CN102736073B - Method for computing range ambiguity of satellite-borne synthetic aperture radar (SAR) in universal mode - Google Patents

Method for computing range ambiguity of satellite-borne synthetic aperture radar (SAR) in universal mode Download PDF

Info

Publication number
CN102736073B
CN102736073B CN 201210208826 CN201210208826A CN102736073B CN 102736073 B CN102736073 B CN 102736073B CN 201210208826 CN201210208826 CN 201210208826 CN 201210208826 A CN201210208826 A CN 201210208826A CN 102736073 B CN102736073 B CN 102736073B
Authority
CN
China
Prior art keywords
distance
centerdot
gamma
angle
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201210208826
Other languages
Chinese (zh)
Other versions
CN102736073A (en
Inventor
王鹏波
门志荣
陈杰
刘月珊
杨威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN 201210208826 priority Critical patent/CN102736073B/en
Publication of CN102736073A publication Critical patent/CN102736073A/en
Application granted granted Critical
Publication of CN102736073B publication Critical patent/CN102736073B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提出一种通用模式下星载SAR距离向模糊度的计算方法,属于信号处理领域,包括读入星载SAR系统的相关参数、获取斜视状态下距离向参数、进行距离向天线宽度展宽、获取模糊区数目、获取模糊区能量、求取第j个位置的距离向模糊度和绘制距离向模糊度随距离向位置的变化曲线。本发明获取距离向天线方向图和卫星平台与目标点的斜距时,采用地球球体模型,和实际情况更加逼近,结果更加准确和可靠。本发明在获取距离向模糊度时,充分考虑了大扫描角情况下的空间几何特性,结果具有更高的可靠性。对于系统设计中对扫描角的不同设计,本发明可得到不同的距离向模糊度的变化曲线,通过分析这些不同的变化曲线,可以对不同的扫描角进行比较和优化。

Figure 201210208826

The present invention proposes a method for calculating the range ambiguity of spaceborne SAR in a general mode, which belongs to the field of signal processing, including reading the relevant parameters of the spaceborne SAR system, obtaining the range parameters in the squint state, widening the range antenna width, Get the number of fuzzy areas, get the energy of the fuzzy areas, calculate the distance ambiguity of the jth position, and draw the change curve of the range ambiguity with the distance position. When the invention acquires the antenna pattern of the distance and the slant distance between the satellite platform and the target point, the spherical model of the earth is adopted, which is closer to the actual situation, and the result is more accurate and reliable. The present invention fully considers the spatial geometric characteristics under the condition of large scanning angle when acquiring the ambiguity in the range direction, and the result has higher reliability. For different designs of scanning angles in system design, the present invention can obtain different change curves of range-to-ambiguity, and by analyzing these different change curves, different scanning angles can be compared and optimized.

Figure 201210208826

Description

一种通用模式下星载SAR距离向模糊度的计算方法A Calculation Method of Range Ambiguity of Spaceborne SAR in General Mode

技术领域 technical field

本发明属于信号处理领域,具体涉及一种通用模式下星载SAR距离向模糊度的计算方法。The invention belongs to the field of signal processing, and in particular relates to a method for calculating the range ambiguity of a spaceborne SAR in a general mode.

背景技术 Background technique

合成孔径雷达(Synthetic Aperture Radar,SAR)卫星近些年来发展迅速,由于SAR卫星不受天气、地理、时间等因素的限制,能够对地进行全天时的观测,且具有一定的穿透力,因而被广泛的应用于军事侦察、地形测绘、资源探测、海洋观测、生态监测、自然灾害监测、快速救援等方面。Synthetic Aperture Radar (SAR) satellites have developed rapidly in recent years. Since SAR satellites are not limited by factors such as weather, geography, and time, they can observe the earth all day long and have certain penetrating power. Therefore, it is widely used in military reconnaissance, topographic mapping, resource detection, ocean observation, ecological monitoring, natural disaster monitoring, rapid rescue, etc.

距离向模糊度是星载SAR中的一个重要指标,其直接反映了距离向副瓣信号对主瓣信号的干扰程度,在系统设计、波位选取时,距离模糊度是主要的考核指标之一。合成孔径雷达采用脉冲工作体制,其必然带来方位向和距离向的模糊问题。由于雷达作用距离远、运行速度快,合成孔径雷达的方位和距离模糊比较突出。The range ambiguity is an important indicator in spaceborne SAR, which directly reflects the interference degree of the range sidelobe signal to the main lobe signal. In the system design and wave position selection, the range ambiguity is one of the main assessment indicators . Synthetic aperture radar adopts the pulse working system, which will inevitably bring about the ambiguity of azimuth and range. Due to the long range and fast operation speed of the radar, the ambiguity of the azimuth and range of the synthetic aperture radar is relatively prominent.

SAR图像的模糊是来自测绘带外的回波信号对测绘带回波信号的干扰,造成图像质量下降,给SAR图像的应用造成困难。模糊问题也是SAR工程设计中要解决的一个重要问题,特别是在星载SAR设计中模糊问题更为重要。SAR图像的模糊可分为距离向模糊和方位向模糊,方位向模糊是由于发射脉冲的脉冲重复频率(PRF)过低,回波信号的多普勒频谱欠采样引起的。而距离向模糊是由于雷达发射脉冲的重复频率过高引起的,主要是在测绘带内有用回波信号到达的同时,此脉冲之前或之后发射的脉冲也会有从距离合适的其他目标回来的回波信号到达,它们的能量混入目标回波信号中造成距离模糊,如图1所示为距离向模糊示意图。目前,传统的距离向模糊度的计算方法主要针对于正侧视情况,而大扫描角情况下的距离向模糊度计算的研究很少。因此,本发明提出了一种适用于大扫描角通用星载SAR模式下的距离向模糊度的精细算法,利用本发明能够准确的反映出距离向模糊度随距离向位置变化的现象,实现距离向模糊度的优化。The blurring of SAR image is the interference of the echo signal from outside the surveying zone to the echo signal of the surveying zone, resulting in the degradation of image quality and making it difficult for the application of SAR image. Fuzzy problem is also an important problem to be solved in SAR engineering design, especially in the design of spaceborne SAR. The ambiguity of SAR images can be divided into range ambiguity and azimuth ambiguity. The azimuth ambiguity is caused by the low pulse repetition frequency (PRF) of the transmitted pulse and the undersampling of the Doppler spectrum of the echo signal. The range ambiguity is caused by the high repetition frequency of the radar transmitted pulse, mainly because when the useful echo signal arrives in the surveying zone, the pulses transmitted before or after this pulse will also return from other targets with a suitable distance When the echo signals arrive, their energy is mixed into the target echo signal to cause range ambiguity, as shown in Figure 1 for a schematic diagram of range ambiguity. At present, the traditional range ambiguity calculation method is mainly aimed at the side-view situation, but there are few studies on the range ambiguity calculation in the case of large scanning angle. Therefore, the present invention proposes a fine algorithm suitable for the range ambiguity in the general-purpose spaceborne SAR mode with a large scanning angle. The invention can accurately reflect the phenomenon that the range ambiguity changes with the range position, and realize the range ambiguity. optimization towards ambiguity.

发明内容 Contents of the invention

本发明提出了一种通用星载SAR模式下的距离向模糊度的计算方法,该方法以地球模型、卫星地距几何关系为基础,通过分析在大扫描角情况下的地球模型中模糊区与测绘带的位置关系,结合距离向天线方向图,得到模糊区信号能量和测绘带的信号能量,最后得出距离向模糊度的值。The present invention proposes a method for calculating the range ambiguity under the general spaceborne SAR mode. The method is based on the geometric relationship between the earth model and the satellite ground distance, and analyzes the relationship between the ambiguity area and the Combining the positional relationship of the surveying zone with the antenna pattern in the range direction, the signal energy in the ambiguity area and the signal energy in the surveying zone are obtained, and finally the value of the range ambiguity is obtained.

本发明提出了一种通用星载SAR模式下的距离向模糊度的计算方法,具体包括以下几个步骤:The present invention proposes a method for calculating the range ambiguity in a general-purpose spaceborne SAR mode, which specifically includes the following steps:

步骤一:读入星载SAR系统的相关参数,包括轨道高度H,天线距离向尺寸Lr,雷达工作波长λ,平均地球半径Re,光速c,脉冲重复频率PRF,天线中心视角θm,起始扫描角终止扫描角

Figure BDA00001784107300022
中间扫描角
Figure BDA00001784107300023
距离向测绘带宽度SW_r,距离向选取位置数目Fr。Step 1: Read in the relevant parameters of the spaceborne SAR system, including the orbital height H, the antenna range dimension L r , the radar operating wavelength λ, the average earth radius R e , the speed of light c, the pulse repetition frequency PRF, the antenna center angle of view θ m , start scan angle end scan angle
Figure BDA00001784107300022
middle scan angle
Figure BDA00001784107300023
The width of the range survey strip SW_r, the number of selected positions Fr in the range direction.

步骤二:获取斜视状态下距离向参数;;Step 2: Obtain the distance parameter in the squint state;

(1)建立坐标系,;坐标原点为地球球心;Z轴方向为由地球球心指向卫星;Y轴方向为以地球球心为起点,方向与卫星速度方向平行;X轴方向为以地球球心为起点,垂直于卫星航迹方向,使该坐标系构成右手直角坐标系;(1) Establish a coordinate system; the origin of the coordinates is the center of the earth; the direction of the Z-axis is from the center of the earth to the satellite; the direction of the Y-axis is starting from the center of the earth, and the direction is parallel to the speed direction of the satellite; the direction of the X-axis is from the center of the earth The center of the sphere is the starting point, perpendicular to the direction of the satellite track, so that the coordinate system constitutes a right-handed rectangular coordinate system;

(2)、获取斜视状态下波束中心视角θm′;;(2) Obtain the angle of view θ m ′ of the beam center in the squint state;

Figure BDA00001784107300024
Figure BDA00001784107300024

其中θm为天线中心视角,

Figure BDA00001784107300025
为中间扫描角;where θ m is the viewing angle of the antenna center,
Figure BDA00001784107300025
is the middle scan angle;

(3)、获取斜视下测绘带中心点斜距Rm(3) Obtain the slant distance R m of the center point of the surveying zone under the squint;

RR ee ++ Hh sinsin ββ mm ′′ == RR ee sinsin θθ mm ′′ -- -- -- (( 22 aa ))

γm′=βm′-θm′     (2b)γ m ′=β m ′-θ m ′ (2b)

RR mm == (( RR ee ++ Hh )) 22 ++ RR ee 22 -- 22 RR ee ·· (( RR ee ++ Hh )) ·&Center Dot; coscos γγ mm ′′ -- -- -- (( 22 cc ))

其中,βm′和γm′为观测带中心点的入射角和地心角,H为轨道高度,Re为平均地球半径,θm′为斜视状态下波束中心视角;Among them, β m ′ and γ m ′ are the incident angle and geocentric angle of the center point of the observation zone, H is the orbit height, R e is the average earth radius, and θ m ′ is the angle of view of the center of the beam in the squint state;

(4)、获取测绘带中心点B的坐标(x,y,z);(4) Obtain the coordinates (x, y, z) of the center point B of the surveying belt;

Figure BDA00001784107300028
Figure BDA00001784107300028

z=Re+H-Rm·cosθm′  (3b)z=R e +HR m cosθ m ′ (3b)

xx == RR ee 22 -- ythe y 22 -- zz 22 -- -- -- (( 33 cc ))

其中,Rm为斜视下测绘带中心点斜距,

Figure BDA000017841073000210
为中间扫描角,H为轨道高度,Re为平均地球半径,θm′为斜视状态下波束中心视角,x、y和z分别为测绘带中心点B的X轴、Y轴和Z轴坐标;Among them, R m is the slant distance of the center point of the surveying zone under the oblique view,
Figure BDA000017841073000210
is the middle scanning angle, H is the orbit height, R e is the average earth radius, θ m ′ is the angle of view of the center of the beam in the squint state, x, y and z are the X-axis, Y-axis and Z-axis coordinates of the center point B of the survey zone respectively ;

(5)、获取测绘带中心点B点所在距离向的小圆半径r和距离向离轴角αB(5) Obtain the radius r of the small circle in the distance direction of the center point B of the surveying belt and the distance direction off-axis angle α B ;

rr == RR ee 22 -- ythe y 22 -- -- -- (( 44 aa ))

sinsin γγ BB == xx rr -- -- -- (( 44 bb ))

rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·&Center Dot; (( RR ee ++ Hh )) ·&Center Dot; coscos γγ BB sinsin γγ BB == rr sinsin αα BB -- -- -- (( 44 cc ))

其中,γB为测绘带中心点B点所在小圆的圆心角,Re为平均地球半径,(x,y,z)为测绘带中心点B的坐标,H为轨道高度,y为测绘带中心点B的Y轴坐标。Among them, γ B is the central angle of the small circle where the center point B of the survey belt is located, R e is the average radius of the earth, (x, y, z) is the coordinate of the center point B of the survey belt, H is the orbital height, and y is the survey belt The Y-axis coordinate of the center point B.

步骤三:进行距离向天线宽度展宽;Step 3: Extend the distance to the antenna width;

(1)、获取距离向3dB波束宽度θ3dB(1) Obtain the 3dB beam width θ 3dB in the distance direction;

θθ 33 dBdB == 0.8860.886 λλ LL rr -- -- -- (( 55 ))

其中λ为雷达工作波长,Lr为天线距离向尺寸;Where λ is the working wavelength of the radar, and L r is the distance dimension of the antenna;

(2)、获取斜视下,距离向波束宽度αr(2) Obtain the range beam width α r under squint;

γγ 11 == SWSW __ rr 22 rr -- -- -- (( 66 aa ))

RR maxmax == rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·· (( RR ee ++ Hh )) ·· coscos (( γγ BB ++ γγ 11 )) ++ ythe y 22 -- -- -- (( 66 bb ))

sinsin αα maxmax == rr ·&Center Dot; sinsin (( γγ BB ++ γγ 11 )) rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·· (( RR ee ++ Hh )) ·· coscos (( γγ BB ++ γγ 11 )) -- -- -- (( 66 cc ))

RR minmin == rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·· (( RR ee ++ Hh )) ·· coscos (( γγ BB -- γγ 11 )) ++ ythe y 22 -- -- -- (( 66 dd ))

sinsin αα minmin == rr ·· sinsin (( γγ BB ++ γγ 11 )) rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·&Center Dot; (( RR ee ++ Hh )) ·&Center Dot; coscos (( γγ BB -- γγ 11 )) -- -- -- (( 66 ee ))

αr=αmaxmin    (6f)α r = α max - α min (6f)

其中,γ1为半测绘带宽度在小圆内对应的圆心角,Rmax和Rmin分别为测绘带与卫星平台的最大斜距和最小斜距,αmax和αmin分别为测绘带在小圆平面内对应的距离向最大离轴角和最小离轴角,SW_r为距离向测绘带宽度,r为测绘带中心点B点所在距离向的小圆半径,Re为平均地球半径,H为轨道高度,γB为测绘带中心点B点所在小圆的圆心角,y为测绘带中心点B的Y轴坐标;Among them, γ 1 is the central angle corresponding to the half-swath width in the small circle, R max and R min are the maximum and minimum slant distances between the swath and the satellite platform, respectively, and α max and α min are the maximum and minimum slant distances between the swath and the satellite platform, respectively. The corresponding maximum off-axis angle and minimum off-axis angle in the circle plane, SW_r is the width of the survey zone in the distance direction, r is the radius of the small circle in the distance direction where the center point B of the survey zone is located, R e is the average radius of the earth, and H is Orbital height, γ B is the central angle of the small circle where the center point B of the survey belt is located, and y is the Y-axis coordinate of the center point B of the survey belt;

(3)、比较距离向波束宽度αr和距离向3dB波束宽度θ3dB的大小,判断是否需要展宽距离向天线宽度Lr,若距离向波束宽度αr大于距离向3dB波束宽度θ3dB,则进行展宽,展宽后的距离向天线宽度记为Lt(3) Compare the size of the range beam width α r and the range 3dB beam width θ 3dB to determine whether it is necessary to widen the range antenna width L r , if the range beam width α r is greater than the range 3dB beam width θ 3dB , then The widening is performed, and the distance to the antenna width after widening is denoted as L t :

LL tt == 0.8860.886 λλ αα rr ++ 0.0010.001 -- -- -- (( 77 ))

若距离向波束宽度αr小于距离向3dB波束宽度θ3dB,则不进行展宽,Lt=LrIf the range beam width α r is smaller than the range 3dB beam width θ 3dB , no broadening is performed, L t =L r .

步骤四:获取模糊区数目Nr;Step 4: Obtain the number Nr of fuzzy regions;

RR aa maxmax == (( RR ee ++ Hh )) 22 -- RR ee 22 -- -- -- (( 88 aa ))

RR aa minmin == ythe y 22 ++ (( RR ee ++ Hh -- rr )) 22 -- -- -- (( 88 bb ))

SS minmin == -- [[ 22 (( RR minmin -- RR aa minmin )) cc ·&Center Dot; PREPRE ]] -- -- -- (( 88 cc ))

SS maxmax == -- [[ 22 (( RR maxmax -- RR aa maxmax )) cc ·&Center Dot; PREPRE ]] -- -- -- (( 88 dd ))

Nr=Smax-Smin       (8e)Nr=S max -S min (8e)

其中,Ra max和Ra min分别为模糊区最远斜距和最近斜距,Smax和Smin分别为模糊区最大序号和最小序号,[x]表示取不大于x的最大整数,Re为平均地球半径,H为轨道高度,r为测绘带中心点B点所在距离向的小圆半径,c为光速,PRF为脉冲重复频率,y为测绘带中心点B的Y轴坐标。Among them, R a max and R a min are the farthest slope distance and the shortest slope distance in the fuzzy area respectively, S max and S min are the maximum serial number and the minimum serial number in the fuzzy area respectively, [x] means the largest integer not greater than x, R e is the average earth radius, H is the orbital height, r is the radius of the small circle in the distance direction of the center point B of the survey zone, c is the speed of light, PRF is the pulse repetition frequency, and y is the Y-axis coordinate of the center point B of the survey zone.

步骤五:获取模糊区能量Ea;Step 5: Obtain the energy Ea of the fuzzy area;

(1)、在测绘带距离向上均匀选取Fr个位置;Fr为距离向选取位置数目;(1), Fr positions are evenly selected upwards in the survey zone distance; Fr is the number of selected positions in the distance direction;

(2)、求取测绘带距离向上第j个位置与卫星平台的斜距Rj(2), obtain the slant distance R j between the jth position and the satellite platform from the surveying zone;

ΔγΔγ == SWSW __ rr rr ·&Center Dot; FrFr -- -- -- (( 99 bb ))

RR jj == (( sinsin (( γγ BB -- γγ 11 )) ++ jj ·· ΔγΔγ )) 22 ·&Center Dot; rr 22 ++ ythe y 22 ++ (( (( coscos (( γγ BB -- γγ 11 )) ++ jj ·· ΔγΔγ )) ·· rr -- (( RR ee ++ Hh )) )) 22 -- -- -- (( 99 dd ))

其中,Δγ为圆心角步距,SW_r为距离向测绘带宽度,r为测绘带中心点B点所在距离向的小圆半径,Fr为距离向选取位置数目,r为测绘带中心点B点所在距离向的小圆半径,c,Re为平均地球半径,H为轨道高度,γ1为半测绘带宽度在小圆内对应的圆心角,γB为测绘带中心点B点所在小圆的圆心角,y为测绘带中心点B的Y轴坐标;Among them, Δγ is the center angle step distance, SW_r is the width of the survey zone in the distance direction, r is the radius of the small circle in the distance direction where the center point B of the survey zone is located, Fr is the number of selected positions in the distance direction, and r is the location of the center point B of the survey zone The radius of the small circle in the distance direction, c, Re is the average earth radius, H is the orbital height, γ 1 is the central angle corresponding to the half-swath width in the small circle, γ B is the angle of the small circle where point B, the center point of the swath, is located Central angle, y is the Y-axis coordinate of the center point B of the surveying zone;

(3)、求取第Si模糊区里第j个位置与卫星平台的斜距

Figure BDA00001784107300043
和离轴角αij;(3), obtain the slant distance between the jth position and the satellite platform in the S i fuzzy area
Figure BDA00001784107300043
and off-axis angle α ij ;

RR aa ijij == RR jj ++ SS ii ·&Center Dot; cc 22 ·&Center Dot; PREPRE -- -- -- (( 1010 aa ))

coscos γγ ijij == rr 22 ++ (( RR ee ++ Hh )) 22 ++ ythe y 22 -- RR aijaij 22 22 rr ·&Center Dot; (( RR ee ++ Hh )) -- -- -- (( 1010 bb ))

rr sinsin αα ijij == rr 22 ++ (( RR ee ++ Hh )) 22 ++ ythe y 22 -- RR aijaij 22 sinsin γγ ijij -- -- -- (( 1010 cc ))

其中,γij为所对应的圆心角,Si为模糊区序号,PRF为脉冲重复频率,c为光速,Rj为测绘带距离向上第j个位置与卫星平台的斜距,r为测绘带中心点B点所在距离向的小圆半径,Re为平均地球半径,H为轨道高度,y为测绘带中心点B的Y轴坐标;Among them, γ ij is the corresponding central angle, S i is the serial number of the fuzzy area, PRF is the pulse repetition frequency, c is the speed of light, R j is the slant distance between the jth position upward from the surveying zone and the satellite platform, and r is the surveying zone The radius of the small circle in the distance direction where the center point B is located, R e is the average earth radius, H is the orbital height, and y is the Y-axis coordinate of the center point B of the surveying zone;

(4)、求取第Si模糊区里第j个位置的距离向天线方向图Wrij(4), obtain the distance to the antenna pattern Wr ij of the jth position in the S i ambiguity zone;

WrWr ijij == sinsin 22 (( ππ ·&Center Dot; LL tt ·&Center Dot; (( sinsin αα ijij -- sinsin αα BB )) // λλ )) (( ππ ·&Center Dot; LL tt ·&Center Dot; (( sinsin αα ijij -- sinsin αα BB )) // λλ )) 22 -- -- -- (( 1111 ))

其中αij为离轴角,λ为雷达工作波长,Lt为展宽后的距离向天线宽度,αB为距离向离轴角;Among them, α ij is the off-axis angle, λ is the working wavelength of the radar, L t is the antenna width in the distance direction after broadening, and α B is the off-axis angle in the distance direction;

(5)、求取第Si模糊区里第j个位置返回的能量Eij(5), obtain the energy E ij returned by the jth position in the S i fuzzy zone;

coscos (( ππ -- ββ ijij ′′ )) == RR aa ijij 22 ++ RR ee 22 -- (( RR ee ++ Hh )) 22 22 RR ee ·&Center Dot; RR aa ijij -- -- -- (( 1212 aa ))

EE. ijij == WrWr ijij 22 ·· σσ 00 sinsin ββ ijij ′′ ·· RR aijaij 33 -- -- -- (( 1212 bb ))

其中,βij′为入射角序列,σ0表示地面后向散射系数,Re为平均地球半径,H为轨道高度,

Figure BDA00001784107300052
表示第Si模糊区里第j个位置与卫星平台的斜距;Among them, β ij ′ is the incident angle sequence, σ 0 is the ground backscatter coefficient, R e is the average earth radius, H is the orbital height,
Figure BDA00001784107300052
Indicates the slant distance between the j-th position and the satellite platform in the S i-th ambiguity zone;

(6)、重复步骤(2)到(5),计算出所有位置返回的能量;(6) Repeat steps (2) to (5) to calculate the energy returned by all positions;

(7)、求取第j个位置返回的总能量Eallj和模糊区能量Eaj(7) Obtain the total energy E allj returned from the jth position and the energy Ea j of the fuzzy area;

EE. alljallj == ΣΣ ii EE. ijij -- -- -- (( 1313 aa ))

EaEa jj == EE. alljallj -- EE. (( || SS minmin || ++ 11 )) jj -- -- -- (( 1313 bb ))

其中smin为模糊区最小序号,Eij为第Si模糊区里第j个位置返回的能量,

Figure BDA00001784107300055
为i=|smin|+1时第Si模糊区里第j个位置返回的能量。Where s min is the minimum serial number of the fuzzy area, E ij is the energy returned at the jth position in the S i- th fuzzy area,
Figure BDA00001784107300055
is the energy returned by the jth position in the S i- th fuzzy area when i=|s min |+1.

步骤六:求取第j个位置的距离向模糊度RASRj;Step 6: Calculate the range ambiguity RASR j of the jth position;

RASRRASR jj == 1010 ·&Center Dot; loglog 1010 (( EE. aa jj EE. (( || SS minmin || ++ 11 )) jj )) -- -- -- (( 1414 ))

其中Eaj为模糊区能量,smin为模糊区最小序号。Where Ea j is the energy of the fuzzy area, and s min is the minimum serial number of the fuzzy area.

步骤七:绘制距离向模糊度随距离向位置的变化曲线。Step 7: Draw the change curve of range ambiguity with range position.

本发明的优点在于:The advantages of the present invention are:

(1)本发明提出一种通用星载SAR模式下的距离向模糊度计算方法,该方法精确度高。本发明获取距离向天线方向图和卫星平台与目标点的斜距时,采用的是地球球体模型,和实际情况更加的逼近,因此结果更加准确和可靠。(1) The present invention proposes a method for calculating range ambiguity in general spaceborne SAR mode, which has high accuracy. When the present invention acquires the antenna pattern of the distance and the slant distance between the satellite platform and the target point, the spherical model of the earth is adopted, which is closer to the actual situation, so the result is more accurate and reliable.

(2)本发明提出一种通用星载SAR模式下的距离向模糊度计算方法,该方法可靠性高。在进行系统设计的过程中,距离向模糊度的精确对于后续工作的展开和决策具有重要意义,本发明在获取距离向模糊度时,充分考虑了大扫描角情况下的空间几何特性,因此结果具有更高的可靠性。(2) The present invention proposes a method for calculating range ambiguity in general spaceborne SAR mode, which has high reliability. In the process of system design, the accuracy of the range ambiguity is of great significance for the development and decision-making of follow-up work. The present invention fully considers the spatial geometric characteristics under the condition of large scanning angle when obtaining the range ambiguity, so the result With higher reliability.

(3)本发明提出一种通用星载SAR模式下的距离向模糊度计算方法,该方法实用性强。对于系统设计中对扫描角的不同设计,本发明可得到不同的距离向模糊度的变化曲线,通过分析这些不同的变化曲线,可以对不同的扫描角进行比较和优化。(3) The present invention proposes a method for calculating range ambiguity in general spaceborne SAR mode, which is highly practical. For different designs of scanning angles in system design, the present invention can obtain different variation curves of range-to-ambiguity, and by analyzing these different variation curves, different scanning angles can be compared and optimized.

(4)本发明提出一种通用星载SAR模式下的距离向模糊度计算方法,该方法直观性好。通过本发明可得到距离向模糊度随距离向位置变化的曲线,因此可以很直观的反映距离向模糊度在整个场景内的变化情况,因此结果表现形式直观性强,便于系统设计者及决策者通过曲线做出正确的判断。(4) The present invention proposes a method for calculating range ambiguity in general spaceborne SAR mode, which is intuitive. Through the present invention, the curve of range ambiguity changing with distance position can be obtained, so it can intuitively reflect the change of range ambiguity in the whole scene, so the result expression form is intuitive, which is convenient for system designers and decision makers Make the right judgment through the curve.

附图说明 Description of drawings

图1是本发明的距离向模糊示意图;Fig. 1 is a schematic diagram of distance direction fuzziness of the present invention;

图2是本发明提出的一种通用星载SAR模式下的距离向模糊度计算方法的流程图;Fig. 2 is the flow chart of the range ambiguity calculation method under a kind of general space-borne SAR mode that the present invention proposes;

图3是本发明的计算斜视状态下,距离向参数计算的流程图;Fig. 3 is the flow chart of calculating distance to parameter under the calculation strabismus state of the present invention;

图4是本发明的正侧视到斜视的转换示意图;Fig. 4 is a schematic diagram of the conversion from the front side view to the oblique view of the present invention;

图5是本发明斜视状态下,波束中心视角示意图;Fig. 5 is a schematic diagram of the angle of view of the center of the beam under the squint state of the present invention;

图6是本发明的斜视状态下,垂直于卫星航迹方向的几何关系示意图;Fig. 6 is a schematic diagram of the geometric relationship perpendicular to the direction of the satellite track under the squint state of the present invention;

图7是本发明的计算斜视状态下,距离向天线宽度展宽的流程图;Fig. 7 is a flow chart of widening the distance to the antenna width under the calculation squint state of the present invention;

图8是本发明斜视状态下,测绘带中心点B所在小圆的剖面图;Fig. 8 is a sectional view of the small circle where the central point B of the surveying tape is located under the squint state of the present invention;

图9是本发明的计算模糊区能量的流程图;Fig. 9 is a flow chart of calculating the fuzzy region energy of the present invention;

图10是本发明的仿真数据绘制所得距离向模糊度的曲线;Fig. 10 is the curve of the obtained distance direction ambiguity drawn by the simulation data of the present invention;

具体实施方式 Detailed ways

下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail with reference to the accompanying drawings and embodiments.

本发明提出一种通用星载SAR模式下的距离向模糊度计算方法,如图2所示,包括以下几个步骤:The present invention proposes a method for calculating range ambiguity in a general spaceborne SAR mode, as shown in Figure 2, including the following steps:

步骤一:读入星载SAR系统的相关参数,包括:轨道高度H,天线距离向尺寸Lr,雷达工作波长λ,平均地球半径Re,光速c,脉冲重复频率PRF,天线中心视角θm,起始扫描角

Figure BDA00001784107300061
终止扫描角
Figure BDA00001784107300062
中间扫描角
Figure BDA00001784107300063
距离向测绘带宽度SW_r,距离向选取位置数目Fr。Step 1: Read in the relevant parameters of the spaceborne SAR system, including: orbital height H, antenna range dimension L r , radar operating wavelength λ, average earth radius R e , light speed c, pulse repetition frequency PRF, antenna center viewing angle θ m , the starting scan angle
Figure BDA00001784107300061
end scan angle
Figure BDA00001784107300062
middle scan angle
Figure BDA00001784107300063
The width of the range survey strip SW_r, the number of selected positions Fr in the range direction.

步骤二:获取斜视状态下距离向参数,如图3所示;Step 2: Obtain the distance parameter in the squint state, as shown in Figure 3;

(1)建立坐标系,如图4所示,坐标原点为地球球心;Z轴方向为由地球球心指向卫星;Y轴方向为以地球球心为起点,方向与卫星速度方向平行;X轴方向为以地球球心为起点,垂直于卫星航迹方向,使该坐标系构成右手直角坐标系。(1) Establish a coordinate system, as shown in Figure 4, the origin of the coordinates is the center of the earth; the direction of the Z axis is from the center of the earth to the satellite; the direction of the Y axis is starting from the center of the earth, and the direction is parallel to the direction of the satellite velocity; The axis direction starts from the center of the earth and is perpendicular to the direction of the satellite track, so that the coordinate system constitutes a right-handed rectangular coordinate system.

(2)、获取斜视状态下波束中心视角θm′,如图5所示;(2) Obtain the angle of view θ m ′ of the center of the beam in the squint state, as shown in Figure 5;

Figure BDA00001784107300064
Figure BDA00001784107300064

其中θm为天线中心视角,

Figure BDA00001784107300065
为中间扫描角。where θ m is the viewing angle of the antenna center,
Figure BDA00001784107300065
is the middle scan angle.

(3)、获取斜视下测绘带中心点斜距Rm,如图6所示;(3) Obtain the slope distance R m of the center point of the surveying zone under the squint view, as shown in Figure 6;

RR ee ++ Hh sinsin ββ mm ′′ == RR ee sinsin θθ mm ′′ -- -- -- (( 22 aa ))

γm′=βm′-θm′     (2b)γ m ′=β m ′-θ m ′ (2b)

RR mm == (( RR ee ++ Hh )) 22 ++ RR ee 22 -- 22 RR ee ·&Center Dot; (( RR ee ++ Hh )) ·&Center Dot; coscos γγ mm ′′ -- -- -- (( 22 cc ))

其中,βm′和γm′为观测带中心点的入射角和地心角,H为轨道高度,Re为平均地球半径,θm′为斜视状态下波束中心视角。Among them, β m ′ and γ m ′ are the incident angle and geocentric angle of the center point of the observation zone, H is the orbit height, R e is the average earth radius, and θ m ′ is the angle of view of the center of the beam in the squint state.

(4)、获取测绘带中心点B的坐标(x,y,z),如图4所示;(4) Obtain the coordinates (x, y, z) of the center point B of the surveying belt, as shown in Figure 4;

z=Re+H-Rm·cosθm′     (3b)z=R e +HR m cosθ m ′ (3b)

xx == RR ee 22 -- ythe y 22 -- zz 22 -- -- -- (( 33 cc ))

其中,Rm为斜视下测绘带中心点斜距,

Figure BDA00001784107300072
为中间扫描角,H为轨道高度,Re为平均地球半径,θm′为斜视状态下波束中心视角,x、y和z分别为测绘带中心点B的X轴、Y轴和Z轴坐标。Among them, R m is the slant distance of the center point of the surveying zone under the oblique view,
Figure BDA00001784107300072
is the middle scanning angle, H is the orbit height, R e is the average earth radius, θ m ′ is the angle of view of the center of the beam in the squint state, x, y and z are the X-axis, Y-axis and Z-axis coordinates of the center point B of the survey zone respectively .

(5)、获取测绘带中心点B点所在距离向的小圆半径r和距离向离轴角αB,如图4所示;(5) Obtain the radius r of the small circle in the distance direction of the center point B of the surveying belt and the distance direction off-axis angle α B , as shown in Figure 4;

rr == RR ee 22 -- ythe y 22 -- -- -- (( 44 aa ))

sinsin γγ BB == xx rr -- -- -- (( 44 bb ))

rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·&Center Dot; (( RR ee ++ Hh )) ·&Center Dot; coscos γγ BB sinsin γγ BB == rr sinsin αα BB -- -- -- (( 44 cc ))

其中,γB为测绘带中心点B点所在小圆的圆心角,Re为平均地球半径,(x,y,z)为测绘带中心点B的坐标,H为轨道高度,y为测绘带中心点B的Y轴坐标。Among them, γ B is the central angle of the small circle where the center point B of the survey belt is located, R e is the average radius of the earth, (x, y, z) is the coordinate of the center point B of the survey belt, H is the orbital height, and y is the survey belt The Y-axis coordinate of the center point B.

步骤三:进行距离向天线宽度展宽,如图7所示;Step 3: Extend the distance to the antenna width, as shown in Figure 7;

(1)、获取距离向3dB波束宽度θ3dB(1) Obtain the 3dB beam width θ 3dB in the distance direction;

θθ 33 dBdB == 0.8860.886 λλ LL rr -- -- -- (( 55 ))

其中λ为雷达工作波长,Lr为天线距离向尺寸。Where λ is the working wavelength of the radar, and L r is the distance dimension of the antenna.

(2)、获取斜视下,距离向波束宽度αr,如图8所示;(2) Obtain the range beam width α r under squint, as shown in Figure 8;

γγ 11 == SWSW __ rr 22 rr -- -- -- (( 66 aa ))

RR maxmax == rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·· (( RR ee ++ Hh )) ·· coscos (( γγ BB ++ γγ 11 )) ++ ythe y 22 -- -- -- (( 66 bb ))

sinsin αα maxmax == rr ·&Center Dot; sinsin (( γγ BB ++ γγ 11 )) rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·· (( RR ee ++ Hh )) ·&Center Dot; coscos (( γγ BB ++ γγ 11 )) -- -- -- (( 66 cc ))

RR minmin == rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·&Center Dot; (( RR ee ++ Hh )) ·&Center Dot; coscos (( γγ BB -- γγ 11 )) ++ ythe y 22 -- -- -- (( 66 dd ))

sinsin αα minmin == rr ·&Center Dot; sinsin (( γγ BB ++ γγ 11 )) rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·&Center Dot; (( RR ee ++ Hh )) ·· coscos (( γγ BB -- γγ 11 )) -- -- -- (( 66 ee ))

αr=αmaxmin        (6f)α r = α max - α min (6f)

其中,γ1为半测绘带宽度在小圆内对应的圆心角,Rmax和Rmin分别为测绘带与卫星平台的最大斜距和最小斜距,αmax和αmin分别为测绘带在小圆平面内对应的距离向最大离轴角和最小离轴角,SW_r为距离向测绘带宽度,r为测绘带中心点B点所在距离向的小圆半径,Re为平均地球半径,H为轨道高度,γB为测绘带中心点B点所在小圆的圆心角,y为测绘带中心点B的Y轴坐标。Among them, γ 1 is the central angle corresponding to the half-swath width in the small circle, R max and R min are the maximum and minimum slant distances between the swath and the satellite platform, respectively, and α max and α min are the maximum and minimum slant distances between the swath and the satellite platform, respectively. The corresponding maximum off-axis angle and minimum off-axis angle in the circle plane, SW_r is the width of the survey zone in the distance direction, r is the radius of the small circle in the distance direction where the center point B of the survey zone is located, R e is the average radius of the earth, and H is Orbit height, γ B is the central angle of the small circle where the center point B of the survey zone is located, and y is the Y-axis coordinate of the center point B of the survey zone.

(3)、比较距离向波束宽度αr和距离向3dB波束宽度θ3dB的大小,判断是否需要展宽距离向天线宽度Lr。若距离向波束宽度αr大于距离向3dB波束宽度θ3dB,则进行展宽,展宽后的距离向天线宽度记为Lt(3) Compare the range beam width α r with the range 3dB beam width θ 3dB to determine whether it is necessary to widen the range antenna width L r . If the range beam width α r is greater than the range 3dB beam width θ 3dB , the widening is performed, and the range antenna width after widening is denoted as L t :

LL tt == 0.8860.886 λλ αα rr ++ 0.0010.001 -- -- -- (( 77 ))

若距离向波束宽度αr小于距离向3dB波束宽度θ3dB,则不进行展宽,Lt=LrIf the range beam width α r is smaller than the range 3dB beam width θ 3dB , no broadening is performed, L t =L r .

步骤四:获取模糊区数目Nr;Step 4: Obtain the number Nr of fuzzy regions;

RR aa maxmax == (( RR ee ++ Hh )) 22 -- RR ee 22 -- -- -- (( 88 aa ))

RR aa minmin == ythe y 22 ++ (( RR ee ++ Hh -- rr )) 22 -- -- -- (( 88 bb ))

SS minmin == -- [[ 22 (( RR minmin -- RR aa minmin )) cc ·&Center Dot; PREPRE ]] -- -- -- (( 88 cc ))

SS maxmax == -- [[ 22 (( RR maxmax -- RR aa maxmax )) cc ·· PREPRE ]] -- -- -- (( 88 dd ))

Nr=Smax-Smin    (8e)Nr=S max -S min (8e)

其中,Ra max和Ra min分别为模糊区最远斜距和最近斜距,Smax和Smin分别为模糊区最大序号和最小序号,[x]表示取不大于x的最大整数,Re为平均地球半径,H为轨道高度,r为测绘带中心点B点所在距离向的小圆半径,c为光速,PRF为脉冲重复频率,y为测绘带中心点B的Y轴坐标。Among them, R a max and R a min are the farthest slope distance and the shortest slope distance in the fuzzy area respectively, S max and S min are the maximum serial number and the minimum serial number in the fuzzy area respectively, [x] means the largest integer not greater than x, R e is the average earth radius, H is the orbital height, r is the radius of the small circle in the distance direction of the center point B of the survey zone, c is the speed of light, PRF is the pulse repetition frequency, and y is the Y-axis coordinate of the center point B of the survey zone.

步骤五:获取模糊区能量Ea,如图9所示;Step 5: Obtain the energy Ea of the fuzzy area, as shown in Figure 9;

(1)、在测绘带距离向上均匀选取Fr个位置;Fr为距离向选取位置数目。(1) Fr positions are uniformly selected in the distance upward direction of the surveying belt; Fr is the number of selected positions in the distance direction.

(2)、求取测绘带距离向上第j个位置与卫星平台的斜距Rj(2) Obtain the slant distance R j between the jth position in the upward direction of the surveying zone and the satellite platform;

ΔγΔγ == SWSW __ rr rr ·· FrFr -- -- -- (( 99 bb ))

RR jj == (( sinsin (( γγ BB -- γγ 11 )) ++ jj ·· ΔγΔγ )) 22 ·· rr 22 ++ ythe y 22 ++ (( (( coscos (( γγ BB -- γγ 11 )) ++ jj ·&Center Dot; ΔγΔγ )) ·&Center Dot; rr -- (( RR ee ++ Hh )) )) 22 -- -- -- (( 99 dd ))

其中,Δγ为圆心角歩距,SW_r为距离向测绘带宽度,r为测绘带中心点B点所在距离向的小圆半径,Fr为距离向选取位置数目,r为测绘带中心点B点所在距离向的小圆半径,c,Re为平均地球半径,H为轨道高度,γ1为半测绘带宽度在小圆内对应的圆心角,γB为测绘带中心点B点所在小圆的圆心角,y为测绘带中心点B的Y轴坐标。Among them, Δγ is the center angle step distance, SW_r is the width of the survey zone in the distance direction, r is the radius of the small circle in the distance direction where the center point B of the survey zone is located, Fr is the number of selected positions in the distance direction, and r is the location of the center point B of the survey zone The radius of the small circle in the distance direction, c, Re is the average earth radius, H is the orbital height, γ 1 is the central angle corresponding to the half-swath width in the small circle, γ B is the angle of the small circle where point B, the center point of the swath, is located The central angle, y is the Y-axis coordinate of the center point B of the survey zone.

(3)、求取第Si模糊区里第j个位置与卫星平台的斜距和离轴角αij(3) Calculate the slant distance between the jth position in the S i fuzzy area and the satellite platform and off-axis angle α ij ;

RR aa ijij == RR jj ++ SS ii ·&Center Dot; cc 22 ·&Center Dot; PREPRE -- -- -- (( 1010 aa ))

coscos γγ ijij == rr 22 ++ (( RR ee ++ Hh )) 22 ++ ythe y 22 -- RR aijaij 22 22 rr ·· (( RR ee ++ Hh )) -- -- -- (( 1010 bb ))

rr sinsin αα ijij == rr 22 ++ (( RR ee ++ Hh )) 22 ++ ythe y 22 -- RR aijaij 22 sinsin γγ ijij -- -- -- (( 1010 cc ))

其中,γij为所对应的圆心角,Si为模糊区序号,PRF为脉冲重复频率,c为光速,Rj为测绘带距离向上第j个位置与卫星平台的斜距,r为测绘带中心点B点所在距离向的小圆半径,Re为平均地球半径,H为轨道高度,y为测绘带中心点B的Y轴坐标。Among them, γ ij is the corresponding central angle, S i is the serial number of the fuzzy area, PRF is the pulse repetition frequency, c is the speed of light, R j is the slant distance between the jth position upward from the surveying zone and the satellite platform, and r is the surveying zone The radius of the small circle in the distance direction where the center point B is located, Re is the average earth radius, H is the orbital height, and y is the Y-axis coordinate of the center point B of the surveying zone.

(4)、求取第Si模糊区里第j个位置的距离向天线方向图Wrij(4) Obtain the range antenna pattern Wr ij of the jth position in the S i ambiguity zone;

WrWr ijij == sinsin 22 (( ππ ·· LL tt ·· (( sinsin αα ijij -- sinsin αα BB )) // λλ )) (( ππ ·&Center Dot; LL tt ·&Center Dot; (( sinsin αα ijij -- sinsin αα BB )) // λλ )) 22 -- -- -- (( 1111 ))

其中αij为离轴角,λ为雷达工作波长,Lt为展宽后的距离向天线宽度,αB为距离向离轴角Among them, α ij is the off-axis angle, λ is the radar working wavelength, L t is the distance antenna width after broadening, and α B is the distance off-axis angle

(5)、求取第Si模糊区里第j个位置返回的能量Eij(5) Calculate the energy E ij returned by the jth position in the S i fuzzy area;

coscos (( ππ -- ββ ijij ′′ )) == RR aa ijij 22 ++ RR ee 22 -- (( RR ee ++ Hh )) 22 22 RR ee ·&Center Dot; RR aa ijij -- -- -- (( 1212 aa ))

EE. ijij == WrWr ijij 22 ·&Center Dot; σσ 00 sinsin ββ ijij ′′ ·&Center Dot; RR aijaij 33 -- -- -- (( 1212 bb ))

其中,βij′为入射角序列,σ0表示地面后向散射系数,Re为平均地球半径,H为轨道高度,

Figure BDA00001784107300094
表示第Si模糊区里第j个位置与卫星平台的斜距。Among them, β ij ′ is the incident angle sequence, σ 0 is the ground backscatter coefficient, R e is the average earth radius, H is the orbital height,
Figure BDA00001784107300094
Indicates the slant distance between the jth position and the satellite platform in the S i- th fuzzy area.

(6)、重复步骤(2)到(5),计算出所有位置返回的能量。(6). Repeat steps (2) to (5) to calculate the energy returned by all positions.

(7)、求取第j个位置返回的总能量Eallj和模糊区能量Eaj(7) Obtain the total energy E allj returned from the jth position and the energy Ea j of the fuzzy area;

EE. alljallj == ΣΣ ii EE. ijij -- -- -- (( 1313 aa ))

EaEa jj == EE. alljallj -- EE. (( || SS minmin || ++ 11 )) jj -- -- -- (( 1313 bb ))

其中smin为模糊区最小序号,Eij为第Si模糊区里第j个位置返回的能量,

Figure BDA00001784107300097
为i=|smin|+1时第Si模糊区里第j个位置返回的能量。Where s min is the minimum serial number of the fuzzy area, E ij is the energy returned at the jth position in the S i- th fuzzy area,
Figure BDA00001784107300097
is the energy returned by the jth position in the S i- th fuzzy area when i=|s min |+1.

步骤六:求取第j个位置的距离向模糊度RASRj;Step 6: Calculate the range ambiguity RASR j of the jth position;

RASRRASR jj == 1010 ·· loglog 1010 (( EE. aa jj EE. (( || SS minmin || ++ 11 )) jj )) -- -- -- (( 1414 ))

其中Eaj为模糊区能量,smin为模糊区最小序号。Where Ea j is the energy of the fuzzy area, and s min is the minimum serial number of the fuzzy area.

步骤七:绘制距离向模糊度随距离向位置的变化曲线。Step 7: Draw the change curve of range ambiguity with range position.

实施例Example

本实施例提供一种通用星载SAR模式下的距离向模糊度计算方法,包括以下几个步骤,流程图,如图2所示:This embodiment provides a method for calculating the range ambiguity in the general spaceborne SAR mode, which includes the following steps and a flow chart, as shown in Figure 2:

步骤一:读入星载SAR系统的相关参数,包括:轨道高度H,距离向天线宽度Lr,雷达工作波长λ,平均地球半径Re,光速c,脉冲重复频率PRF,天线中心视角θm,起始扫描角终止扫描角

Figure BDA000017841073000910
中间扫描角
Figure BDA000017841073000911
距离向测绘带宽度SW_r,距离向选取位置数目Fr;Step 1: Read in the relevant parameters of the spaceborne SAR system, including: orbital height H, range antenna width L r , radar operating wavelength λ, average earth radius R e , light speed c, pulse repetition frequency PRF, and antenna center angle of view θ m , the starting scan angle end scan angle
Figure BDA000017841073000910
middle scan angle
Figure BDA000017841073000911
The width of the range mapping swath SW_r, the number of selected positions Fr in the range direction;

其中,本实施例中具体参数为:H=800km,Lr=2m,λ=0.03m,Re=6371140m,c=3×108m/s,PRF=2000Hz,θm=30°,

Figure BDA00001784107300101
Figure BDA00001784107300103
SW_r=15000m,Fr=1001;Wherein, the specific parameters in this embodiment are: H=800km, L r =2m, λ=0.03m, Re =6371140m, c=3×10 8 m/s, PRF=2000Hz, θ m =30°,
Figure BDA00001784107300101
Figure BDA00001784107300103
SW_r=15000m, Fr=1001;

步骤二:获取斜视状态下距离向参数,流程图如图3所示;Step 2: Obtain the distance parameters in the squint state, the flow chart is shown in Figure 3;

A、建立坐标系,如图4所示;A, establish a coordinate system, as shown in Figure 4;

坐标原点:地球球心Coordinate origin: the center of the earth

Z轴:由地球球心指向卫星Z axis: from the center of the earth to the satellite

Y轴:以地球球心为起点,方向与卫星速度方向平行Y axis: Starting from the center of the earth, the direction is parallel to the direction of the satellite speed

X轴:以地球球心为起点,垂直于卫星航迹方向,使该坐标系构成右手直角坐标系X-axis: starting from the center of the earth, perpendicular to the direction of the satellite track, so that the coordinate system forms a right-handed rectangular coordinate system

B、获取斜视状态下波束中心视角θm′,如图5所示;B. Obtain the angle of view θ m ′ of the center of the beam in the squint state, as shown in FIG. 5 ;

方法如公式(1)所示:The method is shown in formula (1):

Figure BDA00001784107300104
Figure BDA00001784107300104

其中,本实施例中具体参数为:θm=30°,

Figure BDA00001784107300105
得到θm′=31.6942°。Wherein, the specific parameters in this embodiment are: θ m =30°,
Figure BDA00001784107300105
θ m ' = 31.6942° is obtained.

C、获取斜视下测绘带中心点斜距Rm,如图6所示;C. Obtain the slant distance R m of the center point of the surveying zone under the squint view, as shown in Figure 6;

方法如公式(2a~2c)所示:The method is shown in formula (2a~2c):

RR ee ++ Hh sinsin ββ mm ′′ == RR ee sinsin θθ mm ′′ -- -- -- (( 22 aa ))

γm′=βm′-θm′       (2b)γ m ′=β m ′-θ m ′ (2b)

RR mm == (( RR ee ++ Hh )) 22 ++ RR ee 22 -- 22 RR ee ·· (( RR ee ++ Hh )) ·· coscos γγ mm ′′ -- -- -- (( 22 cc ))

其中,本实施例中的具体参数为:Re=6371140m,H=800km,θm′按公式(1)获得,得到Rm=963.91km。Wherein, the specific parameters in this embodiment are: R e =6371140m, H=800km, θ m ' is obtained according to formula (1), and R m =963.91km.

D、获取测绘带中心点B的坐标(X,Y,Z),如图4所示;D, obtain the coordinates (X, Y, Z) of the center point B of the surveying belt, as shown in Figure 4;

方法如公式(3a~3c)所示:The method is shown in formula (3a~3c):

Figure BDA00001784107300108
Figure BDA00001784107300108

z=Re+H-Rm·cosθm′    (3b)z=R e +HR m cosθ m ′ (3b)

xx == RR ee 22 -- ythe y 22 -- zz 22 -- -- -- (( 33 cc ))

其中,本实施例中的具体参数为:

Figure BDA000017841073001010
Re=6371140m,θm′按公式(1)获得,Rm按公式(2a~2c)获得,得到Y=179.58km,Z=6351km,X=473.52km。Wherein, the concrete parameter among the present embodiment is:
Figure BDA000017841073001010
R e =6371140m, θ m 'is obtained according to formula (1), R m is obtained according to formula (2a-2c), and Y=179.58km, Z=6351km, X=473.52km.

E、获取B点所在距离向的小圆半径r和距离向离轴角αB,如图4所示;E. Obtain the radius r of the small circle in the distance direction of point B and the off-axis angle α B in the distance direction, as shown in Figure 4;

方法如公式(4a~4c)所示:The method is shown in formula (4a~4c):

rr == RR ee 22 -- ythe y 22 -- -- -- (( 44 aa ))

sinsin γγ BB == xx rr -- -- -- (( 44 bb ))

rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·&Center Dot; (( RR ee ++ Hh )) ·· coscos γγ BB sinsin γγ BB == rr sinsin αα BB -- -- -- (( 44 cc ))

其中,本实施例中的具体参数为:Re=6371140m,H=800km,X、Y按公式(3a~3c)获得,得到r=6368.6km,αB=30°。Wherein, the specific parameters in this embodiment are: Re = 6371140m, H = 800km, X and Y are obtained according to formulas (3a~3c), and r = 6368.6km, α B = 30°.

步骤三:距离向天线宽度展宽,流程图如图7所示。Step 3: The distance is widened toward the width of the antenna. The flow chart is shown in FIG. 7 .

A、获取距离向3dB波束宽度θ3dBA. Obtain the 3dB beam width θ 3dB in the distance direction;

方法如公式(5)所示:The method is shown in formula (5):

θθ 33 dBdB == 0.8860.886 λλ LL rr -- -- -- (( 55 ))

其中,本实施例中的具体参数为:Lr=2m,λ=0.03m,得到θ3dB=0.0133rad。Wherein, the specific parameters in this embodiment are: L r =2m, λ=0.03m, and θ 3dB =0.0133rad is obtained.

B、获取斜视下,距离向波束宽度αr,如图8所示;B. Obtain the range beam width α r under squint, as shown in Figure 8;

方法如公式(6a~6f)所示:The method is shown in formula (6a~6f):

γγ 11 == SWSW __ rr 22 rr -- -- -- (( 66 aa ))

RR maxmax == rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·· (( RR ee ++ Hh )) ·· coscos (( γγ BB ++ γγ 11 )) ++ ythe y 22 -- -- -- (( 66 bb ))

sinsin αα maxmax == rr ·&Center Dot; sinsin (( γγ BB ++ γγ 11 )) rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·&Center Dot; (( RR ee ++ Hh )) ·&Center Dot; coscos (( γγ BB ++ γγ 11 )) -- -- -- (( 66 cc ))

RR minmin == rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·&Center Dot; (( RR ee ++ Hh )) ·&Center Dot; coscos (( γγ BB -- γγ 11 )) ++ ythe y 22 -- -- -- (( 66 dd ))

sinsin αα minmin == rr ·&Center Dot; sinsin (( γγ BB ++ γγ 11 )) rr 22 ++ (( RR ee ++ Hh )) 22 -- 22 rr ·· (( RR ee ++ Hh )) ·&Center Dot; coscos (( γγ BB -- γγ 11 )) -- -- -- (( 66 ee ))

αr=αmaxmin    (6f)α r = α max - α min (6f)

其中,本实施例中的具体参数为:Re=6371140m,H=800km,SW_r=15000m,r按公式(4a)获得,γB按公式(4b)获得,得到αr=0.0131rad。Wherein, the specific parameters in this embodiment are: R e =6371140m, H=800km, SW_r=15000m, r is obtained according to formula (4a), γ B is obtained according to formula (4b), and α r =0.0131rad is obtained.

C、比较距离向波束宽度αr和距离向3dB波束宽度θ3dB的大小,判断是否需要展宽距离向天线宽度Lr。若αr大于θ3dB,则进行展宽,展宽后的距离向天线宽度记为LtC. Compare the range beam width α r and the range 3dB beam width θ 3dB to determine whether it is necessary to widen the range antenna width L r . If α r is greater than θ 3dB , perform widening, and the distance to the antenna width after widening is recorded as L t ;

方法如公式(7)所示:The method is shown in formula (7):

LL tt == 0.8860.886 λλ αα rr ++ 0.0010.001 -- -- -- (( 77 ))

其中,本实施例中的具体参数为:λ=0.03m,θ3dB按公式(5)获得,αr按公式(6a~6f)获得,得到Lt=1.8798。Wherein, the specific parameters in this embodiment are: λ=0.03m, θ 3dB is obtained according to formula (5), α r is obtained according to formula (6a~6f), and L t =1.8798.

步骤四:获取模糊区数目Nr;Step 4: Obtain the number Nr of fuzzy regions;

方法如公式(8a~8e)所示:The method is shown in formula (8a~8e):

RR aa maxmax == (( RR ee ++ Hh )) 22 -- RR ee 22 -- -- -- (( 88 aa ))

RR aa minmin == ythe y 22 ++ (( RR ee ++ Hh -- rr )) 22 -- -- -- (( 88 bb ))

SS minmin == -- [[ 22 (( RR minmin -- RR aa minmin )) cc ·&Center Dot; PREPRE ]] -- -- -- (( 88 cc ))

SS maxmax == -- [[ 22 (( RR maxmax -- RR aa maxmax )) cc ·&Center Dot; PREPRE ]] -- -- -- (( 88 dd ))

Nr=Smax-Smin    (8e)Nr=S max -S min (8e)

其中,本实施例中的具体参数为:Re=6371140m,H=800km,PRF=2000Hz,Y按公式(3a)获得,Rmax按公式(6b)获得,Rmin按公式(6d)获得,得到Nr=26。Wherein, the specific parameters in this embodiment are: Re =6371140m, H=800km, PRF=2000Hz, Y is obtained according to formula (3a), R max is obtained according to formula (6b), R min is obtained according to formula (6d), This gives Nr=26.

步骤五:获取模糊区能量Ea,流程图如图9所示;Step 5: Obtain the energy Ea of the fuzzy area, the flow chart is shown in Figure 9;

A、给出以下表示,在测绘带距离向上均匀选取Fr个位置;A. Given the following representation, Fr positions are uniformly selected upwards in the survey zone distance;

B、求取测绘带距离向上第j个位置与卫星平台的斜距RjB. Obtain the slope distance R j between the jth position and the satellite platform in the upward distance of the surveying zone;

方法如公式(9a~9b)所示:The method is shown in formula (9a~9b):

ΔγΔγ == SWSW __ rr rr ·&Center Dot; FrFr -- -- -- (( 99 bb ))

RR jj == (( sinsin (( γγ BB -- γγ 11 )) ++ jj ·&Center Dot; ΔγΔγ )) 22 ·&Center Dot; rr 22 ++ ythe y 22 ++ (( (( coscos (( γγ BB -- γγ 11 )) ++ jj ·&Center Dot; ΔγΔγ )) ·· rr -- (( RR ee ++ Hh )) )) 22 -- -- -- (( 99 dd ))

其中,本实施例中的具体参数为:Re=6371140m,H=800km,SW_r=15000m,Fr=1001,r按公式(4a)获得,Y按公式(3a)获得,γB按公式(4b)获得,γ1按公式(6a)获得,根据j的不同取值得到RjWherein, the specific parameters in this embodiment are: Re =6371140m, H=800km, SW_r=15000m, Fr=1001, r is obtained according to formula (4a), Y is obtained according to formula (3a), and γ B is obtained according to formula (4b ), γ 1 is obtained according to formula (6a), and R j is obtained according to different values of j.

C、求取第Si模糊区里第j个位置与卫星平台的斜距Raij和离轴角αijC, obtain the slant distance Ra ij and the off-axis angle α ij between the jth position and the satellite platform in the S i ambiguity zone;

方法如公式(10a~10c)所示:The method is shown in formula (10a~10c):

RR aa ijij == RR jj ++ SS ii ·&Center Dot; cc 22 ·&Center Dot; PREPRE -- -- -- (( 1010 aa ))

coscos γγ ijij == rr 22 ++ (( RR ee ++ Hh )) 22 ++ ythe y 22 -- RR aijaij 22 22 rr ·&Center Dot; (( RR ee ++ Hh )) -- -- -- (( 1010 bb ))

rr sinsin αα ijij == rr 22 ++ (( RR ee ++ Hh )) 22 ++ ythe y 22 -- RR aijaij 22 sinsin γγ ijij -- -- -- (( 1010 cc ))

其中,本实施例中的具体参数为:c=3×108m/s,Re=6371140m,H=800km,PRF=2000Hz,r按公式(4a)获得,Y按公式(3a)获得,Rj按公式(9d)获得,根据j和Si的不同取值得到Raij和αijAmong them, the specific parameters in this embodiment are: c=3×108m/s, Re =6371140m, H=800km, PRF=2000Hz, r is obtained according to formula (4a), Y is obtained according to formula (3a), R j According to formula (9d), Ra ij and α ij are obtained according to different values of j and S i .

D、求取第Si模糊区里第j个位置的距离向天线方向图Wrij;D, obtain the distance to the antenna pattern Wrij of the jth position in the S i ambiguity zone;

方法如公式(11a~11b)所示:The method is shown in formula (11a~11b):

WrWr ijij == sinsin 22 (( ππ ·&Center Dot; LL tt ·&Center Dot; (( sinsin αα ijij -- sinsin αα BB )) // λλ )) (( ππ ·&Center Dot; LL tt ·&Center Dot; (( sinsin αα ijij -- sinsin αα BB )) // λλ )) 22 -- -- -- (( 1111 ))

其中,本实施例中的具体参数为:λ=0.03m,αB按公式(4a~4c)获得,αij按公式(10a~10c)获得,Lt按公式(7)获得,根据j和Si的不同取值得到WrijAmong them, the specific parameters in this embodiment are: λ=0.03m, α B is obtained according to formula (4a-4c), α ij is obtained according to formula (10a-10c), L t is obtained according to formula (7), according to j and Different values of S i get Wr ij .

E、求取第Si模糊区里第j个位置返回的能量EijE, obtain the energy E ij returned by the jth position in the S i fuzzy area;

方法如公式(12a~12b)所示:The method is shown in formula (12a~12b):

coscos (( ππ -- ββ ijij ′′ )) == RR aa ijij 22 ++ RR ee 22 -- (( RR ee ++ Hh )) 22 22 RR ee ·&Center Dot; RR aa ijij -- -- -- (( 1212 aa ))

EE. ijij == WrWr ijij 22 ·· σσ 00 sinsin ββ ijij ′′ ·· RR aijaij 33 -- -- -- (( 1212 bb ))

其中,本实施例中的具体参数为:σ0=1,Re=6371140m,H=800km,Raij按公式(10a)获得,Wrij按公式(11a~11b)获得,根据j和Si的不同取值得到EijAmong them, the specific parameters in this embodiment are: σ 0 =1, R e =6371140m, H=800km, Ra ij is obtained according to formula (10a), Wr ij is obtained according to formula (11a~11b), according to j and S i Different values of E ij can be obtained.

F、重复步骤B到E,计算出所有位置返回的能量。F. Repeat steps B to E to calculate the energy returned by all positions.

G、求取第j个位置返回的总能量Eallj和模糊区能量EajG. Obtain the total energy E allj and the fuzzy area energy Ea j returned by the jth position;

方法如公式(13a~13b)所示:The method is shown in formula (13a~13b):

EE. alljallj == ΣΣ ii EE. ijij -- -- -- (( 1313 aa ))

EE. ajaj == EE. alljallj -- EE. (( || SS minmin || ++ 11 )) jj -- -- -- (( 1313 bb ))

其中,本实施例中的具体参数为:Eij按公式(12a~12b)获得,根据j的不同取值得到Eallj和EajWherein, the specific parameters in this embodiment are: E ij is obtained according to formulas (12a-12b), and E allj and Ea j are obtained according to different values of j.

步骤六:求取第j个位置的距离向模糊度RASRj;Step 6: Calculate the range ambiguity RASR j of the jth position;

方法如公式(14)所示:The method is shown in formula (14):

RASRRASR jj == 1010 ·· loglog 1010 (( EE. aa jj EE. (( || SS minmin || ++ 11 )) jj )) -- -- -- (( 1414 ))

其中,本实施例中的具体参数为:Eij按公式(12a~12b)获得,Eaj按公式(13~13)获得,根据j的不同取值得到RASRjWherein, the specific parameters in this embodiment are: E ij is obtained according to formula (12a-12b), Ea j is obtained according to formula (13-13), and RASR j is obtained according to different values of j.

步骤七:绘制距离向模糊度随距离向位置的变化曲线。Step 7: Draw the change curve of range ambiguity with range position.

采用本发明提出一种通用星载SAR模式下的距离向模糊度计算方法进行计算,得出的本实施例的仿真数据,对仿真数据进行绘制得到距离向模糊度的曲线,如图10所示,该曲线直观反映距离向模糊度在整个场景内的变化情况,结果表现形式直观性强,便于系统设计者及决策者通过曲线做出正确的判断。Using the calculation method of the range ambiguity in the general spaceborne SAR mode proposed by the present invention to calculate, obtain the simulation data of this embodiment, draw the simulation data to obtain the curve of the range ambiguity, as shown in Figure 10 , the curve intuitively reflects the change of the distance ambiguity in the whole scene, and the result expression form is intuitive, which is convenient for system designers and decision makers to make correct judgments through the curve.

Claims (1)

1. the distance under the general satellite-borne SAR pattern comprises to the acquisition methods of blur level:
Step 1: read in the correlation parameter of Spaceborne SAR System, comprise orbit altitude H, antenna distance is to size L r, radar operation wavelength λ, radius of a ball R fifty-fifty e, light velocity c, pulse repetition rate PRF, center of antenna view angle theta m, initial scan angle
Figure FDA00003293857400011
Stop scan angle
Figure FDA00003293857400012
The interscan angle
Figure FDA00003293857400013
Distance is to mapping bandwidth SW_r, and distance is to chosen position number Fr;
It is characterized in that also comprising:
Step 2: obtain under the stravismus state distance to parameter;
(1) sets up coordinate system; True origin is the earth centre of sphere; Z-direction is to point to satellite by the earth centre of sphere; Y direction is for being starting point with the earth centre of sphere, and direction is parallel with the satellite velocities direction; X-direction perpendicular to satellite flight path direction, makes this coordinate system constitute right hand rectangular coordinate system for being starting point with the earth centre of sphere;
(2), obtain beam center view angle theta under the stravismus state m';
Figure FDA00003293857400014
θ wherein mBe the center of antenna visual angle,
Figure FDA00003293857400015
Be the interscan angle;
(3), obtain stravismus mapping band central point oblique distance R down m
R e + H sin β m ′ = R e sin θ m ′ - - - ( 2 a )
γ m'=β m'-θ m' (2b)
R m = ( R e + H ) 2 + R e 2 - 2 R e · ( R e + H ) · cos γ m ′ - - - ( 2 c )
Wherein, β m' and γ m' being incident angle and the geocentric angle of observation band central point, H is orbit altitude, R eBe the radius of a ball fifty-fifty, θ m' be beam center visual angle under the stravismus state;
(4), obtain mapping band central point B coordinate (x, y, z);
Figure FDA00003293857400018
z=R e+H-R m·cosθ m' (3b)
x = R e 2 - y 2 - z 2 - - - ( 3 c )
Wherein, R mBe with the central point oblique distance for looking side ways mapping down,
Figure FDA000032938574000110
Be the interscan angle, H is orbit altitude, R eBe the radius of a ball fifty-fifty, θ m' be beam center visual angle under the stravismus state, x, y and z are respectively X-axis, Y-axis and the Z axial coordinate of mapping band central point B;
(5), obtain mapping band central point B point place distance to the roundlet radius r and apart to off-axis angle α B
r = R e 2 - y 2 - - - ( 4 a )
sin γ B = x r - - - ( 4 b )
r 2 + ( R e + H ) 2 - 2 r · ( R e + H ) · cos γ B sin γ B = r sin α B - - - ( 4 c )
Wherein, γ BBe the central angle of mapping band central point B point place roundlet, R eBe the radius of a ball fifty-fifty, (x, y z) are the coordinate of mapping band central point B, and H is orbit altitude, and y is the Y-axis coordinate of mapping band central point B;
Step 3: carry out distance to sky line width broadening;
(1), obtains distance to 3dB beam angle θ 3dB
θ 3 dB = 0.886 λ L r - - - ( 5 )
Wherein λ is the radar operation wavelength, L rFor antenna distance to size;
(2), obtain stravismus down, distance is to beam angle α r
γ 1 = SW _ r 2 r - - - ( 6 a )
R max = r 2 + ( R e + H ) 2 - 2 r · ( R e + H ) · cos ( γ B + γ 1 ) + y 2 - - - ( 6 b )
sin α max = r · sin ( γ B + γ 1 ) r 2 + ( R e + H ) 2 - 2 r · ( R e + H ) · cos ( γ B + γ 1 ) - - - ( 6 c )
R min = r 2 + ( R e + H ) 2 - 2 r · ( R e + H ) · cos ( γ B + γ 1 ) + y 2 - - - ( 6 d )
sin α min = r · sin ( γ B + γ 1 ) r 2 + ( R e + H ) 2 - 2 r · ( R e + H ) · cos ( γ B + γ 1 ) - - - ( 6 e )
α r=α maxmin (6f)
Wherein, γ 1Be the central angle of half mapping bandwidth correspondence in roundlet, R MaxAnd R MinBe respectively maximum oblique distance and the minimum oblique distance of mapping band and satellite platform, α MaxAnd α MinBe respectively mapping band in little disk corresponding distance to maximal off-axis angles and minimal off-axis angle, SW_r be distance to the mapping bandwidth, r for mapping band central point B point place apart to little radius of circle, R eBe the radius of a ball fifty-fifty, H is orbit altitude, γ BBe the central angle of mapping band central point B point place roundlet, y is the Y-axis coordinate of mapping band central point B;
(3), compare distance to beam angle α rWith the distance to 3dB beam angle θ 3dBSize, need to judge whether broadening distance to sky line width L r, if distance is to beam angle α rGreater than the distance to 3dB beam angle θ 3dB, then carry out broadening, the distance behind the broadening is designated as L to the sky line width t:
L t = 0.886 λ α r + 0.001 - - - ( 7 )
If distance is to beam angle α rLess than the distance to 3dB beam angle θ 3dB, then do not carry out broadening, L t=L r
Step 4: obtain confusion region number N r;
R a max = ( R e + H ) 2 - R e 2 - - - ( 8 a )
R a min = y 2 + ( R e + H - r ) 2 - - - ( 8 b )
S min = - [ 2 ( R min - R a min ) c · PRF ] - - - ( 8 c )
S max = - [ 2 ( R max - R a max ) c · PRF ] - - - ( 8 d )
Nr=S max-S min (8e)
Wherein, R AmaxAnd R AminBe respectively confusion region oblique distance and nearest oblique distance farthest, S MaxAnd S MinBe respectively the maximum sequence number in confusion region and smallest sequence number, the maximum integer that is not more than x, R are got in [x] expression eBe the radius of a ball fifty-fifty, H is orbit altitude, r for mapping band central point B point place distance to little radius of circle, c is the light velocity, PRF is pulse repetition rate, y is with the Y-axis coordinate of central point B for mapping;
Step 5: obtain confusion region energy E a;
(1), upwards evenly chooses Fr position in mapping band distance; Fr is that distance is to the chosen position number;
(2), ask for the oblique distance R that surveys and draws band apart from make progress j position and satellite platform j
Δγ = SW _ r r · Fr - - - ( 9 b )
R j = ( sin ( γ B - γ 1 ) + j · Δγ ) 2 · r 2 + y 2 + ( ( cos ( γ B - γ 1 ) + j · Δγ ) · r - ( R e + H ) ) 2 - - - ( 9 d )
Wherein, Δ γ is circle heart angle Walk distance, SW_r be distance to the mapping bandwidth, r for mapping band central point B point place distance to little radius of circle, Fr be distance to the chosen position number, r for survey and draw be with central point B point place apart to little radius of circle, R eBe the radius of a ball fifty-fifty, H is orbit altitude, γ 1Be the central angle of half mapping bandwidth correspondence in roundlet, γ BBe the central angle of mapping band central point B point place roundlet, y is the Y-axis coordinate of mapping band central point B;
(3), ask for S iThe oblique distance of j position and satellite platform in the confusion region With off-axis angle α Ij
R a ij = R j + S i · c 2 · PRF - - - ( 10 a )
cos γ ij = r 2 + ( R e + H ) 2 + y 2 - R aij 2 2 r · ( R e + H ) - - - ( 10 b )
r sin a ij = r 2 + ( R e + H ) 2 + y 2 - R aij 2 sin γ ij - - - ( 10 c )
Wherein, γ IjBe corresponding central angle, S iBe the confusion region sequence number, PRF is pulse repetition rate, and c is the light velocity, R jBe the upwards oblique distance of j position and satellite platform of mapping band distance, r for mapping be with central point B point place apart to little radius of circle, R eBe the radius of a ball fifty-fifty, H is orbit altitude, and y is the Y-axis coordinate of mapping band central point B;
(4), ask for S iThe distance of j position is to antenna radiation pattern Wr in the confusion region Ij
Wr ij = sin 2 ( π · L t · ( sin α ij - sin α B ) / λ ) ( π · L t · ( sin α ij - sin α B ) / λ ) 2 - - - ( 11 )
α wherein IjBe off-axis angle, λ is the radar operation wavelength, L tFor the distance behind the broadening to sky line width, α BFor the distance to off-axis angle;
(5), ask for S iJ energy E that the position is returned in the confusion region Ij
cos ( π - β ij ' ) = R a ij 2 + R e 2 - ( R e + H ) 2 2 R e · R a ij - - - ( 12 a )
E ij = Wr ij 2 · σ 0 sin β ij ' · R aij 3 - - - ( 12 b )
Wherein, β Ij' be the incident angle sequence, σ 0Expression ground backscattering coefficient, R eBe the radius of a ball fifty-fifty, H is orbit altitude,
Figure FDA000032938574000311
Represent S iThe oblique distance of j position and satellite platform in the confusion region;
(6), repeating step (2) is to (5), calculates the energy that all positions are returned;
(7), ask for the gross energy E that returns j position AlljWith confusion region energy E a j
E allj = Σ i E ij - - - ( 13 a )
Ea j = E allj - E ( | S min | + 1 ) j - - - ( 13 b )
S wherein MinBe confusion region smallest sequence number, E IjBe S iJ energy that the position is returned in the confusion region,
Figure FDA00003293857400042
Be i=|s Min|+1 o'clock S iJ energy that the position is returned in the confusion region;
Step 6: ask for the distance of j position to blur level RASR j;
RASR j = 10 · log 10 ( Ea j E ( | S min | + 1 ) j ) - - - ( 14 )
Ea wherein jBe confusion region energy, S MinBe the confusion region smallest sequence number;
Step 7: draw distance to blur level with the change curve of distance to the position.
CN 201210208826 2012-06-19 2012-06-19 Method for computing range ambiguity of satellite-borne synthetic aperture radar (SAR) in universal mode Expired - Fee Related CN102736073B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210208826 CN102736073B (en) 2012-06-19 2012-06-19 Method for computing range ambiguity of satellite-borne synthetic aperture radar (SAR) in universal mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210208826 CN102736073B (en) 2012-06-19 2012-06-19 Method for computing range ambiguity of satellite-borne synthetic aperture radar (SAR) in universal mode

Publications (2)

Publication Number Publication Date
CN102736073A CN102736073A (en) 2012-10-17
CN102736073B true CN102736073B (en) 2013-08-14

Family

ID=46991905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210208826 Expired - Fee Related CN102736073B (en) 2012-06-19 2012-06-19 Method for computing range ambiguity of satellite-borne synthetic aperture radar (SAR) in universal mode

Country Status (1)

Country Link
CN (1) CN102736073B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353777B (en) * 2016-08-09 2018-08-31 北京空间飞行器总体设计部 High resolution SAR satellite radiance analysis method
CN106569189B (en) * 2016-10-31 2019-04-09 北京空间飞行器总体设计部 A kind of high resolution SAR satellite distance fuzziness method for analyzing performance
CN107907880B (en) * 2017-09-30 2019-08-09 西安空间无线电技术研究所 A system, method and memory for spaceborne reduced polarization SAR ambiguity analysis
CN112684444B (en) * 2020-11-30 2023-09-22 中国科学院空天信息创新研究院 Method and device for suppressing distance ambiguity based on antenna pattern synthesis
CN113970774B (en) * 2021-12-22 2022-04-01 广东汇天航空航天科技有限公司 Ambiguity fixing method and device of navigation system
CN114924269B (en) * 2022-05-16 2024-04-09 北京航空航天大学 Distance ambiguity analysis method based on spaceborne F-SCAN SAR
CN116500550B (en) * 2023-06-27 2023-08-25 中国科学院空天信息创新研究院 Space-borne SAR distance ambiguity suppression method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749019A1 (en) * 1995-06-15 1996-12-18 Alcatel Espace Method for reducing ambiguities in a synthetic aperture radar, and radar for carrying out this method
CN102169173A (en) * 2010-12-07 2011-08-31 北京理工大学 Method for analyzing ambiguity of inclined geo-synchronization orbit synthetic aperture radar

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344942B2 (en) * 2010-04-29 2013-01-01 Raytheon Company System and method for resolving ambiguity in radar, lidar, and acoustic systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749019A1 (en) * 1995-06-15 1996-12-18 Alcatel Espace Method for reducing ambiguities in a synthetic aperture radar, and radar for carrying out this method
CN102169173A (en) * 2010-12-07 2011-08-31 北京理工大学 Method for analyzing ambiguity of inclined geo-synchronization orbit synthetic aperture radar

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Ian G. Cumming等.Improved Slope Estimation for SAR Doppler Ambiguity Resolution.《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》.2006,第44卷(第3期),
Improved Slope Estimation for SAR Doppler Ambiguity Resolution;Ian G. Cumming等;《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》;20060331;第44卷(第3期);707-718 *
一种基于数字波束形成的抑制星载SAR距离模糊的方案;张永庆等;《中国科学院研究生院学报》;20110331;第28卷(第2期);217-222 *
刘军鹰等.星载距离向多波束SAR的系统模糊特性.《信息与电子工程》.2012,第10卷(第2期),
张永庆等.一种基于数字波束形成的抑制星载SAR距离模糊的方案.《中国科学院研究生院学报》.2011,第28卷(第2期),
星载距离向多波束SAR的系统模糊特性;刘军鹰等;《信息与电子工程》;20120430;第10卷(第2期);138-142 *

Also Published As

Publication number Publication date
CN102736073A (en) 2012-10-17

Similar Documents

Publication Publication Date Title
CN102736073B (en) Method for computing range ambiguity of satellite-borne synthetic aperture radar (SAR) in universal mode
CN110824510B (en) Method for increasing number of sea surface reflection signals received by GNSS-R height measurement satellite
US20240319364A1 (en) Segmented aperture imaging and positioning method of multi-rotor unmanned aerial vehicle-borne synthetic aperture radar
US9927513B2 (en) Method for determining the geographic coordinates of pixels in SAR images
CN102654576B (en) Image registration method based on synthetic aperture radar (SAR) image and digital elevation model (DEM) data
JP5891560B2 (en) Identification-only optronic system and method for forming three-dimensional images
CN102759731B (en) Ocean surface wind and wave feature retrieval method based on echo of spaceborne laser height indicator
CN104076338B (en) Airborne radar clutter simulation method based on digital elevation and digital ground coverage
CN102508243B (en) Beam position design method of inclined geosynchronous orbit synthetic aperture radar
CN102879768B (en) Satellite-borne synthetic aperture radar (SAR) high-fidelity echo simulation method based on steady-state radar cross section (RCS)
CN110133682B (en) Adaptive target 3D reconstruction method for spaceborne omni-directional SAR
CN103472450B (en) Based on the nonuniform space configuration distributed SAR moving target three-D imaging method of compressed sensing
CN108872985A (en) A kind of near field circumference SAR rapid three dimensional imaging process
CN114047511B (en) Time-varying sea surface airborne SAR imaging simulation method based on CSA algorithm
CN108414998A (en) A kind of laser satellite altitude meter echo waveform analog simulation method and equipment
CN101957449A (en) Optimization method for azimuth ambiguity in space-borne TOPSAR mode
CN102866393B (en) A SAR Doppler Parameter Estimation Method Based on POS and DEM Data
KR102151362B1 (en) Image decoding apparatus based on airborn using polar coordinates transformation and method of decoding image using the same
CN103487798A (en) Method for measuring height of phase array radar
CN104280566A (en) Low altitude wind shear wind speed estimation method based on space-time amplitude and phase estimation
CN108614279A (en) A kind of algae and water detection of pollutants method based on GNSS-R DDM
CN112213699A (en) Method for calculating performance parameters of satellite-borne SAR (synthetic aperture radar) system in large squint imaging mode
CN106353777A (en) Method for analyzing radiation properties of high-resolution SAR (synthetic aperture radar) satellites
CN105403886A (en) Automatic extraction method for airborne SAR scaler image position
CN118229757A (en) Estimation method for grassland leaf area index and grassland canopy height

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130814

Termination date: 20190619