |
Pollard et al. | Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics | |
Fainman et al. | Nanophotonics for information systems | |
Rosenzveig et al. | Modelling of polarization-dependent loss in plasmonic nanowire waveguides | |
US11137538B2 (en) | Multicore ring fibers and quantum systems comprising such fibers | |
CN112630882B (en) | Multi-core annular optical fiber and quantum system comprising same | |
CN112630881B (en) | Multi-core ring optical fiber for quantum systems and system | |
Liu et al. | Flexible nanofiber-coupled hybrid plasmonic Bragg grating | |
Zhang et al. | Design of silicon-based integrated gradient index lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150812 Termination date: 20210709 |
|
CF01 | Termination of patent right due to non-payment of annual fee |