CN102736546A - State monitoring device of complex electromechanical system for flow industry and method - Google Patents
State monitoring device of complex electromechanical system for flow industry and method Download PDFInfo
- Publication number
- CN102736546A CN102736546A CN2012102190783A CN201210219078A CN102736546A CN 102736546 A CN102736546 A CN 102736546A CN 2012102190783 A CN2012102190783 A CN 2012102190783A CN 201210219078 A CN201210219078 A CN 201210219078A CN 102736546 A CN102736546 A CN 102736546A
- Authority
- CN
- China
- Prior art keywords
- data
- monitoring
- fault
- module
- statistics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 238000012806 monitoring device Methods 0.000 title claims abstract description 10
- 238000012544 monitoring process Methods 0.000 claims abstract description 70
- 230000008569 process Effects 0.000 claims abstract description 39
- 238000005457 optimization Methods 0.000 claims abstract description 21
- 230000002159 abnormal effect Effects 0.000 claims abstract description 20
- 238000007405 data analysis Methods 0.000 claims abstract description 18
- 238000007781 pre-processing Methods 0.000 claims abstract description 18
- 230000003993 interaction Effects 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims description 40
- 238000004458 analytical method Methods 0.000 claims description 19
- 230000006870 function Effects 0.000 claims description 10
- 230000001186 cumulative effect Effects 0.000 claims description 9
- 238000012549 training Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000007689 inspection Methods 0.000 claims description 2
- 238000012847 principal component analysis method Methods 0.000 claims description 2
- 238000013500 data storage Methods 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 239000011159 matrix material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000513 principal component analysis Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000348 solid-phase epitaxy Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Landscapes
- Testing And Monitoring For Control Systems (AREA)
Abstract
本发明涉及一种流程工业复杂机电系统状态监测装置及方法,该装置包括人机交互模块、数据采集模块、数据预处理模块、数据分析模块和故障案例库。采用本发明的装置和方法,能够监测系统是否有故障或异常状态发生,对流程工业系统的跳车事故或其他安全事故做出提前预警。同时,利用双参数优化的KPCA方法,克服了传统KPCA方法凭借经验公式选取参数的缺陷,提高了状态监测能力。再者,充分利用系统历史生产过程中建立的故障案例数据库,使得系统故障的监测更加及时和准确。
The invention relates to a state monitoring device and method for complex electromechanical systems in the process industry. The device includes a human-computer interaction module, a data acquisition module, a data preprocessing module, a data analysis module and a failure case library. By adopting the device and method of the present invention, it is possible to monitor whether the system has a fault or an abnormal state, and to give an early warning of a vehicle jump accident or other safety accidents in the process industry system. At the same time, the KPCA method of double-parameter optimization overcomes the shortcomings of the traditional KPCA method in selecting parameters based on empirical formulas, and improves the state monitoring ability. Furthermore, making full use of the fault case database established in the historical production process of the system makes the monitoring of system faults more timely and accurate.
Description
技术领域 technical field
本发明属于机电系统监测技术领域,涉及一种状态监测装置及方法,尤其是一种流程工业复杂机电系统的状态监测装置及方法。The invention belongs to the technical field of electromechanical system monitoring, and relates to a state monitoring device and method, in particular to a state monitoring device and method for complex electromechanical systems in the process industry.
背景技术 Background technique
在流程工业中,由于工业过程规模不断扩大、复杂性日益增加,生产系统的安全性和可靠性要求也日益提高。生产系统长期安全稳定高效的运行,避免恶性安全事故的发生已成为现代工业的一个重要任务。为此,在系统运行过程中,需要及时检测到故障或异常状态的发生,并对故障类型进行判断和故障源定位,消除不利影响因素。传统的状态监测方法可以分为三类:基于解析的方法、基于知识的方法和基于数据驱动的方法。基于解析的方法是建立在严格的数学模型基础上的,如卡尔曼滤波器、参数估计、等价空间等方法;基于知识的方法主要是依据工艺过程知识建立模型,如故障树(FTA)、决策树(DT)等;基于数据的方法主要是以采集的过程数据为基础,通过各种数据处理与分析方法挖掘出数据中隐含的系统状态信息,进而指导生产过程,如多元统计方法、聚类分析、频谱分析等。由于流程工业中的生产系统日趋复杂,获取严格的数学模型和详细的系统知识比较困难,因此,基于解析的和基于知识的方法受到限制;并且,工业系统通常都对设备运行状态数据进行采集和记录,这些状态监测数据恰好蕴含了系统运行工况和系统异常状态演化规律等本质信息,所以基于数据驱动的分析方法在流程工业中的状态监测和故障诊断等方面得到了广泛的应用。In the process industry, due to the increasing scale and complexity of industrial processes, the safety and reliability requirements of production systems are also increasing. The long-term safe, stable and efficient operation of the production system and the avoidance of vicious safety accidents have become an important task of modern industry. Therefore, during the operation of the system, it is necessary to detect the occurrence of faults or abnormal states in time, and to judge the type of fault and locate the source of the fault to eliminate adverse factors. Traditional condition monitoring methods can be divided into three categories: analysis-based methods, knowledge-based methods and data-driven methods. Analytical-based methods are based on strict mathematical models, such as Kalman filter, parameter estimation, equivalent space and other methods; knowledge-based methods are mainly based on process knowledge to establish models, such as fault tree (FTA), Decision tree (DT), etc.; the data-based method is mainly based on the collected process data, through various data processing and analysis methods to mine the hidden system status information in the data, and then guide the production process, such as multivariate statistical methods, Cluster analysis, spectrum analysis, etc. Due to the increasing complexity of production systems in the process industry, it is difficult to obtain strict mathematical models and detailed system knowledge. Therefore, analytical and knowledge-based methods are limited; and industrial systems usually collect and analyze equipment operating status data. Records, these condition monitoring data just contain essential information such as system operating conditions and system abnormal state evolution rules, so data-driven analysis methods have been widely used in condition monitoring and fault diagnosis in the process industry.
从科学研究的角度看,以化工生产为代表的流程工业生产系统是一种由诸多大型动力机械装备、化工反应装置和自动化控制系统通过能量网、流体网、信息网、控制网耦合而成的分布式复杂机电系统。在实际状态监测过程中,这样的复杂机电系统面临3个问题:(1)监测变量数量庞大,变量之间具有相关性和强耦合性,人工方式难以同时监测所有变量。(2)监测数据呈现缓变、海量性、非线性和非典型性等多特征并存的特点,缺乏有效的手段挖掘数据中蕴含的设备状态特征信息。(3)现代流程工业生产系统处于一种多介质耦合的网络环境下,目前还缺乏在系统层面有效进行状态监测的装置系统和方法。From the perspective of scientific research, the process industry production system represented by chemical production is a kind of system composed of many large-scale power machinery equipment, chemical reaction devices and automatic control systems coupled through energy networks, fluid networks, information networks, and control networks. Distributed complex electromechanical systems. In the actual state monitoring process, such a complex electromechanical system faces three problems: (1) The number of monitoring variables is huge, and there is correlation and strong coupling between variables. It is difficult to monitor all variables at the same time by manual methods. (2) The monitoring data presents the characteristics of slow change, massiveness, nonlinearity and atypicality, etc., and lacks effective means to mine the equipment status characteristic information contained in the data. (3) The modern process industry production system is in a multi-media coupling network environment, and currently there is still a lack of device systems and methods for effective condition monitoring at the system level.
以下对本发明中涉及的KPCA理论、小波降噪等概念做以下简单介绍和定义:Below the concepts such as KPCA theory involved in the present invention, wavelet denoising are done following brief introduction and definition:
核主成分分析(kernel principal component analysis),简称KPCA,是基于数据驱动的故障检测的一种常用方法。核主成分分析的基本思想是首先通过一个非线性映射函数Ф将输入空间的数据矩阵X映射到一个高维特征空间F,然后对高维空间中的映射数据做主元分析,提取数据在高维空间的线性特征,也就是数据在低维空间的非线性特征。这一非线性映射是通过引入核函数,计算输入空间中数据的内积而实现的。KPCA通过构造基于过程主元特征信号子空间信息的过程统计量T2和残差信息子空间信息的统计量SPE,确定其控制限,进而实现状态监测。Kernel principal component analysis, or KPCA for short, is a commonly used method for data-driven fault detection. The basic idea of kernel principal component analysis is to first map the data matrix X of the input space to a high-dimensional feature space F through a nonlinear mapping function Ф, and then perform principal component analysis on the mapped data in the high-dimensional space, and extract the data in the high-dimensional space. The linear characteristics of space, that is, the nonlinear characteristics of data in low-dimensional space. This non-linear mapping is achieved by introducing a kernel function to calculate the inner product of the data in the input space. KPCA determines the control limit by constructing the process statistic T 2 based on the subspace information of the process principal component characteristic signal and the statistic SPE of the residual information subspace information, and then realizes the state monitoring.
传统的KPCA方法在实际应用中存在以下不足:(1)KPCA核参数和主元个数的选取非常主观化,目前对核参数的选取没有统一的准则,大多采取经验公式的方法。KPCA中主元个数的选取一般采用简单常用的主元累积贡献率法(Cumulative percent variance,CPV),但是贡献率取多少最合适并没有一个统一的标准,而且KPCA中采用主元累积贡献率求主元个数时,首先会受到核参数选取的影响;(2)整个监测过程没有利用已知的故障案例数据,而是根据给定的参数建立一个KPCA模型来检测所有种类的故障。但是一个固定的系统模型不可能对所有故障都有较好的检测效果,只能对其中某一种,或某一类故障非常敏感。本发明将在改进的双参数优化的KPCA模型的基础上,提出一套装置及方法克服以上问题。The traditional KPCA method has the following shortcomings in practical application: (1) The selection of KPCA kernel parameters and the number of pivots is very subjective. At present, there is no unified criterion for the selection of kernel parameters, and most of them adopt the method of empirical formula. The selection of the number of pivots in KPCA generally adopts the simple and commonly used pivot cumulative contribution rate method (Cumulative percent variance, CPV), but there is no uniform standard for the most appropriate contribution rate, and the pivotal cumulative contribution rate is used in KPCA When calculating the number of pivots, it will first be affected by the selection of kernel parameters; (2) The entire monitoring process does not use known fault case data, but establishes a KPCA model based on given parameters to detect all types of faults. However, a fixed system model cannot have a good detection effect on all faults, and can only be very sensitive to one of them, or a certain type of fault. The present invention proposes a set of devices and methods to overcome the above problems on the basis of the improved KPCA model optimized by two parameters.
小波降噪:在实际工业过程中采集的数据往往受到噪声的污染和干扰,如白噪声和电磁干扰等,其中有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号通常表现为高频信号。对实际采集的数据进行小波分解时,噪声部分主要包含在高频小波系数中,因而,可以应用门限阈值等形式对小波系数进行处理,然后对信号进行重构即可达到降噪、抗干扰的目的,进而提高数据质量,提高故障检出能力和准确性。Wavelet noise reduction: The data collected in the actual industrial process is often polluted and interfered by noise, such as white noise and electromagnetic interference, among which useful signals usually appear as low-frequency signals or some relatively stable signals, while noise signals usually appear as high frequency signal. When the wavelet decomposition is performed on the actual collected data, the noise part is mainly included in the high-frequency wavelet coefficients. Therefore, the wavelet coefficients can be processed in the form of threshold and threshold, and then the signal can be reconstructed to achieve noise reduction and anti-interference. The purpose is to improve data quality and improve fault detection ability and accuracy.
发明内容 Contents of the invention
本发明的目的在于克服上述现有技术的缺点,提供一种流程工业复杂机电系统的状态监测装置及方法,其针对流程工业复杂机电系统监测数据的多变量、海量、非线性等特点,从系统层面实现生产过程中的状态监测,能够提高状态监测能力,及时发现故障和异常状态的发生。The purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a state monitoring device and method for complex electromechanical systems in the process industry, which is aimed at the characteristics of multivariable, massive, and nonlinear monitoring data of complex electromechanical systems in the process industry. The state monitoring in the production process can be realized at the level, which can improve the state monitoring ability and detect the occurrence of faults and abnormal states in time.
本发明的目的是通过以下技术方案来解决的:The purpose of the present invention is solved by the following technical solutions:
这种流程工业复杂机电系统的状态监测装置,包括:This condition monitoring device for complex electromechanical systems in the process industry, including:
人机交互模块:用于实现用户和状态监测系统的交互,包括系统状态监测信息的输入和输出,调用数据采集模块、数据预处理模块和数据分析模块;Human-computer interaction module: used to realize the interaction between the user and the status monitoring system, including the input and output of system status monitoring information, calling the data acquisition module, data preprocessing module and data analysis module;
数据采集模块:用于对系统历史状态检测数据和DCS控制系统运行过程中产生的实时数据进行提取;Data acquisition module: used to extract the historical state detection data of the system and the real-time data generated during the operation of the DCS control system;
数据预处理模块:用于去除监测变量数据的高斯白噪声,以及对采集的数据进行标准化处理,去除量纲的影响,以便后续的分析;Data preprocessing module: used to remove the Gaussian white noise of the monitored variable data, and standardize the collected data to remove the influence of dimension for subsequent analysis;
数据分析模块:用于对监测系统的建模,并将实时监测数据与所建模型对比,检测系统异常状态;Data analysis module: used to model the monitoring system, compare the real-time monitoring data with the built model, and detect the abnormal state of the system;
故障案例库:用于存储、管理被监测系统的历史故障信息,包括故障时间、故障原因、以及故障模式;Fault case library: used to store and manage historical fault information of the monitored system, including fault time, fault cause, and fault mode;
所述人机交互模块分别与数据采集模块、数据预处理模块和数据分析模块相连接,作为信息传递的载体;同时,数据采集模块、数据预处理模块和数据分析模块分别和故障案例库相连,从故障案例库中提取信息,完成建模和分析的功能。The human-computer interaction module is respectively connected with the data acquisition module, the data preprocessing module and the data analysis module, as the carrier of information transmission; meanwhile, the data acquisition module, the data preprocessing module and the data analysis module are respectively connected with the failure case library, Extract information from the fault case library to complete the modeling and analysis functions.
上述数据分析模块中的功能包括:双参数优化的KPCA模型的分析方法;结合系统案例库的数据信息,建立监测系统的KPCA模型集;实时监测数据与建立的KPCA模型集对比,检测系统异常状态;对整个流程工业系统的运行情况做出判断,提供针对性地安全预警信息。The functions in the above data analysis module include: the analysis method of the KPCA model with double parameter optimization; combining the data information of the system case library to establish the KPCA model set of the monitoring system; comparing the real-time monitoring data with the established KPCA model set to detect the abnormal state of the system ; Make judgments on the operation of the entire process industry system and provide targeted safety warning information.
本发明还提出一种基于上述装置的流程工业复杂机电系统的状态监测方法,包括以下步骤:The present invention also proposes a state monitoring method for complex electromechanical systems in the process industry based on the above device, comprising the following steps:
1)数据采集:从故障案例库中提取被监测对象的正常工况历史数据并采集监测对象的实时监测数据;其中历史数据用于建立系统模型,实时数据用于对系统状态的监测;1) Data collection: extract the historical data of the normal working conditions of the monitored object from the fault case database and collect the real-time monitoring data of the monitored object; the historical data is used to establish the system model, and the real-time data is used to monitor the system status;
2)数据预处理:首先采用小波去噪的方法对提取的正常工况历史数据和采集的监测对象的实时监测数据进行降噪处理;然后对降噪后的数据进行标准化处理,消除各监测变量量纲不一致的影响;2) Data preprocessing: Firstly, the wavelet denoising method is used to denoise the extracted historical data of normal working conditions and the real-time monitoring data of the collected monitoring objects; then standardize the denoised data to eliminate the monitoring variables The impact of dimension inconsistency;
3)建立系统模型:采用双参数优化的核主元分析方法,根据正常工况历史数据建立KPCA模型,并结合已知故障案例数据对KPCA模型中的核参数和主元个数进行优化,得到KPCA模型集,用于检测系统是否处于异常状态;3) Establishing a system model: the KPCA model is established according to the historical data of normal working conditions by using the nuclear principal component analysis method of two-parameter optimization, and the kernel parameters and the number of principal components in the KPCA model are optimized by combining the data of known fault cases to obtain KPCA model set, used to detect whether the system is in an abnormal state;
4)异常状态监测:计算采集的实时监测数据在所建立模型下的监测统计量,并与模型的监测统计量上限值作比较,如果超出了统计量上限值,则能够判断系统在统计意义上出现了异常状态;4) Abnormal state monitoring: Calculate the monitoring statistics of the collected real-time monitoring data under the established model, and compare them with the upper limit of the monitoring statistics of the model. If the upper limit of the statistics is exceeded, it can be judged that the system is under statistical There is an abnormal state in the sense;
5)将分析结果及有效预警信息通过人机交互模块显示出来。5) Display the analysis results and effective warning information through the human-computer interaction module.
进一步,以上步骤3)中具体包括以下步骤:Further, the above step 3) specifically includes the following steps:
a)建立一个双参数目标优化问题,求使得统计量T2统计量检出率和SPE统计量检出率最大时的核参数σ和主元个数p,用下式表达为:a) Establish a two-parameter objective optimization problem, and find the kernel parameter σ and the number of principal components p when the statistic T 2 statistic detection rate and SPE statistic detection rate are maximized, expressed by the following formula:
其中:in:
σ——核参数;σ——kernel parameter;
p——主元个数;p - the number of pivots;
n——取85%累积贡献率时的主元个数;n——The number of pivots when taking 85% cumulative contribution rate;
m——输入空间的维度,即变量个数;m——the dimension of the input space, that is, the number of variables;
Ft(σ,p)——在给定的核参数和主元个数条件下的T2统计量检出率;F t (σ,p)——the detection rate of T 2 statistics under the given kernel parameters and the number of pivots;
Fs(σ,p)——在给定的核参数和主元个数条件下的SPE统计量检出率;F s (σ,p)——the detection rate of SPE statistics under the given kernel parameters and the number of pivots;
b)获取正常工况下的数据作为训练样本并标准化,用初始核参数和主元个数建立KPCA模型;初始核参数σ=10m,m为输入空间维数,也就是变量个数;初始主元个数按照累积贡献率达到85%的方法选取;b) Obtain the data under normal working conditions as training samples and standardize them, and establish the KPCA model with the initial kernel parameters and the number of principal components; the initial kernel parameter σ=10m, m is the dimension of the input space, that is, the number of variables; the initial principal The number of coins is selected according to the method that the cumulative contribution rate reaches 85%;
c)由初始主元个数求得检验水平α=99%下的T2统计量和SPE统计量上限值;c) Obtain the T 2 statistics and the upper limit of the SPE statistics at the test level α=99% from the initial number of principal components;
d)获取故障案例数据,并对每一变量用训练数据对应向量的标准差和均值标准化;d) Obtain the failure case data, and standardize each variable with the standard deviation and mean of the corresponding vector of the training data;
e)求取该故障案例数据在初始参数下的主元向量,得到T2统计量和SPE统计量;e) Obtain the pivot vector of the fault case data under the initial parameters, and obtain T2 statistics and SPE statistics;
f)比较统计量值和统计量上限值,分别计算T2统计量和SPE统计量超出上限值的样本所占的百分比,得到平均检出率;f) Compare the statistic value and the upper limit value of the statistic, calculate the percentage of samples whose T2 statistic and SPE statistic exceed the upper limit respectively, and obtain the average detection rate;
g)改变初始参数,并按上述步骤计算新参数下统计量的平均检出率,与上一个平均检出率比较,保留平均检出率更高的核参数和主元个数;g) Change the initial parameters, and calculate the average detection rate of statistics under the new parameters according to the above steps, compare with the previous average detection rate, retain the kernel parameters and the number of pivots with higher average detection rate;
h)重复上述步骤,直到平均检出率满足故障检测要求的某一检出率,或得到一个收敛解;此时的核参数和主元个数即是对于该故障的最优KPCA模型参数。h) Repeat the above steps until the average detection rate meets a certain detection rate required by fault detection, or a convergent solution is obtained; the kernel parameters and the number of principal components at this time are the optimal KPCA model parameters for the fault.
本发明具有以下有益效果:The present invention has the following beneficial effects:
采用本发明的一种流程工业复杂机电系统状态监测装置及方法能够监测系统是否有故障或异常状态发生,能够对流程工业系统的跳车事故或其他安全事故做出提前预警。同时,利用双参数优化的KPCA方法,提高了传统KPCA监测方法的故障检测能力。再者,由于充分利用流程工业过程系统中建立的故障案例数据库,使得系统故障的监测更加及时和准确。The state monitoring device and method for complex electromechanical systems in the process industry of the present invention can monitor whether the system has a fault or an abnormal state, and can give early warnings of vehicle jump accidents or other safety accidents in the process industry system. At the same time, the fault detection ability of the traditional KPCA monitoring method is improved by using the KPCA method optimized by two parameters. Furthermore, due to the full use of the fault case database established in the process industry process system, the monitoring of system faults is more timely and accurate.
附图说明 Description of drawings
图1为本发明所述装置的结构示意图;Fig. 1 is the structural representation of device described in the present invention;
图2为本发明的工作流程图;Fig. 2 is a work flow chart of the present invention;
图3为双参数优化的KPCA方法求解流程;Fig. 3 is the KPCA method solution process of two-parameter optimization;
图4为本发明实施例子系统结构图;Fig. 4 is a system structure diagram of an embodiment of the present invention;
图5为本发明对系统的状态监测图。Fig. 5 is a state monitoring diagram of the system in the present invention.
具体实施方式 Detailed ways
参见图1,本发明的流程工业复杂机电系统的状态监测装置,包括:Referring to Fig. 1, the condition monitoring device of process industry complex electromechanical system of the present invention comprises:
人机交互模块:用于实现用户和状态监测系统的交互,包括系统状态监测信息的输入和输出,调用数据采集模块、数据预处理模块和数据分析模块。能够修改、更新系统故障案例库,管理历史/实时监测数据以及调用数据分析模块进行状态监测。Human-computer interaction module: used to realize the interaction between the user and the status monitoring system, including the input and output of system status monitoring information, calling the data acquisition module, data preprocessing module and data analysis module. It can modify and update the system fault case library, manage historical/real-time monitoring data and call the data analysis module for status monitoring.
数据采集模块:用于对系统历史状态监测数据和系统运行过程中DCS控制系统产生的实时监测数据进行提取。Data acquisition module: used to extract the historical status monitoring data of the system and the real-time monitoring data generated by the DCS control system during the system operation.
数据预处理模块:用于去除监测变量数据的高斯白噪声,以及对采集的数据进行标准化处理,去除量纲的影响,以便后续的分析。Data preprocessing module: used to remove the Gaussian white noise of the monitored variable data, and standardize the collected data to remove the influence of dimension for subsequent analysis.
数据分析模块:此模块是本发明装置的核心部分。结合系统案例库的数据信息,在对监测系统的KPCA建模的基础上,将实时监测数据与所建KPCA模型集进行对比,快速有效地检测系统异常状态,并对整个流程工业系统的运行情况做出判断,提供有效地安全预警信息。Data analysis module: this module is the core part of the device of the present invention. Combined with the data information of the system case library, on the basis of the KPCA modeling of the monitoring system, compare the real-time monitoring data with the built KPCA model set, quickly and effectively detect the abnormal state of the system, and analyze the operation status of the entire process industry system Make judgments and provide effective safety warning information.
故障案例库:用于存储、管理被监测系统的历史故障信息,包括故障时间、故障原因、以及故障模式等相关信息。Fault case library: used to store and manage the historical fault information of the monitored system, including fault time, fault cause, and fault mode and other related information.
所述人机交互模块分别与数据采集模块、数据预处理模块和数据分析模块相连接,作为信息传递的载体;同时,数据采集模块、数据预处理模块和数据分析模块分别和故障案例库相连,从故障案例库中提取信息,完成建模和分析的功能。The human-computer interaction module is respectively connected with the data acquisition module, the data preprocessing module and the data analysis module, as the carrier of information transmission; meanwhile, the data acquisition module, the data preprocessing module and the data analysis module are respectively connected with the failure case library, Extract information from the fault case library to complete the modeling and analysis functions.
所述数据分析模块中的功能包括:双参数优化的KPCA模型的分析方法;结合系统案例库的数据信息,建立监测系统的KPCA模型集;实时监测数据与建立的KPCA模型集对比,检测系统异常状态;对整个流程工业系统的运行情况做出判断,提供针对性地安全预警信息。The functions in the data analysis module include: the analysis method of the KPCA model optimized by two parameters; in combination with the data information of the system case library, the KPCA model set of the monitoring system is established; the real-time monitoring data is compared with the established KPCA model set, and the detection system is abnormal Status; make judgments on the operation of the entire process industry system and provide targeted safety warning information.
本发明可以采用计算机存储器对系统故障案例数据信息、监测历史数据、实时数据和数据分析流程进行存储,并采用输入输出接口连接键盘、外部存储器和显示器,分析过程中生成的KPCA模型集信息以及分析结果等可以采用人机交互的形式在显示器中表达出来。The present invention can use computer memory to store system fault case data information, monitoring historical data, real-time data and data analysis process, and use input and output interface to connect keyboard, external memory and display, and analyze the KPCA model set information generated during the analysis process The results can be expressed on the display in the form of human-computer interaction.
基于以上装置,本发明的流程工业复杂机电系统状态监测分析方法的工作流程如图2所示,具体步骤如下:Based on the above devices, the workflow of the process industry complex electromechanical system state monitoring and analysis method of the present invention is shown in Figure 2, and the specific steps are as follows:
步骤1:被监测对象的数据提取,依据具体的被监测对象,结合监测目标,有效提取历史数据库中存储的正常工况的数据,并且能够提取与历史数据相对应监测变量的实时数据。Step 1: Data extraction of the monitored object. According to the specific monitored object and combined with the monitoring target, the data of normal working conditions stored in the historical database can be effectively extracted, and the real-time data of the monitored variables corresponding to the historical data can be extracted.
步骤2:对提取的实时/历史数据的预处理;数据的预处理包括小波降噪和标准化处理(使均值为零,方差为1)。该步骤具体包括:Step 2: Preprocessing of extracted real-time/historical data; data preprocessing includes wavelet noise reduction and standardization processing (making the mean value zero and variance 1). This step specifically includes:
(a)对提取的实时/历史数据进行小波降噪。根据小波变换阈值去噪的原理,小波变换阈值去噪通常包含以下3个步骤:(1)选择一个合适的小波基并确定分解的层次对信号进行小波分解;(2)确定各层细节系数的阈值,用软阈值或硬阈值的方法处理小波系数;(3)小波逆变换重构信号。(a) Perform wavelet denoising on the extracted real-time/historical data. According to the principle of wavelet transform threshold denoising, wavelet transform threshold denoising usually includes the following three steps: (1) choose a suitable wavelet base and determine the decomposition level to decompose the signal by wavelet; (2) determine the detail coefficient of each layer Threshold, use soft threshold or hard threshold to process wavelet coefficients; (3) Wavelet inverse transform to reconstruct the signal.
(b)对小波变换阈值去噪后的数据进行标准化处理。不同变量常常具有不同的量纲和数量级。为了在同一数量级上比较不同变量的变化程度,需要消除量纲的影响,故将数据标准化。标准化后数据的均值为0,方差为1。(b) Standardize the data after wavelet transform threshold denoising. Different variables often have different dimensions and orders of magnitude. In order to compare the degree of change of different variables on the same order of magnitude, the influence of dimension needs to be eliminated, so the data are standardized. After normalization, the mean of the data is 0 and the variance is 1.
步骤3:基于历史正常工况数据建立KPCA模型。原始输入数据矩阵X∈Rn×m(m个观测变量,n个采样次数)为正常运行状态下的n个样本,经过步骤2的预处理后的数据矩阵为采用高斯径向基核函数计算核矩阵K。Step 3: Establish KPCA model based on historical normal working condition data. The original input data matrix X∈R n×m (m observed variables, n sampling times) is n samples under normal operating conditions, and the data matrix after preprocessing in step 2 is Gaussian Radial Basis Kernel Function Compute the kernel matrix K.
对核矩阵K中心化,并求解K的特征值和特征向量ak,对特征向量标准化处理,使得<ak,ak>=1/λk。其中λk是对应的特征值。Center the kernel matrix K, solve the eigenvalue and eigenvector a k of K, and standardize the eigenvector so that <a k , a k > =1/λ k . where λ k is the corresponding eigenvalue.
计算非线性主元tk:Compute the nonlinear pivot t k :
其中,是标准化之后的特征向量,是中心化之后的核矩阵K。in, is the normalized feature vector, is the kernel matrix K after centralization.
步骤4:结合故障案例库,构建双参数优化的KPCA模型集。对故障案例库中的每一种故障,对KPCA的核参数和主元个数进行优化,得到对应每种故障的KPCA模型。具体优化方法参看说明(3)。Step 4: Combining with the fault case library, construct a KPCA model set for two-parameter optimization. For each fault in the fault case library, the kernel parameters and the number of pivots of KPCA are optimized to obtain the KPCA model corresponding to each fault. For the specific optimization method, please refer to the description (3).
步骤5:基于双参数优化的KPCA状态监测。对于一个新的实时监测的采样数据样本xnew∈R1×m,构造相应的统计量T2和SPE及其相应控制限阀值Tα 2和SPEα监测系统状态。统计量T2及其相应控制限阀值Tα 2可由下式确定:Step 5: KPCA state monitoring based on two-parameter optimization. For a new real-time monitoring sampling data sample x new ∈R 1×m , construct the corresponding statistics T 2 and SPE and their corresponding control limit thresholds T α 2 and SPE α to monitor the state of the system. The statistic T 2 and its corresponding control limit threshold T α 2 can be determined by the following formula:
T2=[t1,.,tp]Λ-1[t1,…,tp]T (2)T 2 =[t 1 ,.,t p ]Λ -1 [t 1 ,…,t p ] T (2)
其中Λ-1是主元所对应的特征值构成的对角矩阵的逆矩阵,Fα(k,n-k)为置信度为α,自由度分别为p和n-p的F分布的上限值,可查表获得。SPE定义为:Where Λ -1 is the inverse matrix of the diagonal matrix formed by the eigenvalues corresponding to the pivot, F α (k,nk) is the upper limit value of the F distribution with confidence degree α and degrees of freedom respectively p and np, which can be Obtained by looking up the table. SPEs are defined as:
当检验水平为α时,SPE控制限为SPE控制限服从自由度为h的χ2分布。若a,b分别为SPE的均值和方差,则g=b/2a,h=2a2/b。When the inspection level is α, the SPE control limit is The SPE control limits follow a χ2 distribution with h degrees of freedom. If a and b are the mean and variance of SPE respectively, then g=b/2a, h=2a 2 /b.
步骤6:分析结果及有效预警信息显示。对比实时监测数据的统计量值和KPCA模型的统计量上限值,如果Ta<T或者SPEa<SPE,说明系统出现异常状态。分析结果通过人机交互模块即使显示,给予操作人员系统异常状态提示。Step 6: Display the analysis results and effective warning information. Comparing the statistical value of the real-time monitoring data with the upper limit of the statistical value of the KPCA model, if T a < T or SPE a < SPE, it indicates that the system is in an abnormal state. The analysis results are instantly displayed through the human-computer interaction module, giving the operator a reminder of the abnormal state of the system.
以上双参数优化的KPCA方法优化过程如下:The KPCA method optimization process of the above two-parameter optimization is as follows:
参阅图3,图3为双参数优化的KPCA方法求解流程示意图。结合故障案例库,对案例库中的每种故障构建双参数优化的KPCA模型。建立一个双参数目标优化问题,求使得T2检出率和SPE检出率最大时的核参数σ和主元个数p,可用下式表达为:Referring to Fig. 3, Fig. 3 is a schematic diagram of the solution process of the KPCA method for dual-parameter optimization. Combined with the fault case base, a KPCA model with two parameters optimization is constructed for each fault in the case base. Establish a two-parameter objective optimization problem, and find the kernel parameter σ and the number of principal components p when the detection rate of T 2 and SPE are maximized, which can be expressed as:
其中:in:
σ——核参数;σ——kernel parameter;
p——主元个数;p - the number of pivots;
n——取85%累积贡献率时的主元个数;n——The number of pivots when taking 85% cumulative contribution rate;
m——输入空间的维度,也就是变量个数;m——The dimension of the input space, that is, the number of variables;
Ft(σ,p)——在给定的核参数和主元个数条件下的T2统计量检出率;F t (σ,p)——the detection rate of T 2 statistics under the given kernel parameters and the number of pivots;
Fs(σ,p)——在给定的核参数和主元个数条件下的SPE统计量检出率;F s (σ,p)——the detection rate of SPE statistics under the given kernel parameters and the number of pivots;
对双参数目标优化问题,其具体求解包括如下步骤:For the two-parameter objective optimization problem, the specific solution includes the following steps:
步骤1:获取正常工况下的数据作为训练样本并标准化,用初始核参数和主元个数建立KPCA模型。初始核参数σ=10m,m为输入空间维数,也就是变量个数。初始主元个数按照累积贡献率达到85%的方法选取。Step 1: Obtain the data under normal working conditions as a training sample and standardize it, and establish a KPCA model with the initial kernel parameters and the number of principal components. The initial kernel parameter σ=10m, m is the dimension of the input space, that is, the number of variables. The number of initial pivots is selected according to the method that the cumulative contribution rate reaches 85%.
步骤2由初始主元个数求得检验水平α=99%下的T2统计量和SPE统计量上限值。Step 2 Obtain the upper limit of T2 statistics and SPE statistics at the test level α=99% from the initial number of pivots.
步骤3:获取故障案例数据,并对每一变量用训练数据对应向量的标准差和均值标准化。Step 3: Obtain the failure case data, and standardize each variable with the standard deviation and mean of the corresponding vector of the training data.
步骤4:求取该故障案例数据在初始参数下的主元向量,得到T2统计量和SPE统计量。Step 4: Obtain the pivot vector of the fault case data under the initial parameters, and obtain T 2 statistics and SPE statistics.
步骤5:比较统计量值和统计量上限值,分别计算T2统计量和SPE统计量超出上限值的样本所占的百分比,得到平均检出率。Step 5: Compare the statistic value and the upper limit value of the statistic, and calculate the percentage of samples whose T 2 statistic and SPE statistic exceed the upper limit, respectively, to obtain the average detection rate.
步骤6:改变初始参数,并按上述步骤计算新参数下统计量的平均检出率,与上一个平均检出率比较,保留平均检出率更高的核参数和主元个数。Step 6: Change the initial parameters, and calculate the average detection rate of statistics under the new parameters according to the above steps. Compared with the previous average detection rate, keep the kernel parameters and the number of pivots with higher average detection rate.
步骤7:重复上述步骤,直到平均检出率满足故障检测要求的某一检出率,或得到一个收敛解。此时的核参数和主元个数即是对于该故障的最优KPCA模型参数。Step 7: Repeat the above steps until the average detection rate meets a certain detection rate required for fault detection, or a convergent solution is obtained. The kernel parameters and the number of pivots at this time are the optimal KPCA model parameters for this fault.
在这个优化问题的求解过程中,需要考虑核参数σ不能取的过大,以防止核函数太泛化,失去提取非线性特征的优势。在求主元个数p时,若发生主元个数越大,故障检出率越高的情况,则需要考虑提升降维效果和提高故障检出率之间的平衡。In the process of solving this optimization problem, it is necessary to consider that the kernel parameter σ cannot be too large, so as to prevent the kernel function from being too generalized and losing the advantage of extracting nonlinear features. When calculating the number p of pivots, if the larger the number of pivots, the higher the fault detection rate, it is necessary to consider the balance between improving the effect of dimensionality reduction and improving the fault detection rate.
本发明采用的双参数优化KPCA方法结合了故障案例数据,对已知的故障更具有针对性。当系统运行过程中出现与故障案例库中类似的故障时,双参数优化的KPCA方法能使得故障检测效果达到最佳。The double-parameter optimization KPCA method adopted in the present invention combines fault case data, and is more pertinent to known faults. When the faults similar to those in the fault case library appear during the operation of the system, the KPCA method with two-parameter optimization can make the fault detection effect reach the best.
参阅图4-图5,图4为压缩机组结构示意图。该压缩机组系统由5EH-8BD汽轮机,RIK100-4径向等温紧凑型空压机,RBZ45-7径向筒式增压机和TX36/1C变速箱以及一些辅助装置和设备组成。选取与压缩机组系统运行状态密切相关的70个监测变量作为观测变量。Referring to Fig. 4-Fig. 5, Fig. 4 is a schematic structural diagram of the compressor unit. The compressor unit system consists of 5EH-8BD steam turbine, RIK100-4 radial isothermal compact air compressor, RBZ45-7 radial barrel supercharger, TX36/1C gearbox and some auxiliary devices and equipment. 70 monitoring variables that are closely related to the operating state of the compressor unit system are selected as observation variables.
图5为双参数优化KPCA对系统故障的检测图。该故障因蒸汽管网压力下降导致空压机低负荷运行。优化后选择核参数为495,主元个数为8,建立KPCA模型并监测压缩机组的运行状态。从图中可以看到,在第800个样本附近两个统计量均表现出明显的超限,两个统计量都能有效检测出该故障。其中,T2统计量的检出率为94.2%,SPE统计量的检出率为99.4%,平均检出率为96.8%。Figure 5 is a diagram of the detection of system faults by double-parameter optimized KPCA. The failure is due to the pressure drop of the steam pipe network, which leads to the low load operation of the air compressor. After optimization, the kernel parameters are selected as 495, and the number of pivots is 8. The KPCA model is established and the operating status of the compressor unit is monitored. It can be seen from the figure that near the 800th sample, both statistics show obvious overruns, and both statistics can effectively detect the fault. Among them, the detection rate of T 2 statistics was 94.2%, the detection rate of SPE statistics was 99.4%, and the average detection rate was 96.8%.
实际流程工业生产中的系统比较复杂、系统故障情况多,因此需建立丰富的故障案例数据库,对系统的异常状态做出有针对性的预警。在此基础上利用技术人员的经验知识对状态监测结果做进一步进行取舍和分析,做更进一步的故障诊断。The system in the actual process industry production is relatively complex and there are many system failures. Therefore, it is necessary to establish a rich database of failure cases and make targeted early warnings for abnormal states of the system. On this basis, use the experience and knowledge of technicians to further choose and analyze the condition monitoring results, and make further fault diagnosis.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210219078.3A CN102736546B (en) | 2012-06-28 | 2012-06-28 | State monitoring device of complex electromechanical system for flow industry and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210219078.3A CN102736546B (en) | 2012-06-28 | 2012-06-28 | State monitoring device of complex electromechanical system for flow industry and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102736546A true CN102736546A (en) | 2012-10-17 |
CN102736546B CN102736546B (en) | 2014-06-04 |
Family
ID=46992216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210219078.3A Active CN102736546B (en) | 2012-06-28 | 2012-06-28 | State monitoring device of complex electromechanical system for flow industry and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102736546B (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103439091A (en) * | 2013-06-25 | 2013-12-11 | 国电大渡河检修安装有限公司 | Method and system for early warning and diagnosing water turbine runner blade crack breakdown |
CN103575334A (en) * | 2013-11-08 | 2014-02-12 | 苏州康开电气有限公司 | Electromechanical device intelligent analysis system |
CN103913698A (en) * | 2014-03-27 | 2014-07-09 | 长沙学院 | Switching current circuit fault diagnosis method based on wavelet fractal and kernel principal characteristics |
CN104182623A (en) * | 2014-08-12 | 2014-12-03 | 南京工程学院 | Thermal process data detection method based on equivalent change rate calculation |
CN104777831A (en) * | 2015-04-09 | 2015-07-15 | 武汉船用机械有限责任公司 | Fault diagnosis method of hydraulic submerged pump system |
CN104777830A (en) * | 2015-04-01 | 2015-07-15 | 浙江大学 | Multi-work-condition process monitoring method based on KPCA (kernel principal component analysis) mixture model |
CN106682835A (en) * | 2016-12-29 | 2017-05-17 | 西安交通大学 | Data-driven complex electromechanical system service quality state evaluation method |
CN107045548A (en) * | 2017-04-13 | 2017-08-15 | 南京南瑞继保电气有限公司 | A kind of system and method for calculating wind-powered electricity generation capacity usage ratio |
CN107292061A (en) * | 2017-07-28 | 2017-10-24 | 西安交通大学 | A kind of process industry complex electromechanical systems information modelling approach of data-driven |
CN108508860A (en) * | 2018-05-10 | 2018-09-07 | 西安交通大学 | A kind of process industry production system data monitoring method based on coupled relation |
CN108664696A (en) * | 2018-04-02 | 2018-10-16 | 国家计算机网络与信息安全管理中心 | A kind of assessment method and device of handpiece Water Chilling Units operating status |
CN109542070A (en) * | 2018-12-13 | 2019-03-29 | 宁波大学 | A kind of dynamic process monitoring method based on biobjective scheduling algorithm |
CN109726505A (en) * | 2019-01-14 | 2019-05-07 | 哈尔滨工程大学 | A Fault Diagnosis System for Main Transmission Mechanism of Forging Machine Tool Based on Intelligent Fault Tree |
CN109945930A (en) * | 2019-04-16 | 2019-06-28 | 山东理工职业学院 | A kind of electromechanical equipment fault detection approach based on electromagnetic technique |
CN110046146A (en) * | 2019-04-16 | 2019-07-23 | 中国联合网络通信集团有限公司 | The monitoring method and device of industrial equipment based on mobile edge calculations |
CN111077876A (en) * | 2019-12-11 | 2020-04-28 | 湖南大唐先一科技有限公司 | Power station equipment state intelligent evaluation and early warning method, device and system |
CN111797943A (en) * | 2020-07-28 | 2020-10-20 | 中车青岛四方机车车辆股份有限公司 | Urban rail vehicle and passenger room door fault diagnosis method thereof |
CN112002114A (en) * | 2020-07-22 | 2020-11-27 | 温州大学 | Electromechanical equipment wireless data acquisition system and method based on 5G-ZigBee communication |
CN112537559A (en) * | 2019-09-20 | 2021-03-23 | 中国石油化工股份有限公司 | Oil gas monitoring method and system for oil depot |
CN113632015A (en) * | 2019-03-29 | 2021-11-09 | 尤尼弗莱克斯-液压有限责任公司 | Method for producing a plurality of composite structures |
CN114048821A (en) * | 2021-11-22 | 2022-02-15 | 中国石油化工股份有限公司 | Monitoring method, monitoring system, electronic device and storage medium for multi-dimensional data fusion |
CN114723082A (en) * | 2022-04-19 | 2022-07-08 | 镇江西门子母线有限公司 | Abnormity early warning method and system for intelligent low-voltage complete equipment |
CN115095534A (en) * | 2022-04-11 | 2022-09-23 | 中核核电运行管理有限公司 | KPCA-based CANDU6 reactor main pump fault diagnosis method |
CN116704735A (en) * | 2023-08-08 | 2023-09-05 | 湖南江河能源科技股份有限公司 | Hydropower station intelligent alarm method, system, terminal and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101196743A (en) * | 2007-12-26 | 2008-06-11 | 西安交通大学 | Device and method for safety analysis of electromechanical system based on causal network model |
CN101446827A (en) * | 2008-11-06 | 2009-06-03 | 西安交通大学 | Process fault analysis device of process industry system and method therefor |
CN101634851A (en) * | 2009-08-25 | 2010-01-27 | 西安交通大学 | Method based on cause-and-effect relation of variables for diagnosing failures in process industry |
-
2012
- 2012-06-28 CN CN201210219078.3A patent/CN102736546B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101196743A (en) * | 2007-12-26 | 2008-06-11 | 西安交通大学 | Device and method for safety analysis of electromechanical system based on causal network model |
CN101446827A (en) * | 2008-11-06 | 2009-06-03 | 西安交通大学 | Process fault analysis device of process industry system and method therefor |
CN101634851A (en) * | 2009-08-25 | 2010-01-27 | 西安交通大学 | Method based on cause-and-effect relation of variables for diagnosing failures in process industry |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103439091B (en) * | 2013-06-25 | 2015-11-18 | 国电大渡河检修安装有限公司 | The early warning of water turbine runner blade crackle fault and diagnostic method and system |
CN103439091A (en) * | 2013-06-25 | 2013-12-11 | 国电大渡河检修安装有限公司 | Method and system for early warning and diagnosing water turbine runner blade crack breakdown |
CN103575334A (en) * | 2013-11-08 | 2014-02-12 | 苏州康开电气有限公司 | Electromechanical device intelligent analysis system |
CN103913698A (en) * | 2014-03-27 | 2014-07-09 | 长沙学院 | Switching current circuit fault diagnosis method based on wavelet fractal and kernel principal characteristics |
CN104182623A (en) * | 2014-08-12 | 2014-12-03 | 南京工程学院 | Thermal process data detection method based on equivalent change rate calculation |
CN104777830A (en) * | 2015-04-01 | 2015-07-15 | 浙江大学 | Multi-work-condition process monitoring method based on KPCA (kernel principal component analysis) mixture model |
CN104777831A (en) * | 2015-04-09 | 2015-07-15 | 武汉船用机械有限责任公司 | Fault diagnosis method of hydraulic submerged pump system |
CN106682835A (en) * | 2016-12-29 | 2017-05-17 | 西安交通大学 | Data-driven complex electromechanical system service quality state evaluation method |
CN106682835B (en) * | 2016-12-29 | 2020-05-22 | 西安交通大学 | Data-driven complex electromechanical system service quality state evaluation method |
CN107045548A (en) * | 2017-04-13 | 2017-08-15 | 南京南瑞继保电气有限公司 | A kind of system and method for calculating wind-powered electricity generation capacity usage ratio |
CN107045548B (en) * | 2017-04-13 | 2021-02-09 | 南京南瑞继保电气有限公司 | System and method for calculating wind power energy utilization rate |
CN107292061A (en) * | 2017-07-28 | 2017-10-24 | 西安交通大学 | A kind of process industry complex electromechanical systems information modelling approach of data-driven |
CN108664696A (en) * | 2018-04-02 | 2018-10-16 | 国家计算机网络与信息安全管理中心 | A kind of assessment method and device of handpiece Water Chilling Units operating status |
CN108508860A (en) * | 2018-05-10 | 2018-09-07 | 西安交通大学 | A kind of process industry production system data monitoring method based on coupled relation |
CN109542070A (en) * | 2018-12-13 | 2019-03-29 | 宁波大学 | A kind of dynamic process monitoring method based on biobjective scheduling algorithm |
CN109726505A (en) * | 2019-01-14 | 2019-05-07 | 哈尔滨工程大学 | A Fault Diagnosis System for Main Transmission Mechanism of Forging Machine Tool Based on Intelligent Fault Tree |
CN109726505B (en) * | 2019-01-14 | 2023-03-17 | 哈尔滨工程大学 | Forging and pressing lathe main drive mechanism fault diagnosis system based on intelligence trouble tree |
CN113632015B (en) * | 2019-03-29 | 2024-05-28 | 尤尼弗莱克斯-液压有限责任公司 | Method for manufacturing a plurality of composite structures |
CN113632015A (en) * | 2019-03-29 | 2021-11-09 | 尤尼弗莱克斯-液压有限责任公司 | Method for producing a plurality of composite structures |
CN109945930A (en) * | 2019-04-16 | 2019-06-28 | 山东理工职业学院 | A kind of electromechanical equipment fault detection approach based on electromagnetic technique |
CN110046146A (en) * | 2019-04-16 | 2019-07-23 | 中国联合网络通信集团有限公司 | The monitoring method and device of industrial equipment based on mobile edge calculations |
CN112537559A (en) * | 2019-09-20 | 2021-03-23 | 中国石油化工股份有限公司 | Oil gas monitoring method and system for oil depot |
CN111077876A (en) * | 2019-12-11 | 2020-04-28 | 湖南大唐先一科技有限公司 | Power station equipment state intelligent evaluation and early warning method, device and system |
CN112002114A (en) * | 2020-07-22 | 2020-11-27 | 温州大学 | Electromechanical equipment wireless data acquisition system and method based on 5G-ZigBee communication |
CN111797943B (en) * | 2020-07-28 | 2024-02-02 | 中车青岛四方机车车辆股份有限公司 | Urban rail vehicle and passenger compartment door fault diagnosis method thereof |
CN111797943A (en) * | 2020-07-28 | 2020-10-20 | 中车青岛四方机车车辆股份有限公司 | Urban rail vehicle and passenger room door fault diagnosis method thereof |
CN114048821A (en) * | 2021-11-22 | 2022-02-15 | 中国石油化工股份有限公司 | Monitoring method, monitoring system, electronic device and storage medium for multi-dimensional data fusion |
CN115095534A (en) * | 2022-04-11 | 2022-09-23 | 中核核电运行管理有限公司 | KPCA-based CANDU6 reactor main pump fault diagnosis method |
CN115095534B (en) * | 2022-04-11 | 2024-07-16 | 中核核电运行管理有限公司 | CANDU6 reactor main pump fault diagnosis method based on KPCA |
CN114723082A (en) * | 2022-04-19 | 2022-07-08 | 镇江西门子母线有限公司 | Abnormity early warning method and system for intelligent low-voltage complete equipment |
CN114723082B (en) * | 2022-04-19 | 2023-08-18 | 镇江西门子母线有限公司 | An abnormal early warning method and system for intelligent low-voltage complete equipment |
CN116704735A (en) * | 2023-08-08 | 2023-09-05 | 湖南江河能源科技股份有限公司 | Hydropower station intelligent alarm method, system, terminal and storage medium |
CN116704735B (en) * | 2023-08-08 | 2023-11-03 | 湖南江河能源科技股份有限公司 | Hydropower station intelligent alarm method, system, terminal and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN102736546B (en) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102736546A (en) | State monitoring device of complex electromechanical system for flow industry and method | |
WO2021004154A1 (en) | Method for predicting remaining life of numerical control machine tool | |
CN110738274A (en) | A data-driven fault diagnosis method for nuclear power plant | |
Wang et al. | CHMM for tool condition monitoring and remaining useful life prediction | |
Hu et al. | Framework for a smart data analytics platform towards process monitoring and alarm management | |
CN118386024A (en) | Machine tool based on artificial intelligence and fault detection method thereof | |
CN111308991A (en) | Coal mill operation fault identification method and application | |
CN103389701B (en) | Based on the level of factory procedure fault Detection and diagnosis method of distributed data model | |
CN103488091A (en) | Data-driving control process monitoring method based on dynamic component analysis | |
CN101713983B (en) | Semiconductor process monitoring method based on independent component analysis and Bayesian inference | |
Tang et al. | Industrial process monitoring based on Fisher discriminant global-local preserving projection | |
CN112904810B (en) | Process industry nonlinear process monitoring method based on effective feature selection | |
CN1996190A (en) | Industrial process fault diagnosis system and method based on wavelet analysis | |
CN112002114A (en) | Electromechanical equipment wireless data acquisition system and method based on 5G-ZigBee communication | |
CN117556202B (en) | A method for detecting minor faults in industrial processes based on probabilistic correlation slow feature analysis | |
Tavakoli et al. | Event tracking for real-time unaware sensitivity analysis (EventTracker) | |
CN105700517A (en) | Adaptive data-driven early fault monitoring method and device during refining process | |
CN118376936B (en) | Intelligent diagnosis method and system for lithium battery state | |
CN119807728B (en) | Environment monitoring data anomaly detection method, medium and system | |
CN103559401B (en) | Failure monitoring method based on semi-supervised pivot analysis | |
CN117886241A (en) | Tower crane self-checking system based on vibration analysis | |
CN110751217A (en) | Equipment energy consumption ratio early warning analysis method based on principal component analysis | |
CN119691664B (en) | Hydropower station computer monitoring system fault prediction method based on big data analysis | |
CN117633690A (en) | Rotary machine health state monitoring method and equipment based on data driving | |
CN111983994B (en) | A V-PCA Fault Diagnosis Method Based on Complex Industrial Chemical Process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20181130 Address after: 310018 M10-15-7 Block, 12th Street, Hangzhou Economic and Technological Development Zone, Zhejiang Province Patentee after: Hangzhou Hollysys Automation Co., Ltd. Address before: 710049 Xianning West Road, Xi'an, Xi'an, Shaanxi Patentee before: Xi'an Jiaotong University |