CN102731651A - 针对肠球菌和金黄色葡萄球菌具有杀伤活性的人结合分子及其应用 - Google Patents

针对肠球菌和金黄色葡萄球菌具有杀伤活性的人结合分子及其应用 Download PDF

Info

Publication number
CN102731651A
CN102731651A CN2012102366545A CN201210236654A CN102731651A CN 102731651 A CN102731651 A CN 102731651A CN 2012102366545 A CN2012102366545 A CN 2012102366545A CN 201210236654 A CN201210236654 A CN 201210236654A CN 102731651 A CN102731651 A CN 102731651A
Authority
CN
China
Prior art keywords
seq
faecalis
binding molecule
antibody
bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102366545A
Other languages
English (en)
Other versions
CN102731651B (zh
Inventor
M·思罗斯比
R·A·克拉梅
C·A·德克吕夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Vaccines and Prevention BV
Original Assignee
Crucell Holand BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crucell Holand BV filed Critical Crucell Holand BV
Publication of CN102731651A publication Critical patent/CN102731651A/zh
Application granted granted Critical
Publication of CN102731651B publication Critical patent/CN102731651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/116Polyvalent bacterial antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1228Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

本发明提供了特异性结合肠球菌和金黄色葡萄球菌(Staphylococcus aureus)并针对肠球菌和金黄色葡萄球菌(Staphylococcus aureus)具有杀伤活性的人结合分子,编码所述人结合分子的核酸分子,包含所述人结合分子的组合物,以及鉴定或制备所述人结合分子的方法。所述人结合分子能够用于肠球菌(Enterococcus)所引起病症的诊断、预防和/或治疗。

Description

针对肠球菌和金黄色葡萄球菌具有杀伤活性的人结合分子及其应用
本申请为申请日为2007年6月5日、申请号为200780020712.8、发明名称为“针对肠球菌和金黄色葡萄球菌具有杀伤活性的人结合分子及其应用”的发明专利申请的分案申请。
发明领域
本发明涉及药物。特别的,本发明涉及肠球菌感染的诊断、预防和/或治疗。
发明背景
肠球菌是肠球菌科(Enterococcaceae)的革兰氏阳性、兼性厌氧细菌。它们以前被分类为D组链球菌。肠球菌是在大部分人的肠内发现的,并且通常从厕所、尿和腹内和下肢感染部位中被分离。肠球菌(Enterococcus)属的细菌通常被认为是胃肠道的无害共生物,但在过去10年内,它们已经成为医院感染(医院获得性感染)的重要原因,这并不是因为毒力的提高,而是因为抗生素抗性。估计在美国每年出现800,000例肠球菌感染,这导致了大约5亿美元的费用。为了感染宿主,肠球菌主要在粘膜表面上形成菌落。肠球菌是菌血症、手术伤口感染、尿路感染以及心内膜炎的病因。它们还与导致腹内脓肿的混合感染的固性厌氧细菌相关。大体上,存在大约17种肠球菌,其中粪肠球菌(Enterococcus faecalis)和屎肠球菌(Enterococcus faecium)似乎是在人粪便中最经常检测到的。粪肠球菌(E.faecalis)引起了大部分的人肠球菌感染,通常占临床分离物的80-90%。屎肠球菌(E.faecium)被检测到的频率要少得多,然而因为其对抗菌药多抗性的高发生率,因此是重要的。通常使用抗菌剂治疗肠球菌感染,直到最近,才通过使用这些药物使肠球菌感染被适当控制。然而,药物抗性肠球菌株正在出现,并且对所有目前可利用抗生素都有抗性的菌株所引起的感染可能在不久的将来成为严重的问题。某些肠球菌已经获得了对β-内酰胺系抗生素(青霉素)以及许多氨基糖甙的固有抗性。在最近的二十年中,特别是甚至对抗生素万古霉素都有抗性的肠球菌(Enterococcus)毒性菌株(万古霉素抗性肠球菌或VRE)已经在就医患者的医院感染中出现。尽管对开发新型抗生素有迫切的需要,但是主要的药物公司似乎已经对抗生素市场失去了兴趣。在2002年,超过500种的II期临床或III期临床药物开发中仅有5种是新型的抗生素。在过去6年中,仅10种抗生素被注册,而且它们中仅2种没有表现出与现有药物的交叉反应(因此,不具有相同的药物抗性特征)。这种趋势归于多种因素:新药开发的成本,以及与针对高血压、关节炎以及生活方式药物例如阳痿的药物相比,对感染药物治疗研究产出的回报相对教少。另一个起作用的因素是发现新靶点的困难,这进一步提高了开发成本。因此,迫切需要对(多药物抗性)细菌感染的新型治疗或预防检测的研究以满足这种迫近的保健危机。
使用疫苗的主动免疫和使用免疫球蛋白的被动免疫是对经典小分子治疗有希望的替代。现在,通过使用疫苗可以预防一些一度引起普遍疾病、残疾和死亡的细菌疾病。这些疫苗基于弱化的(减毒)细菌或死细菌、细菌表面组分,或者基于灭活的毒素。疫苗所引起的免疫应答主要针对免疫原结构,即细菌上一定数目被免疫系统主动处理的蛋白质或糖结构。由于这些免疫原结构对生物体非常特异,因此疫苗需要包含该疫苗所需要防护的细菌所有变体的免疫原组分。结果,疫苗非常复杂,开发需要长时间并且昂贵。使得疫苗更加复杂的是“抗原置换(antigen replacement)”现象。在血清学以及进而抗原上与疫苗所覆盖菌株不同的新菌株流行时出现“抗原置换”现象。有医院感染危险的人群的免疫状态进一步使得疫苗设计复杂。这些患者自身就是健康状态不好的,并且甚至可能是免疫受损(由于免疫抑制药物的影响),这导致了针对感染病原体的延迟或不充分的免疫。此外,除了某些遴选程序外,不可能及时对有危险的患者进行鉴定和接种疫苗,从而为他们提供充分的免疫保护免于感染。
直接给药治疗性免疫球蛋白也被称作被动免疫不需要患者的免疫应答,因此提供立即的保护。另外,被动免疫可以针对不是免疫原以及对生物体特异性较差的细菌结构。针对病原生物体的被动免疫基于来自人或非人供体的血清。然而,来自血液的产品具有潜在的健康风险,这种风险是与这些产品所固有相关的。另外,免疫球蛋白能够表现出批次之间的变化,并且在意外大量暴露时有效性有限。充足产生的抗体不具有这些缺点,因此提供了替换来自血清的免疫球蛋白的机会。
本领域中,针对肠球菌抗原的鼠单克隆抗体是已知的(参见WO03/072607)。然而,鼠抗体被限制在体内使用,这是由于和为人给药鼠抗体相关的问题,例如血清半衰期短,不能够引起某些人效应物功能,以及诱发针对人体内鼠抗体(HAMA)的不期望显著免疫应答。
WO99/18996涉及肠球菌抗原和疫苗。WO99/18996还公开了针对从肠球菌分离的偶联纯化抗原的兔抗血清,以及这种抗血清的调理活性。
尽管WO99/18996提及人抗体作为所需分子,然而其中所实际公开和运用的抗体是兔来源的,并且该文献并未实际公开任何人抗体,也未公开其序列。
考虑到它们在人体内的治疗效果,因此仍需要针对肠球菌的人单克隆抗体。
另外,本领域中存在对能够杀伤更宽范围细菌例如肠球菌和葡萄球菌的人抗体的需求。
本发明提供了这些抗体,并且显示它们能够被用于药物中,特别的用于肠球菌的诊断、预防和/或治疗。
附图说明
图1显示了体内实验的数据。在Y轴上,显示了小鼠血液中的CFU/ml,而在X轴上则表示了各种抗体。除了以7.5mg/kg的量使用CR6016和CR6241外,以15mg/kg的量使用抗体。除了CR6043和CR6071外,所有的抗体均具有如对照IgG显著不同的中位数(与IgG1对照相比P<0.05)。
发明描述
本发明中使用下列术语的定义。
定义
氨基酸序列
本文所使用的术语“氨基酸序列”指天然存在或合成的分子,并指肽、寡肽、多肽或蛋白质序列。
结合分子
本文所使用的术语“结合分子”指完整免疫球蛋白包括单克隆抗体例如嵌合抗体、人源化抗体或人单克隆抗体,或者指包含免疫球蛋白片段的抗原结合区和/或可变区,其中所述免疫球蛋白片段同完整免疫球蛋白竞争与免疫球蛋白结合配偶体(如肠球菌)的特异性结合。无论结构如何,抗原结合片段与完整免疫球蛋白所识别相同的抗原结合。抗原结合片段可以包含肽或多肽,其中所述肽或多肽包含结合分子氨基酸序列中至少2个连续氨基酸残基的氨基酸序列,至少5个连续氨基酸残基的氨基酸序列,至少10个连续氨基酸残基的氨基酸序列,至少15个连续氨基酸残基的氨基酸序列,至少20个连续氨基酸残基的氨基酸序列,至少25个连续氨基酸残基的氨基酸序列,至少30个连续氨基酸残基的氨基酸序列,至少35个连续氨基酸残基的氨基酸序列,至少40个连续氨基酸残基的氨基酸序列,至少50个连续氨基酸残基的氨基酸序列,至少60个连续氨基酸残基的氨基酸序列,至少70个连续氨基酸残基的氨基酸序列,至少80个连续氨基酸残基的氨基酸序列,至少90个连续氨基酸残基的氨基酸序列,至少100个连续氨基酸残基的氨基酸序列,至少125个连续氨基酸残基的氨基酸序列,至少150个连续氨基酸残基的氨基酸序列,至少175个连续氨基酸残基的氨基酸序列,至少200个连续氨基酸残基的氨基酸序列或者至少250个连续氨基酸残基的氨基酸序列。
本文所使用的术语“结合分子”包括本领域中已知的所有免疫球蛋白类别以及亚类。根据它们重链保守区的氨基酸序列,结合分子可以被分成五类主要的完整抗体类别:IgA、IgD、IgE、IgG和IgM,这些中的一些可以被进一步分成亚类(同种型)例如IgA1、IgA2、IgG1、IgG2、IgG3和IgG4。
抗原结合片段尤其包括Fab、F(ab’)、F(ab’)2、Fv、dAb、Fd、互补决定区(CDR)片段、单链抗体(scFv)、双价单链抗体、单链噬菌体抗体、二聚抗体、三聚抗体、四聚抗体、包含至少足以提供特异性抗原结合(多)肽的免疫球蛋白片段的(多)肽,等。可以合成生产或者通过对原始免疫球蛋白进行酶切或者化学切割而生产上述片段,或者可以通过重组DNA技术而对它们进行遗传改造。生产方法是本领域中公知的,并被描述在例如抗体:实验室手册(Antibodies:A Laboratory Manual),编辑:E.Harlow和D,Lane(1988),ColdSpring Harbor Laboratory,Cold Spring Harbor,New York,通过参照将其并入本文中。结合分子或者其抗原结合片段可以具有一个或者多个结合位点。如果存在超过一个的结合位点,则结合位点相互之间可以是相同的,或者它们可以是不同的。
结合分子可以是裸结合分子或者未结合的结合分子,但也可以是免疫缀合物(immunoconjugate)的一部分。裸结合分子或未结合的结合分子是指没有偶联、可操作连接或者以其它方式物理或功能联合效应物基团或标签的结合分子,例如尤其是毒性物质、放射性底物、脂质体、酶。可以理解裸结合分子和未结合的结合分子不排除被稳定化、多聚化、人源化或者通过除联合效应物成份或标签以外的任何其它方式处理的结合分子。因此,其包括所有翻译后修饰的裸结合分子或未结合的结合分子,包括在产生天然结合分子的细胞环境中由产生重组结合分子的细胞进行的修饰,以及在开始制备结合分子之后引入的修饰。当然,术语裸结合分子或未结合的结合分子不排除结合分子与效应细胞和/或分子在为身体给药后形成功能联合的能力,因为某些这类相互作用对于产生生物学作用是必要的。因此,缺少联合效应物基团或标签被用于对体外而不是体内的裸结合分子或未结合的结合分子的定义。
生物样品
本文所使用的术语“生物样品”包括多种样品类型,包括血液和生物来源的其它液体样品、实体组织样品例如活组织样品或者组织培养物,或者从其衍生的细胞及其后代。该术语还包括在获得之后以任何方法进行操作的样品,例如使用试剂进行处理、溶解或者富集某些组分例如蛋白质或多聚核苷酸。该术语包括各种从任何物种获得的临床样品,还包括培养物、细胞悬浮液和细胞裂解液中的细胞。
互补决定区(CDR)
本文所使用的术语“互补决定区”的意思是在结合分子如免疫球蛋白的可变区内通常在很大程度上有助于抗原结合位点的序列,其中所述抗原结合位点在形状和电荷分布方面与抗原上所识别的抗原决定基互补。CDR区可以对于蛋白质或蛋白质片段的线性抗原决定基、不连续抗原决定基或构象抗原决定基(在原始构象蛋白质上出现时,或者某些情况中在出现在变性蛋白质上时,例如通过溶解在SDS中变性时)是特异性的。抗原决定基也可以由蛋白质的翻译后修饰构成。
缺失
本文所使用的术语“缺失”表示氨基酸或核苷酸序列的改变,其中与通常天然存在的亲代分子相比,分别缺少一个或者多个氨基酸或核苷酸残基。
表达调节核酸序列
本文所使用的术语“表达调节核酸序列”指对于在特定宿主生物体中可操作连接编码序列的表达必要的和/或影响可操作连接编码序列的表达的多聚核苷酸序列。表达调节核酸序列例如尤其是适当的转录起始序列、终止序列、启动子序列、增强子序列;阻抑子或激活子序列;有效的RNA处理信号,例如剪接和聚腺苷化信号;稳定细胞质mRNA的序列;提高翻译效率的序列(例如核糖体结合位点);提高蛋白质稳定性的序列;以及在期望时,增强细胞分泌的序列,可以是任何在所选择宿主生物体内表现出活性的核酸序列,并且可以衍生自编码与宿主生物体同源或者异源蛋白质的基因。表达调节序列的鉴定和利用对于本领域技术人员而言是常规的。
功能变体
本文所使用的术语“功能变体”指结合分子,其包含与亲代结合分子的核苷酸和/或氨基酸序列相比,一个或者多个核苷酸和/或氨基酸被改变的核苷酸和/或氨基酸序列,但该结合分子仍能够与亲代结合分子竞争与结合配偶体例如肠球菌的结合。换句话说,亲代结合分子的氨基酸和/或核苷酸序列的修饰没有显著影响或改变核苷酸序列所编码或包含该氨基酸序列的结合分子的结合特性,即该结合分子仍能够识别并结合其靶点。功能变体可以具有保守性序列修饰,包括核苷酸和氨基酸置换、添加和缺失。可以通过本领域中已知的标准技术引入这些修饰,例如定点诱变和随机PCR介导的诱变,并可以包括天然以及非天然核苷酸和氨基酸。
保守氨基酸置换包括氨基酸残基被具有类似结构或化学性质的氨基酸残基替换的置换。本领域中已经定义了具有类似侧链的氨基酸残基家族。这些家族包括具有碱性侧链(例如赖氨酸、精氨酸、组氨酸)、酸性侧链(例如天冬氨酸、谷氨酸)、中性极性侧链(例如天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸、色氨酸)、非极性侧链(例如甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸)、β-支链侧链(例如苏氨酸、缬氨酸、异亮氨酸)和芳香族侧链(例如酪氨酸、苯丙氨酸、色氨酸)。对于本领域技术人员清楚的是,也可以采用与上面所采用的不同的氨基酸残基家族的分类。此外,变体可以具有非保守氨基酸置换,例如使用具有不同结构或化学性质的氨基酸残基替换氨基酸。类似的少量变体也可以包括氨基酸缺失或插入,或者包括二者。可以使用本领域中公知的计算机程序获得对确定哪个氨基酸残基可以被置换、插入或缺失而不会破坏免疫活性的引导。
核苷酸序列中的突变可以是在位点上进行的单个改变(点突变),例如转换突变(transition mutation)或颠换突变(transversion mutation),或者,在一个位点上可以插入、缺失或改变多个核苷酸。另外,可以在核苷酸序列内任何数目的位点进行的一个或者多个改变。可以通过本领域中已知的任何适当方法进行突变。
宿主
本文所使用的术语“宿主”是为了指已经引入载体(例如克隆载体或表达载体)的生物体或细胞。所述生物体或细胞可以是原核细胞或真核细胞。需要理解该术语是为了不仅指特定的对象生物体或细胞,还指这类生物体或细胞的后代。由于在后代中可以因突变或环境影响而出现某些修饰,因此事实上这些后代与亲代生物体或细胞可能不一致,但仍被包括本文所使用术语“宿主”的范围内。
在用于本文所定义的结合分子时,术语“人”是指直接来自或基于人类序列的分子。如果结合分子来自或者基于人类序列,并接着被修饰,则在本文中使用时仍被认为是人的。换句话说,术语“人”在用于结合分子时是为了包括具有来自人生殖系免疫球蛋白序列或基于人或人淋巴细胞中所出现可变区或恒定区并以某些形式被修饰的可变区和恒定区。因此,人结合分子可以包括并非由人种系免疫球蛋白序列所编码的氨基酸残基,包括置换和/或缺失(例如通过如体外随机或位点特异性突变或体内体细胞突变所引入的突变)。本文所使用的“基于”指可以精确地从模板拷贝的核酸序列或者具有例如通过错误倾向性PCR方法或合成造成的少量突变的情况,其与模板精确匹配或者具有少量修饰。本文所使用的基于人序列的半合成分子也被认为是人的。
插入
术语“插入”也被称作术语“添加”表示氨基酸或核苷酸序列的变化,与亲代序列相比,分别导致增加一个或者多个氨基酸或核苷酸残基。
固有活性
术语“固有活性”在用于本文所限定的结合分子时,指能够与病原体(如细菌)表面上的某些蛋白质或糖类抗原结合的结合分子,以及能够抑制病原体正常生长和分裂的能力的结合分子。这些结合分子能够例如阻断生长所需特异性营养物的进入,或者从细菌转运毒性废物元素。通过后面的作用,它们还能够提高细菌对抗生素药物作用的灵敏性。
分离的
术语“分离的”在用于本文所限定的结合分子时,指基本上不包含其它蛋白质或多肽,特别是基本上不含具有不同抗原特异性的其它结合分子,并且还基本上不包含其它细胞物质和/或化学物质的结合分子。例如,如果通过重组制备结合分子,则优选它们基本上不含培养基,如果通过化学合成制备结合分子,则优选它们基本上不含化学前体或其它化学物质,即它们被从参与蛋白质合成的化学前体或其它化学物质中区分开。术语“分离的”在用于本文所限定的的编码结合蛋白的核酸时,是为了指编码结合分子的核苷酸序列不含其它核苷酸序列,特别是编码结合肠球菌以外的结合配偶体的结合分子的核苷酸序列。此外,术语“分离的”指基本上从在其天然宿主中天然伴随原始核酸分子的其它细胞组分(例如天然结合的核糖体、聚合酶或基因组序列)被区分开的核酸分子。而且,“分离的”核酸分子,例如cDNA分子可以是在通过重组技术制备时基本上不含其它细胞物质或者培养基,或者在化学合成时基本上不含化学前体或其它化学物质。
单克隆抗体
本文所使用的术语“单克隆抗体”是指单种分子组成的抗体分子制备物。单克隆抗体表现出对于特定抗原决定基的单一结合特异性和亲和力。因此,术语“人单克隆抗体”是指表现出单一结合特异性的抗体,其具有来自或基于人生殖系免疫球蛋白序列或者来自完全合成序列的可变区和恒定区。制备单克隆抗体的方法是无关的。
天然存在
本文所使用的术语“天然存在”在用于客体时,是指客体可以在自然界中被发现。例如,在能够从自然界中的来源分离的生物体中存在,并且还未被人在实验室中有目的地修饰的多肽或多聚核苷酸序列是天然存在的。
核酸分子
本文所使用的术语“核酸分子”,是指核苷酸的聚合物形式,并且包括RNA、cDNA、基因组DNA的正义链和反义链和合成形式和上述的混合聚合物。核苷酸指核糖核苷酸、脱氧核糖核苷酸或这两种类型的核苷酸中的任一种的修饰形式。该术语还包括DNA的单链和双链形式。另外,多聚核苷酸可以包括天然存在和被修饰核苷酸的每一种或者两种,其被天然存在和/或非天然存在的核苷酸键所连接在一起。正如本领域技术人员容易接受的,核酸分子可以被化学或生物化学修饰,或者可以包含非天然或衍生的核苷酸碱基。这些修饰包括例如标记、甲基化、使用类似物取代一个或者多个天然存在的核苷酸、核苷酸间修饰例如中性键(例如甲基磷酸酯、磷酸三酯、氨基磷酸酯、氨基甲酸酯等)、带电键(硫代磷酸酯、二硫代磷酸酯等)、悬挂部(例如多肽)、嵌入剂(例如吖啶、补骨脂素等)、螯合剂、烷基化剂和被修饰的键(例如α异头核酸等)。上述术语还为了包括任何拓扑构型,包括单链、双链、部分双螺旋、三螺旋、发夹式、环形和挂锁式构型。还包括合成分子,其模拟多聚核苷酸通过氢键和其它化学相互作用与指定序列结合的能力。这些分子是本领域中已知的,并且包括例如肽键取代分子骨架中磷酸酯键的分子。除非特别说明,提到核酸序列包括其互补物。因此,提到具有特定序列的核酸分子,需要理解成包括具有其互补序列的互补链。互补链也是有用的,例如用于反义治疗、杂交探针和PCR引物。
可操作连接
术语“可操作连接”是指通常被物理连接并且相互之间功能上有联系的两个或者多个核酸序列元件。例如,如果启动子能够启动或调节编码序列转录或表达,则启动子被可操作连接到编码序列,在这种情况中编码序列需要被理解为在启动子的“控制”下。
调理活性
“调理活性”是指调理素(通常是结合分子例如抗体或血清补体因子)与病原体表面结合的能力,其通过特异性的抗原识别(在抗体时)或者通过表面结合分子的催化作用(例如由于表面结合抗体的提高的C3b沉积)。由于吞噬细胞上的识别受体对调理素的特异性识别(在抗体本身是调理素时为Fc受体,在补体是调理素时为补体受体),被调理病原体的吞噬作用被增强。某些细菌,特别是由于存在荚膜而抵抗吞噬作用的荚膜细菌在包被调理素抗体时,变得对吞噬细胞(例如嗜中性粒细胞和巨噬细胞)非常有吸引力,并且从血流中以及被感染器官中清除它们的速率被显著提高。可以以任何常规的方式检测调理活性(例如调理素吞噬细胞杀伤测定)。
药物上可以接受的赋形剂
“药物上可以接受的赋形剂”的意思是任何惰性材料,其与活性分子例如药物、药剂或结合分子组合用于制备适合的或者便利的剂型。“药物上可以接受的赋形剂”是以所采用的剂量和浓度对接受者无毒,并且与包含药物、药剂或结合分子的制剂的其它成分兼容的赋形剂。
特异性结合
本文所使用的术语“特异性结合”,关于结合分子(例如抗体)与其结合配偶体(例如抗原)的相互作用,其意思是取决于特定结构(例如结合配偶体上的抗原决定簇或抗原决定基)的存在的相互作用。换句话说,即使在结合配偶体出现在其它分子的混合物或生物体中时,抗体也优先结合或识别结合配偶体。结合可以是共价相互作用或非共价相互作用或其二者结合所介导的。用另外一种方式表达,术语“特异性结合”的意思是与抗原或其片段免疫特异性地结合,并且不与其它抗原免疫特异性地结合。根据例如放射免疫测定(RIA)、酶联免疫吸附测定(ELISA)、BIACORE或本领域中已知的其它测定确定的,与抗原免疫特异性结合的结合分子可以与其它肽或多肽以较低亲和力结合。与抗原免疫特异性结合的结合分子或其片段可以与相关的抗原交叉反应。优选,与抗原免疫特异性结合的结合分子或其片段不与其它抗原交叉反应。
置换
本文所使用的“置换”表示分别用不同的氨基酸或核苷酸替换一个或者多个氨基酸或者核苷酸。
治疗有效量
术语“治疗有效量”指在本文中所定义的结合分子的量,其有效地阻止、改善和/或治疗由于肠球菌(Enterococcus)感染所引起的病症。
治疗
术语“治疗”是指治疗性治疗以及预防性或防治性措施以治愈或停止或者至少延迟疾病进展。需要治疗的包括已经患有由于肠球菌(Enterococcus)感染所引起的疾病的,以及需要预防肠球菌(Enterococcus)感染的。从肠球菌感染中部分或完全恢复的对象也需要治疗。预防包括已知或者减少肠球菌(Enterococcus)的扩散,或者抑制或者减少与肠球菌(Enterococcus)感染相关的一种或者多种症状的发作、发生或进展。
载体
术语“载体”表示第二核酸分子能够被插入以被引入到宿主中的核酸分子,在该宿主中将会复制所述第二核酸分子,并且在某些情况中会表达所述第二核酸分子。换句话说,载体能够转运已经被连接的核酸分子。克隆以及表达载体被在本文所使用的“载体”所包括。载体包括但不限于质粒、粘粒、细菌人工染色体(BAC)和酵母人工染色体(YAC)以及从噬菌体或植物或动物(包括人)病毒衍生的载体。载体包含被所期望宿主识别的复制起始点,以及在表达载体的情况中包含启动子和宿主识别的其它调节区。通过转化、转染或者通过利用病毒进入机制,将包含第二核酸的载体引入到细胞中。某些载体能够在被引入的宿主内自动复制(例如具有细菌复制起始点的载体能够在细菌内复制)。其它载体能够在引入到宿主内后,整合到宿主的基因组内,这样随同与宿主基因组一起复制。
发明内容
本发明提供了人结合分子,其能够特异性结合肠球菌,并且表现出针对肠球菌的杀伤和/或抑制生长的活性。本发明还涉及编码人结合分子至少结合区的核酸分子。本发明还提供了本发明的人结合分子在预防和/或治疗患有肠球菌(Enterococcus)感染或有发生肠球菌(Enterococcus)感染风险的对象中的应用。除此以外,本发明还涉及本发明的人结合分子在诊断/检测肠球菌(Enterococcus)中的应用。
发明详述
在本发明的第一方面中,包括能够特异性结合肠球菌(Enterococcus)种的结合分子。优选,所述结合分子是人结合分子。优选,本发明的结合分子表现出针对肠球菌(Enterococcus)种的杀伤活性。在进一步的方面中,本发明的结合分子能够特异性地结合至少两种不同的肠球菌(Enterococcus)种和/或具有针对至少两种不同肠球菌(Enterococcus)种的杀伤活性。优选,本发明的结合分子能够特异性地结合至少3种、至少4种、至少5种、至少6种、至少7种、至少8种、至少9种、至少10种、至少11种、至少12种、至少13种、至少14种、至少15种、至少16种、至少17种不同的肠球菌(Enterococcus)种,和/或针对至少3种、至少4种、至少5种、至少6种、至少7种、至少8种、至少9种、至少10种、至少11种、至少12种、至少13种、至少14种、至少15种、至少16种、至少17种不同的肠球菌(Enterococcus)种具有杀伤活性。本发明的结合分子能够特异性结合和/或具有杀伤活性的肠球菌(Enterococcus)种选自由驴肠球菌(E.asini)、鸟肠球菌(E.avium)、铅黄肠球菌(E.casseliflavus)、盲肠肠球菌(E.cecorum)、耐久肠球菌(E.columbae)、殊异肠球菌(E.dispar)、耐久肠球菌(E.durans)、粪肠球菌(E.faecalis)、屎肠球菌(E.faecium)、黄色肠球菌(E.flavescens)、鹑鸡肠球菌(E.gallinarum)、E.gilvus、E.haemoperxidus、海氏肠球菌(E.hirae)、病臭肠球菌(E.malodoratus)、摩拉维亚肠球菌(E.moraviensis)、蒙氏肠球菌(E.mundtii)、E.pallens、E.porcinus、类鸟肠球菌(E.pseudoavium)、棉子糖肠球菌(E.raaffinosus)、鼠肠球菌(E.ratti)、解糖肠球菌(E.saccharolyticus)、杀鱼肠球菌(E.seriolicida)、孤立肠球菌(E.solitarius)、硫磺色肠球菌(E.sulfureus)、绒毛肠球菌(E.villorum)所组成的组,其中粪肠球菌(E.faecalis)和屎肠球菌(E.faecium)是优选的种。在一个实施方式中,本发明的结合分子能够特异性结合一个肠球菌(Enterococcus)种内的不同菌株并针对一个肠球菌(Enterococcus)种内的不同菌株具有杀伤活性。在另一个实施方式中,本发明的结合分子甚至能够特异性结合和/或针对至少一种其它的革兰氏阳性细菌和/或革兰氏阴性细菌具有杀伤活性,包括但不限于A组链球菌;酿脓链球菌(Streptococcus pyrogenes)、B组链球菌;无乳链球菌(Streptococcus agalactiae)、米勒氏链球菌(Streptococcus milleri)、肺炎链球菌(Streptococcus pneumoniae)、草绿色链球菌(Viridans streptococci)、变异链球菌(Streptococcus mutans)、金黄色葡萄球菌(Staphylococcus aureus)、表皮葡萄球菌(Stahylococcus epidermidis)、白喉杆菌(Corynebacteriumdiphtheriae)、溃疡棒状杆菌(Corynebacterium ulcerans)、假结核棒状杆菌(Corynebacterium pseudotuberculosis)、杰氏棒状杆菌(Corynebacteriumjeikeium)、结膜干燥棒状杆菌(Corynebacterium xerosis)、假白喉棒状杆菌(Corynebacterium pseudodiphtheriticum)、炭疽杆菌(Bacillus anthracis)、蜡样芽胞杆菌(Bacillus cereus)、单核细胞增多性李司忒氏菌(Listeriamonocytogenes)、产气荚膜梭菌(Clostridium perfringens)、破伤风梭菌(Clostridium tetani)、肉毒梭菌(Clostridium botulinum)、艰难梭菌(Clostridiumdifficile)、结核杆菌(Mycobacterium tuberculosis)、麻风分枝杆菌(Mycobacterium leprae)衣氏放线菌(Actinomyces israelii)、星形奴卡菌(Norcardia asteroides)、巴西奴卡菌(Norcardia brasiliensis)、大肠杆菌(Escherichia coli)、奇异变形杆菌(Proteus mirabilis)、普通变形菌(Proteusvulgaris)、肺炎克氏杆菌(Klebsiella pneumoniae)、伤寒沙门菌(Salmonellatyphi)、副伤寒沙门菌(Salmonella paratyphi)A,B & C、肠炎沙门氏菌(Salmonella enteritidis)、猪霍乱沙门氏菌(Salmonella cholerae-suis)、魏尔肖沙门氏菌(Salmonella virchow)、鼠伤寒沙门氏菌(Salmonella typhimurium)、痢疾志贺氏菌(Shigella dysenteriae)、鲍氏志贺菌(Shigella boydii)、弗累克斯讷氏杆菌(Shigella flexneri)、索氏志贺菌(Shigella sonnei)、绿脓杆菌(Pseudomonasaeruginosa)、鼻疽假单胞菌(Pseudomonas mallei)、霍乱弧菌(Vibrio cholerae)、副溶血性弧菌(Vibrio parahaemolyticus)、创伤弧菌(Vibrio vulnificus)、溶藻弧菌(Vibrio alginolyticus)、幽门弯曲杆菌(Campylobacter pylori)、幽门螺旋杆菌(Helicobacter pyori)、空肠弯曲杆菌(Campylobacter jejuni)、脆弱拟杆菌(Bacteroides fragilis)、奈瑟双球菌(Neisseria gonorrhoeae)、脑膜炎奈瑟氏菌(Neisseria meningitidis)、粘膜炎布兰汉氏球菌(Branhamella catarrhalis)、流感嗜血杆菌(Haemophilus influenzae)、杜克雷氏嗜血杆菌(Haemophilus ducreyi)、百日咳博代氏杆菌(Bordetella pertussis)、流产布鲁氏杆菌(Brucella abortus)、流产布鲁氏杆菌(Brucella abortus)、马尔它布鲁氏杆菌(Brucella melitensis)、嗜肺性军团病杆菌(Legionella pneumophila)、梅毒螺旋体(Treponemapallidum)、品它病密螺旋体(Treponema carateum)、钩端螺旋体(Leptospirainterrogans)、双曲钩端螺旋体(Leptospira biflexa)、回归热螺旋体(Borreliarecurrentis)、博氏疏螺旋体(Borrelia burgdorferi)、肺炎支原体肺炎(Mycoplasma pneumoniae)、伯纳特氏柯克斯氏体(Coxiella burnetii)、沙眼衣原体(Clamydia trachomatis)、鹦鹉热衣原体(Clamydia psittaci)和肺炎衣原体(Clamydia pneumoniae)。本发明的结合分子能够特异性结合肠球菌以及任选地有生存能力的、活的和/或有传染性的或者以失活/减毒形式的其它革兰氏阳性和/或革兰氏阴性细菌。使细菌失活/减毒的方法是本领域中公知的,包括但不限于抗生素处理、UV处理、甲醛处理等。
本发明的结合分子还能够特异性结合肠球菌(和其它革兰氏阳性和/或革兰氏阴性细菌)的一种或者多种片段,例如尤其是来自肠球菌的一种或者多种蛋白质和/或来自肠球菌的(多)肽或者一种或者多种重组制备的肠球菌蛋白质和/或多肽。对于肠球菌感染的治疗和/或预防的方法,结合分子能够特异性结合肠球菌的表面可接近蛋白质。对于诊断目的,结合分子还能够特异性结合不在肠球菌表面存在的蛋白质。能够在GeneBank数据文库、EMBL数据文库和/或其它数据文库中发现各种肠球菌(Enterococcus)种和菌株的核苷酸和/或氨基酸序列。在各种数据文库中发现这些序列是本领域技术人员的公知技术。
或者,本发明的结合分子还能够特异性结合其它的肠球菌分子,包括但不限于抑制吞噬细胞吞入的表面因子;增强它们在吞噬细胞中存活的因子;裂解真核细胞膜的侵袭素;破坏宿主组织或以其它方式引发疾病症状的外毒素;多糖;其它细胞壁组分,例如磷壁酸、脂膜酸、核糖醇、肽聚糖、五甘氨酸寡肽、N-乙酰葡糖胺、N-乙酰胞壁酸、N-乙酰氨基半乳糖糖醛酸、N-乙酰岩藻糖胺、N-乙酰氨基葡萄糖糖醛酸、N-乙酰氨基甘露糖醛酸、O-乙酰葡萄糖氨、胞壁酸、氨基半乳糖糖醛酸、岩藻糖胺、氨基葡萄糖糖醛酸、氨基甘露糖醛酸鼠李糖、氨基己糖、己糖、曲二糖、磷酸甘油、核糖醇磷酸酯以及任何这些组分之间的连接单元。
在另一个实施方式中,本发明的结合分子能够特异性结合上述蛋白质和/或其它分子的片段,其中所述片段至少包括本发明结合分子所识别的抗原决定簇。本文所使用的“抗原决定簇”是能够以充分高亲和力与本发明的结合分子结合、形成可检测抗原结合分子复合物的基团(moeity)()。
本发明的结合分子可以是完整的免疫球蛋白分子,例如多克隆或单克隆抗体,或者所述结合分子可以是抗原结合片段包括但不限于Fab、F(ab')、F(ab')2、Fv、dAb、Fd、互补决定区(CDR)片段、单链抗体(scFv)、双价单链抗体、单链噬菌体抗体、二聚抗体、三聚抗体、四聚抗体、以及包含至少足以提供特异性抗原结合肠球菌或其片段的免疫球蛋白片段的(多)肽。在一个优选的实施方式中,本发明的结合分子是人单克隆抗体。
本发明的结合分子能够以非分离或分离的形式使用。此外,本发明的结合分子能够被单独使用,或者在包含至少一种本发明结合分子(或其变体或片段)的混合物中被使用。换句话说,这些结合分子能够被组合使用,例如包含两种或者更多种本发明结合分子、其变体或片段的药物组合物。例如,具有不同但互补活性的结合分子能够被组合在单次治疗中,以达到期望的预防、治疗或诊断效果,但可替换的,具有相同活性的结合分子也能够被组合在单次治疗中以达到期望的预防、治疗或诊断效果。任选地,所述混合物还包含至少一种其它的治疗剂。优选,所述治疗剂例如抗生素可以用于肠球菌感染的预防和/或治疗。
通常,本发明的结合分子可以以低于0.2*10-4M、1.0*10-5M、1.0*10-6M、1.0*10-7M,优选低于1.0*10-8M,更优选低于1.0*10-9sM,更优选低于1.0*10-10M,甚至更优选低于1.0*10-11M,特别地低于1.0*10-12M的亲和常数(Kd值)与它们的结合配偶体(即肠球菌或其片段)结合。对于抗体同种型,亲和常数会变化。例如,IgM同种型的亲和力结合是指至少大约1.0*10-7M的结合亲和力。例如可以使用表面等离子体共振(例如使用BIACORE系统(Pharmacia Biosensor AB,Uppsala,瑞典))对亲和常数进行测量。
本发明的结合分子可以结合可溶形式(例如样品中或悬浮液中)的肠球菌或其片段,或者可以结合连接或附着到载体或基质(例如微量滴定板、膜和珠等)上的肠球菌或其片段。载体或基质可以是由玻璃、塑料(例如聚苯乙烯)、多糖、尼龙、硝化纤维素或特氟隆等制成的。这些支持物的表面可以是实心的或者多孔的,并且可以是任何便利形状的。此外,结合分子可以结合纯化/分离或非纯化/非分离形式的肠球菌。
本发明的结合分子表现出杀伤活性。这里所表示的杀伤活性包括但不限于调理活性或任何其它提高/增大/增强吞噬作用和/或吞噬细胞杀伤细菌(例如肠球菌)的活性;固有(杀伤)活性,例如降低或抑制细菌生长或者直接杀伤细菌;提高细菌对抗生素处理的敏感性;或其任意组合。例如,调理活性可以根据这里所描述的进行测量。测量调理活性的替换测定被描述在例如分子克隆和临床实验室免疫学手册(Manual of Molecular and Clinical LaboratoryImmunology),第7版中。测量其它所提到的活性的测定也是已知的。
在一个优选实施方式中,本发明的结合分子包含至少一个CDR3区,优选重链CDR3区,其包含选自由SEQ ID NO:3、SEQ ID NO:9、SEQ ID NO:15、SEQ ID NO:21、SEQ ID NO:27、SEQ ID NO:33、SEQ ID NO:39、SEQ ID NO:45、SEQ ID NO:51、SEQ ID NO:57、SEQ ID NO:196、SEQID NO:202、SEQ ID NO:220、SEQ ID NO:226、SEQ ID NO:232、SEQID NO:238、SEQ ID NO:244、SEQ ID NO:250、SEQ ID NO:256、SEQID NO:262、SEQ ID NO:268、SEQ ID NO:274、SEQ ID NO:280、SEQID NO:286、SEQ ID NO:292、SEQ ID NO:298、SEQ ID NO:304、SEQID NO:310、SEQ ID NO:316、SEQ ID NO:322、SEQ ID NO:328、SEQID NO:334、SEQ ID NO:340和SEQ ID NO:346所组成的组的氨基酸序列。本发明结合分子的CDR区显示在表11中。根据Kabat等人(1991)的CDR区被描述在《免疫学兴趣蛋白质序列》(Sequences of Proteins ofImmunological Interest)中。在一个实施方式中,结合分子可以包含2个、3个、4、5或甚至本发明结合分子的全部六个CDR区。
在另一个实施方式中,本发明的结合分子包含重链,其包含选自由SEQID NO:82、SEQ ID NO:84、SEQ ID NO:86、SEQ ID NO:88、SEQ ID NO:90、SEQ ID NO:92、SEQ ID NO:94、SEQ ID NO:96、SEQ ID NO:98、SEQ ID NO:100、SEQ ID NO:211、SEQ ID NO:213、SEQ ID NO:395、SEQ ID NO:397、SEQ ID NO:399、SEQ ID NO:401、SEQ ID NO:403、SEQ ID NO:405、SEQ ID NO:407、SEQ ID NO:409、SEQ ID NO:411、SEQ ID NO:413、SEQ ID NO:415、SEQ ID NO:417、SEQ ID NO:419、SEQ ID NO:421、SEQ ID NO:423、SEQ ID NO:425、SEQ ID NO:427、SEQ ID NO:429、SEQ ID NO:431、SEQ ID NO:433、SEQ ID NO:435、和SEQ ID NO:437所组成组的氨基酸序列的可变重链。在进一步的实施方式中,本发明的结合分子包含轻链,其包含选自由SEQ ID NO:102、SEQ IDNO:104、SEQ ID NO:106、SEQ ID NO:108、SEQ ID NO:110、SEQ IDNO:112、SEQ ID NO:114、SEQ ID NO:116、SEQ ID NO:118、SEQ IDNO:120、SEQ ID NO:215、SEQ ID NO:217、SEQ ID NO:439、SEQ IDNO:441、SEQ ID NO:443、SEQ ID NO:445、SEQ ID NO:447、SEQ IDNO:449、SEQ ID NO:451、SEQ ID NO:453、SEQ ID NO:455、SEQ IDNO:457、SEQ ID NO:459、SEQ ID NO:461、SEQ ID NO:463、SEQ IDNO:465、SEQ ID NO:467、SEQ ID NO:469、SEQ ID NO:471、SEQ IDNO:473、SEQ ID NO:475、SEQ ID NO:477、SEQ ID NO:479和SEQ IDNO:481所组成组的氨基酸序列的可变轻链。表12详细说明了本发明结合分子的重链和轻链可变区。
本发明的另一个方面包括本文所限定结合分子的功能变体。如果变体能够与亲代人结合分子竞争特异性结合肠球菌(或其它革兰氏阳性和/或革兰氏阴性细菌)或其片段,则分子被认为是本发明结合分子的功能变体。换句话说,在功能变体仍能够结合肠球菌或其片段时。优选,功能变体能够竞争特异性结合至少两种(或者更多种)不同的亲代人结合分子所特异性结合的肠球菌(Enterococcus)种或其片段。此外,如果它们具有针对肠球菌、优选针对至少两种(或者更多种)亲代结合分子表现出杀伤活性的肠球菌(Enterococcus)种的杀伤活性,则分子被认为是本发明结合分子的功能变体。在另一个实施方式中,本发明结合分子的功能变体还针对其它革兰氏阳性和/或革兰氏阴性细菌具有杀伤活性。功能变体包括但不限于在初级结构序列上基本类似但包含例如在亲代结合分子中未发现的体外或体内化学和/或生物化学修饰的衍生物。这些修饰包括尤其是乙酰化、酰基化、核苷酸或核苷酸衍生物的共价附着、脂类或脂类衍生物的共价附着、交联、二硫键形成、糖基化、羟基化、甲基化、氧化、聚乙二醇化、蛋白质水解处理、磷酸化等。
或者,功能变体可以是本发明中所定义的功能变体,与亲代结合分子相比,其包含包含一个或者多个氨基酸置换、插入、缺失或其组合的氨基酸序列。此外,功能变体可以包含在氨基端和/或羧基端的平截。与亲代结合分子相比,本发明的功能变体可以具有相同或者不同,更高或者更低的的结合亲和力,但仍能够结合肠球菌或其片段。例如,与亲代结合分子相比,本发明的功能变体可以具有提高的或降低的与肠球菌或其片段的结合亲和力。优选,可变区(包括但不限于框架区、高变区特别是CDR3区)的氨基酸序列被修饰。通常,轻链和重链可变区包含3个高变区,其包括3个CDR以及多个保守区(所谓的框架区(FR))。高变区包括来自CDR的氨基酸残基以及来自高变环的氨基酸残基。
与本文所限定的亲代人结合分子相比,旨在落在本发明范围内的功能变体具有至少大约50%-大约99%,优选至少大约60%-大约99%,更优选至少大约70%-大约99%,甚至更优选至少大约80%-大约99%,最优选至少大约90%-大约99%,特别地至少大约95%-大约99%,特别地至少大约97%-大约99%的氨基酸序列同源性。本领域技术人员已知的计算机运算法则,例如尤其是Gap或Bestfit都可以用于优选将需要比较的氨基酸序列进行比对,以及用于限定类似或者相同的氨基酸残基。通过本领域中公知的分子生物学方法改变亲代结合分子或其部分能够获得功能变体,包括但不限于错误倾向性PCR方法、寡聚核苷酸定向诱变、位点定向诱变以及轻链和/或重链改组。在一个实施方式中,本发明的功能变体针对肠球菌具有杀伤活性。与亲代结合分子相比,杀伤活性可以相同,或者更高或更低。此外,所述具有杀伤活性的功能变体可以具有适合肠球菌控制的其它活性。其它活性是上面所提到的。此后,如果使用使用术语(人)结合分子,则这还包括(人)结合分子的功能变体
本发明提供了一组可以利用的人单克隆抗体,其具有针对至少两种不同的肠球菌(Enterococcus)种的每一种的至少一种菌株以及针对至少一种金黄色葡萄球菌(Staphylococcus aureus)至少一种菌株具有调理吞噬杀伤活性。本发明的抗体包括本文所公开抗体CR5140(SEQ ID NO:395+439)、CR5157(SEQ ID NO:397+441)、CR6016(SEQ ID NO:88+108)、CR6043(SEQ IDNO:90+110)、CR6050(SEQ ID NO:401+445)、CR6078(SEQ ID NO:96+116)、CR6087(SEQ ID NO:211+215)、CR6089(SEQ ID NO:213+217)、CR6241(SEQ ID NO:98+118)、CR6252(SEQ ID NO:100+120)、CR6388(SEQ ID NO:421+465)、CR6389(SEQ ID NO:423+467)、CR6396(SEQ IDNO:425+469)、CR6402(SEQ ID NO:427+471)、CR6409(SEQ ID NO:429+473)、CR6415(SEQ ID NO:431+475)、CR6421(SEQ ID NO:433+477)或CR6429(SEQ ID NO:435+479)任一种的可变区以及包含与其具有至少80%、优选至少90%、更优选至少95%相同性的可变区的抗体。优选完整抗体的序列与本文所公开的抗体具有至少80%、更优选至少90%、仍更优选至少95%的相同性。这些抗体全部显示具有针对至少两种不同肠球菌(Enterococcus)种(包括粪肠球菌(E.faecalis)和屎肠球菌(E.faecium))的调理吞噬杀伤活性。令人吃惊地,这些抗体还对金黄色葡萄球菌(S.aupeus)有反应(菌株502,对于某些抗体(CR6252、CR6425、CR6421),还显示它们还对金黄色葡萄球菌(S.aureus)的Numan菌株以及表皮葡萄球菌(S.epidemidis)菌株RP62A有反应),因此具有广泛的特异性和治疗用途的广泛潜力。这些抗体不结合金黄色葡萄球菌(S.aureus)的LTA,其中LTA是金黄色葡萄球菌(S.aureus)细胞壁的主要成分之一。在某些实施方式中,因此,本发明的抗体不特异性结合金黄色葡萄球菌(S.aureus)的LTA。本发明还提供了组合物,其包含至少2种、至少3种、至少4种、至少5种或更多种本发明的人单克隆抗体。当然,根据常规方法,基于本文所公开的抗体序列,可以制备更高亲和力突变体或者具有其它有利性质的突变体。如果重链和轻链可变区与本文所公开抗体可变区序列具有至少80%、优选至少90%、仍更优选至少95%的相同性,则这些改进的抗体也被包括在本发明的范围内。
在进一步的方面中,本发明包括免疫缀合物,即包含至少一个本文所定义的结合分子并且还包含至少一个标签(例如尤其是可检测基团/剂)的分子。本发明还设计的是本发明免疫缀合物的混合物,或者至少一种本发明免疫缀合物和其它分子(例如治疗剂或另一种结合分子或免疫缀合物)的混合物。在进一步的实施方式中,本发明的免疫缀合物可以包含多于一个标签。这些标签相互之间可以是相同的,或者不同的,并且可以被非共价结合/偶联到结合分子上。这些标签也可以通过共价键直接结合/偶联到人结合分子上。或者,标签可以通过一个或者多个连接化合物结合/偶联到结合分子上。将标签偶联到结合分子上的技术对于本领域技术人员是公知的。
本发明免疫缀合物的标签可以是治疗剂,但它们也可以是可检测基团/剂。适合在治疗和/或预防中的标签可以是毒素或其功能部分、抗生素、酶、其它能够增强吞噬或免疫刺激的结合分子。可以在诊断上使用包含可检测试剂的免疫缀合物,以例如检测对象是否感染了肠球菌(Enterococcus)种,或者检测肠球菌感染的发生或进展,作为临床测试程序的一部分例如用于确定给定治疗方案的功效。然而,它们也可以用于其它检测和/或分析和/或诊断目的。可检测基团/剂包括但不限于酶、辅基、荧光材料、发光材料、生物发光材料、放射性材料、正电子发射金属以及非放射性顺磁性金属离子。为检测和/或分析和/或诊断目的,用于标记结合分子的标签依赖于所使用的具体检测和/或分析和/或诊断技术和/或方法,例如尤其是(组织)样品的免疫组织化学染色、流式细胞仪检测、扫描激光细胞仪检测、荧光免疫测定、酶联免疫吸附测定(ELISA)、放射性免疫测定(RIA)、生物测定(例如细胞吞噬测定)、Western印迹应用等。用于检测/分析/诊断技术和/或本领域已知方法的适当标记是本领域技术人员的公知技术。
此外,本发明的人结合分子或免疫缀合物也可以结合到固体支持物上,其中所述固体支持物特别地可以用于肠球菌或其片段的体外免疫测定或者纯化。这些固体支持物可以是多孔的或者无孔的、平面的或者非平面的。本发明的结合分子可以与标记物序列(例如辅助纯化的肽)融合。例子包括但不限于六组氨酸标签、血凝素(HA)标签、myc标签或flag标签。或者,抗体可以偶联到第二抗体上以形成抗体杂偶联物(heteroconjugate)。在另一个方面中,本发明的结合分子可以被偶联/附着到一个或者多个抗原上。优选,这些抗原是被给药所述结合分子-抗原偶联物的对象的免疫系统所识别的抗原。这些抗原可以是相同的,但也可以是相互之间不同的。附着抗原和结合分子的偶联方法是本领域中公知的,并且包括但不限于使用交联剂。本发明的结合分子将结合肠球菌,并且附着到结合分子的抗原会启动T细胞对偶联物的强大攻击,这会最终导致破坏肠球菌。
在通过直接偶联或间接偶联(例如通过连接物)化学地制备免疫缀合物之后,可以将免疫缀合物制备为包含本发明结合分子和适当标签的融合蛋白。可以通过本领域中已知的方法制备融合蛋白,例如通过构建包含与编码适当标签的核酸序列符合阅读框的编码结合分子的核苷酸序列的核酸分子,接着表达所述核酸分子而重组制备。
本发明的另一个方面是提供了一种核酸分子,其编码至少一种本发明的结合分子、功能变体或免疫缀合物。这些核酸分子能够被用作克隆目的的中间物,例如在上述的亲和力成熟化(affinity maturation)过程中。在优选的实施方式中,所述核酸分子是被分离或纯化的。
本领域技术人员能够理解这些核酸分子的功能变体也旨在成为本发明的一部分。功能变体是使用标准的遗传密码子能够被直接翻译的核酸序列,以提供与从亲代核酸分子翻译的氨基酸序列一致的氨基酸序列。
优选,核酸分子编码包含CDR3区(优选重链CDR3区)的结合分子,其包括选自由SEQ ID NO:3、SEQ ID NO:9、SEQ ID NO:15、SEQ ID NO:21、SEQ ID NO:27、SEQ ID NO:33、SEQ ID NO:39、SEQ ID NO:45、SEQ ID NO:51、SEQ ID NO:57、SEQ ID NO:196、SEQ ID NO:202、SEQ ID NO:220、SEQ ID NO:226、SEQ ID NO:232、SEQ ID NO:238、SEQ ID NO:244、SEQ ID NO:250、SEQ ID NO:256、SEQ ID NO:262、SEQ ID NO:268、SEQ ID NO:274、SEQ ID NO:280、SEQ ID NO:286、SEQ ID NO:292、SEQ ID NO:298、SEQ ID NO:304、SEQ ID NO:310、SEQ ID NO:316、SEQ ID NO:322、SEQ ID NO:328、SEQ ID NO:334、SEQ ID NO:340和SEQ ID NO:346所组成组的氨基酸序列。在进一步的实施方式中,核酸分子编码包含本发明结合分子的2个、3个、4个、5个或者甚至全部6个CDR区的结合分子。
在另一个实施方式中,核酸分子编码包含重链的结合分子,其中所述重链含优选自由SEQ ID NO:82、SEQ ID NO:84、SEQ ID NO:86、SEQ IDNO:88、SEQ ID NO:90、SEQ ID NO:92、SEQ ID NO:94、SEQ ID NO:96、SEQ ID NO:98、SEQ ID NO:100、SEQ ID NO:211、SEQ ID NO:213、SEQ ID NO:395、SEQ ID NO:397、SEQ ID NO:399、SEQ ID NO:401、SEQ ID NO:403、SEQ ID NO:405、SEQ ID NO:407、SEQ ID NO:409、SEQ ID NO:411、SEQ ID NO:413、SEQ ID NO:415、SEQ ID NO:417、SEQ ID NO:419、SEQ ID NO:421、SEQ ID NO:423、SEQ ID NO:425、SEQ ID NO:427、SEQ ID NO:429、SEQ ID NO:431、SEQ ID NO:433、SEQ ID NO:435和SEQ ID NO:437所组成组的氨基酸序列的可变重链。在另一个实施方式中,核酸分子编码包含轻链的结合分子,其中所述轻链包含选自由SEQ ID NO:102、SEQ ID NO:104、SEQ ID NO:106、SEQID NO:108、SEQ ID NO:110、SEQ ID NO:112、SEQ ID NO:114、SEQID NO:116、SEQ ID NO:118、SEQ ID NO:120、SEQ ID NO:215、SEQID NO:217、SEQ ID NO:439、SEQ ID NO:441、SEQ ID NO:443、SEQID NO:445、SEQ ID NO:447、SEQ ID NO:449、SEQ ID NO:451、SEQID NO:453、SEQ ID NO:455、SEQ ID NO:457、SEQ ID NO:459、SEQID NO:461、SEQ ID NO:463、SEQ ID NO:465、SEQ ID NO:467、SEQID NO:469、SEQ ID NO:471、SEQ ID NO:473、SEQ ID NO:475、SEQID NO:477、SEQ ID NO:479和SEQ ID NO:481所组成组的氨基酸序列的可变轻链。
本发明的另一个方面是提供载体,即核酸构建体,其包含一个或者多个根据本发明的核酸分子。载体可以衍生自质粒,例如尤其是F、R1、RP1、Co1、pBR322、TOL、Ti等;粘粒;噬菌体例如λ噬菌体、类λ噬菌体、M13噬菌体、Mu噬菌体、P1噬菌体、P22噬菌体、Qβ噬菌体、T-偶数噬菌体、T-奇数噬菌体、T2噬菌体、T4噬菌体、T7噬菌体等;植物病毒。载体可以用于克隆和/或表达本发明的结合分子,并且甚至可以用于基因治疗目的。包含可操作连接到一个或者多个表达调节核酸分子的一个或者多个本发明核酸分子的载体也被本发明所覆盖。载体的选择取决于所遵循的重组方法以及所使用的宿主。可以通过例如尤其是磷酸钙转染、病毒侵染、DEAE-葡聚糖介导的转染、脂质体转染或电穿孔实现在宿主细胞中引入载体。载体可以自主复制,或者可以与它们整合的染色体共同复制。优选,载体包含一个或者多个选择标记物。正如本领域技术人员所公知的,标记物的选择可以依赖于所选择的宿主细胞,并且这对于本发明不是至关重要的。它们包括但不限于卡那霉素、新霉素、嘌呤霉素、潮霉素、Zeocin、来自单纯疱疹病毒的胸苷激酶(HSV-TK)、来自小鼠的二氢叶酸还原酶基因(dhfr)。本发明还覆盖了包含可操作连接到一个或者多个编码可以用于分离人结合分子的蛋白质或肽的核酸分子的一个或者多个编码上述人结合分子的核酸分子。这些蛋白质或肽包括但不限于谷胱甘肽-S-转移酶、麦芽糖结合蛋白质、金属结合多聚组氨酸、绿色荧光蛋白、荧光素酶和β-半乳糖苷酶。
包含一个或者多个拷贝的上述载体的宿主是本发明另外的主题。优选,所述宿主是宿主细胞。宿主细胞包括但不限于哺乳动物、植物、昆虫、真菌或者细菌来源的细胞。细菌细胞包括但不限于来自革兰氏阳性或革兰氏阴性细菌的细胞,例如埃希氏菌(Escherichia)属的某些种如大肠杆菌(E.coli),和假单胞菌(Pseudomonas)。在真菌细胞组中,优选使用酵母细胞。通过使用酵母菌株例如尤其是毕赤氏酵母(Pichia pastoris)、酿酒酵母(Saccharomycescerevisiae)和多形汉逊酵母(Hansenula polymorpha)可以实现在酵母中的表达。此外,昆虫细胞(例如来自果蝇和Sf9的细胞)能够用作宿主细胞。除了这些,宿主细胞可以是植物细胞,例如尤其是来自农作物植物(如林业植物)的细胞,或者来自提供食物和原材料的植物(如谷类植物)或者药用植物的细胞,或者来自观赏植物的细胞,或者来自球花农作物的细胞。通过已知的方法制备转化的(转基因)植物或者植物细胞,例如农杆菌介导的基因转移、叶盘转化、聚乙二醇诱导DNA转移的原生质体转化、电穿孔、超声法、微注射或者生物射弹(bolistic)基因转移。另外,适当的表达系统可以是杆状病毒系统。在本发明中优选使用哺乳动物细胞的表达系统,例如中国仓鼠卵巢(CHO)细胞、COS细胞、BHK细胞或者Bowes黑色素瘤细胞。哺乳动物细胞提供了具有与哺乳动物来源的天然分子最类似的翻译后修饰的表达蛋白质。由于本发明解决可以为人给药的分子,因此特别优选完全人的表达系统。因此,甚至更优选,宿主细胞是人细胞。人细胞的例子尤其是HeLa、911、AT1080、A549、293和HEK293T细胞。在优选的实施方式中,人生产细胞以可表达形式包含编码腺病毒E区的核酸序列的至少功能部分。在更优选的实施方式中,所述宿主细胞衍生自人视网膜,并被包含腺病毒E1序列的核酸永生化(immortalized)的宿主细胞,例如911细胞或在1996年2月29日以保藏号96022940保藏在欧洲细胞培养物保藏中心(ECACC),CAMR,Salisbury,Wiltshire SP4 OJG,Great Britain并以商标PER.
Figure BDA00001865300700271
(PER.
Figure BDA00001865300700272
是Crucell Holland B.V.的注册商标)上市的细胞系。为了该应用的目的,“PER.C6”是指以保藏号96022940保藏的细胞,或其祖细胞(ancestor)、保藏细胞的祖细胞的上游或下游以及后代的传代细胞,以及任何前述细胞的衍生物。可以根据本领域中公知的方法进行在宿主细胞中制备重组蛋白质。使用以商标PER.
Figure BDA00001865300700273
销售的细胞作为感兴趣蛋白质的制备平台已经被描述在WO 00/63403中,本文中将其公开内容通过参照整体并入。
制备本发明结合分子的方法是本发明另外的一部分。该方法包括步骤:a)在有益于表达结合分子的条件下培养根据本发明的宿主;和b)任选地,回收表达的结合分子。可以从无细胞提取物回收但优选从细胞培养基中回收表达的结合分子或免疫缀合物。上述制备方法也可以用于制造本发明结合分子和/或免疫缀合物的功能变体。从无细胞提取物或培养基中回收蛋白质(例如结合分子)的方法是本领域技术人员公知的。通过上述方法能够得到的结合分子、功能变体和/或免疫缀合物也可以是本发明的一部分。
或者,在宿主中(例如宿主细胞中)表达之后,可以通过传统的肽合成仪或者在使用来自本发明DNA分子的RNA核酸的无细胞翻译系统中,合成制备本发明的结合分子和免疫缀合物。能够通过上述合成制备方法或无细胞翻译系统获得的结合分子和免疫缀合物也是本发明的一部分。
在另一个实施方式中,本发明的结合分子也能够在转基因哺乳动物、非人的哺乳动物例如尤其是兔、山羊或牛中制备本发明的结合分子,并分泌到例如其奶中。
在另外一个可替换的实施方式中,本发明的结合分子,优选特异性结合肠球菌或其片段的结合分子,可以是由表达人免疫球蛋白基因的转基因非人哺乳动物产生的,例如转基因小鼠或兔。优选,转基因非人哺乳动物具有包含编码全部或者部分上述人结合分子的人重链转基因和人轻链转基因的基因组。可以使用纯化的或富集的肠球菌或其片段的制品对转基因非人哺乳动物进行免疫。免疫非人哺乳动物的方案是本领域中被充分建立的。参见《使用抗体:实验室手册》(Using Antibodies:A Laboratory Manual),编辑:E.Harlow和D,Lane(1988),Cold Spring Harbor Laboratory,Cold Spring Harbor,New York;和《免疫学当前方案》(Current Protocols in Immunology)编辑:J.E.Coligan,A.M.Kruisbeek,D.H.Margulies,E.M.Shevach,W.Strober(2001),John Wiley & Sons Inc.,New York,通过参照将其公开内容并入本文。免疫方案常常包括多次免疫,使用或者不使用佐剂(例如弗氏完全佐剂和弗氏不完全佐剂),但也可以包含裸DNA免疫。在另一个实施方式中,人结合分子是由来自转基因动物的B细胞或浆细胞产生的。在另一个实施方式中,人结合分子是由杂交瘤产生的,其中杂交瘤是通过从上述转基因动物获得的B细胞与永生化细胞融合而制备的。可以从上述转基因非人哺乳动物获得的B细胞、浆细胞和杂交瘤以及可以从上述转基因哺乳动物、B细胞、浆细胞和杂交瘤获得的人结合分子也是本发明的一部分。
在进一步的方面中,本发明提供了一种鉴定特异性结合至少两种不同的细菌生物体的结合分子(例如人结合分子,例如人单克隆抗体或其片段)或者编码所述结合分子的核酸的方法,所述方法包括步骤:(a)在适合结合的条件下,在可复制遗传包装体的表面上,将结合分子的收集物与第一细菌生物体接触;(b)至少一次选择与所述第一细菌生物体结合的可复制遗传包装体(replicable genetic package);(c)任选地,从不结合所述第一细菌生物体的可复制遗传包装体分离结合所述第一细菌生物体的可复制遗传包装体,在适合结合的条件下,将所分离的可复制遗传包装体与第二细菌生物体接触,并至少一次选择结合第二细菌生物体的可复制遗传包装体;和(d)从不结合第一和/或第二细菌生物体的可复制遗传包装体分离并回收结合第一和/或第二细菌生物体的可复制遗传包装体。当然,扩展到第三以及更多细菌生物体的上述方法也是本发明的一部分。本发明的另一部分是鉴定特异性结合肠球菌种的结合分子例如人结合分子(例如人单克隆抗体或其片段)、或者编码这类结合分子的核酸分子的方法。这类方法包括与上述相同的步骤。本文中所使用的可复制遗传包装体可以是原核或真核的,包括细胞、孢子、酵母、细菌、病毒、(细菌)噬菌体、核糖体和多核糖体。优选的可复制遗传包装体是噬菌体。结合分子,例如单链Fv被展示在可复制遗传包装体上,即它们附着到可复制遗传包装体外表面上的基团或分子上。可复制遗传包装体是可筛选单元,其包含连接到编码结合分子的核酸分子上的待筛选的结合分子。核酸分子应当能够在体内(例如载体)或者体外(例如通过PCR、转录和翻译)复制。体内复制可以是自动的(对于细胞),在宿主因子的辅助下(对于病毒)或者在宿主细胞和辅助病毒的辅助下(对于噬粒(phagemid))进行的。展示结合分子收集物的可复制遗传包装物是通过将编码待展示外源结合分子的核酸分子引入到可复制遗传包装体的基因组而形成的,以形成与从可复制遗传包装体的外表面正常表达的内源蛋白质的融合蛋白。融合蛋白的表达、转运到外表面以及包装导致从可复制遗传包装体的外表面展示外源结合分子。
可以使用活的和仍然有感染性或失活的细菌生物体进行本发明方法中的选择步骤。可以通过本领域技术人员公知的细菌灭活方法进行细菌生物体的灭活,例如尤其是使用低pH即pH4处理6小时-21天;使用有机溶剂/去污剂处理,即将有机溶剂和去污剂(Trition X-100或吐温-80)加入到细菌中;UV/光辐照;γ-射线辐照;和使用相关抗生素处理。测试细菌生物体是否仍是活的、具有感染性和/或能存活或者部分或全部失活的方法是本领域技术人员公知的。在上述方法中所使用的细菌生物体可以是未分离的,例如存在于被感染个体的血清和/或血液中。所使用的细菌微生物也可以在适当的培养基(例如羊血琼脂)上于37℃培养过夜后被分离为独立的集落。
在一个实施方式中,在接触可复制遗传包装体时,第一和/或第二细菌生物体是在悬浮液中。或者,在发生接触时,它们也可以偶联到载体上。在另一个实施方式中,第一和第二细菌生物体来自不同的细菌科,例如第一细菌来自革兰氏阴性细菌,第二细菌来自革兰氏阳性细菌。通过这种方式可以发现能够特异性结合革兰氏阳性细菌和革兰氏阴性细菌的结合分子。第一和第二细菌生物体都可以是肠球菌。在一个实施方式中,第一和第二细菌菌株是来自相同细菌种例如肠球菌(Enterococcus)种的不同菌株,例如粪肠球菌(E.faecalis)和屎肠球菌(E.faecium)。通过这种方法,能够发现能够特异性结合一个种内不同菌株的种特异性结合分子。在另一个实施方式中,第一和第二细菌生物体各是不同肠球菌(Enterococcus)种的成员,例如第一和第二肠球菌(Enterococcus)种选自由粪肠球菌(E.faecalis)和屎肠球菌(E.faecium)所组成的组。通过这种方法,能够发现可以特异性结合一种细菌属内的不同细菌种的结合分子。
或者,可以在存在细菌生物体的碎片(例如细胞膜制备物、已经被酶处理以除去蛋白质(例如使用蛋白酶K)的细胞膜制备物、已经被酶处理以除去碳水化合物部分的细胞膜制备物(例如使用过碘酸盐))、重组蛋白或多糖时进行选择步骤。在另一个实施方式中,可以在存在一种或者多种来自细菌生物体的蛋白质或(多)肽、包含这些蛋白质或(多)肽的融合蛋白质等时,进行选择步骤。也可以将这些蛋白质的胞外暴露部分用作选择材料。在使用之前,活的或者灭活细菌生物体或其片段可以被固定到适当的材料。或者,使用悬浮液中的活细菌或灭活的细菌。在一个实施方式中,可以对来自细菌生物体的不同材料进行选择。例如,第一轮选择可以对悬浮液中的活细菌或灭活细菌生物体进行,而第二轮和第三轮选择可以分别对重组细菌蛋白质和多糖进行。当然,其它的组合也是本文所构思的。在一个选择/淘选步骤中,也可以使用不同的细菌材料。在进一步的方面中,本发明提供了在选择步骤中所使用细菌生物体是来自细菌的相同或不同生长时期(例如延迟期、对数期、稳定期或死亡期)的方法。通过该方法,可以发现例如时期特异性的抗细菌结合分子。例如,第一细菌生物体可以是稳定期的粪肠球菌(E.faecalis),而第二细菌生物体则是对数期的粪肠球菌,或者,第一细菌生物体可以是延迟期的粪肠球菌(E.faecalis),而第二细菌生物体则是延迟期的屎肠球菌(E.faecium)。其它的组合也在本领域技术人员的公知技术范围内。
在更进一步的方面中,本发明提供了获得特异性结合至少两种不同细菌生物体的结合分子或编码这类结合分子的核酸分子的方法,其中该方法包括步骤:a)进行上述鉴定结合分子的方法;和b)从所回收的可复制遗传包装体分离结合分子和/或编码所述结合分子的核酸分子。对可复制遗传包装体表面上所述结合分子的收集可以是收集scFv或Fab。一旦使用上述鉴定结合分子或者编码结合分子的核酸的方法,已经建立或鉴定了新的scFv或Fab,则可以从细菌或噬菌体分离编码scFv或Fab的DNA,并使用标准的分子生物学技术进行组合以制备编码二价scFv或者具有期望特异性的完整人免疫球蛋白(例如IgG、IgA或IgM)的构建体。这些构建体可以被转染到适当的细胞系内,并可以制备完整的人单克隆抗体(参见Huls等人,1999;Boel等人,2000)。
正如前面所提到的,优选的可复制遗传包装体是噬菌体。用于鉴定和获得(人)结合分子(例如(人)单克隆抗体)的噬菌体展示方法目前是本领域技术人员充分建立的方法。它们被描述在例如美国专利No.5,696,108;Burton和Barbas,1994;de Kruif等人,1995b;以及《噬菌体展示:实验室手册》(PhageDisplay:A Laboratory Manual).编辑:CF Barbas,DR Burton,JK Scott和GJSilverman(2001),Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York中。所有这些参考文献被以其整体引入。为了构建噬菌体展示文库,将人单克隆抗体重链和轻链可变区基因的收集物表达在细菌噬菌体的表面,优选丝状噬菌体颗粒,例如以单链Fv(scFv)或者以Fab的形式(参见Kruif等人,1995b)。通常表达抗体片段的噬菌体的大文库包含超过1.0*109个抗体特异性,并且可以被从免疫或者未免疫个体的B淋巴细胞中表达的免疫球蛋白V区进行组装。在本发明具体的实施方式中,结合分子的噬菌体文库,优选scFv噬菌体文库是从分离自细胞的RNA制备的,其中所述细胞是从已经被针对细菌进行接种、近期被针对无关病原体进行接种、近期患有慢性或急性细菌感染(例如肠球菌感染)的个体获得的,或者是从健康个体获得的。可以从尤其是骨髓或外周血(优选外周血淋巴细胞)或者从分离的B细胞或者甚至从B细胞的亚群分离RNA。对象可以是被针对细菌进行接种的动物,或者患有细菌感染或者曾经患有细菌感染的动物。优选,动物是已经被针对细菌进行接种、或者患有或曾经患有慢性细菌感染或急性细菌感染的人对象。优选,所述人对象刚从细菌感染中恢复。
或者,可以从已经在体外被部分组装的免疫球蛋白可变区构建噬菌体展示文库,以在文库中引入额外的抗体多样性(半合成文库)。例如,体外组装的可变区在对于抗体特异性重要的分子区域(例如CDR区)中含有大量合成产生的、随机或部分随机的DNA。可以从文库选择对于细菌(例如肠球菌)具有特异性的噬菌体抗体,其通过将细菌或其材料暴露于噬菌体文库,以能够结合表达对细菌或其材料具有特异性的抗体片段的噬菌体。通过清洗可以除去未结合的噬菌体,并将洗脱的结合噬菌体用于感染大肠杆菌(E.coli)细菌和后续传代。通常需要多轮选择和传代,以充分富集特异性结合细菌或其材料的噬菌体。如果需要,则在将噬菌体文库暴露于细菌或其材料之前,可以首先通过将噬菌体文库暴露于非目标材料(例如不同科、种和/或菌株的细菌或,者处于不同生长期的细菌或者这些细菌的物质),将噬菌体文库进行扣除。这些扣除细菌或其物质可以结合到固相上,或者可以在悬浮液中。也可以对噬菌体进行选择用于结合复合抗原,例如细菌蛋白质或(多)肽的复合混合物,其任选地被补充细菌多糖或其它细菌材料。表达一种或者多种蛋白质或(多)肽的宿主细胞(例如肠球菌)也可以用于选择目的。使用这些宿主细胞的噬菌体展示方法可以被扩展和改进,这通过在筛选过程中加入过量的包含非目标分子或与目标类似但不一致的非目标分子而扣除不相关的结合物,进而大大提高了发现相关结合分子的机会。当然,可以在使用细菌生物体或其材料进行筛选之前、过程中或之后进行扣除。该处理被称作
Figure BDA00001865300700331
处理
Figure BDA00001865300700332
是Crucell Holland B.V.的注册商标,同样参见美国专利No.6,265,150,通过参照将其并入)。
在另一个方面中,本发明提供了一种获得结合分子的方法,其中所述结合分子潜在地针对细菌生物体(优选至少两种不同的细菌生物体)具有杀伤活性,其中所述方法包括步骤:(a)进行前述获得特异性结合至少两种不同细菌生物体的结合分子或编码这类结合分子的核酸分子的方法;以及(b)确定分离的所述结合分子是否针对细菌生物体(优选针对至少两种不同的细菌生物体)具有杀伤活性。确认结合分子是否具有杀伤活性(例如调理活性)是本领域中公知的(参见例如《分子和临床实验室免疫学手册》(Manual of Molecular andClinical Laboratory Immunology),第7版)。在进一步的实施方式中,还对结合分子进行测试任何其它的活性。其它有用的活性是上面所提到的。
在进一步的方面中,本发明涉及针对至少2种、优选至少3种或更多种不同的细菌生物体(例如肠球菌)具有杀伤活性、并且通过上述方法能够获得的结合分子。包含结合分子的药物组合物也是本发明的一个方面,其中所述药物组合物还包含至少一种药物上可以接受的赋形剂。药物上可以接受的赋形剂是本领域技术人员公知的。根据本发明的药物组合物可以还包含至少一种其它的治疗剂。适当的治疗剂剂对于本领域技术人员也是公知的。
在进一步的方面中,本发明提供了组合物,其包含至少一种本发明的结合分子(优选人单克隆抗体),至少一种其功能变体,至少一种本发明的免疫缀合物或其组合。此外,这些组合物可以包含尤其是稳定化分子,例如白蛋白或聚乙二醇或盐。优选,所使用的盐是保持结合分子所需生物活性而不会产生任何不期望毒性作用的盐。如果必要,本发明的人结合分子可以被包覆在材料中或者包覆在材料上,以保护它们免于酸或其它可能使结合分子失活的天然或非天然条件的影响。
在进一步的方面中,本发明提供了包含至少一种本发明所定义的核酸分子的组合物。这些组合物可以包含水溶液,例如含有盐(例如NaCl或上述盐)、去污剂(例如SDS)和/或其它适当组分的水溶液。
此外,本发明涉及药物组合物,其包含至少一种本发明的结合分子例如人单克隆抗体(或其功能片段或变体)、至少一种本发明的免疫缀合物、至少一种本发明的组合物或其组合。本发明的药物组合物还包含至少一种药物上可以接受的赋形剂。
在一个实施方式中,药物组合物可以包含两种或者多种针对细菌生物体例如肠球菌(Enterococcus)种的杀伤活性的结合分子。在一个实施方式中,这些结合分子在组合使用时表现出协同杀伤活性。换句话说,这些组合物包含至少两种具有杀伤活性的结合分子,其特征在于这些结合分子协同作用于杀伤细菌生物体例如肠球菌(Enterococcus)种。本文所使用的术语“协同”的意思是在组合使用时结合分子的组合效果大于在单独使用时它们的相加作用。协同发挥作用的结合分子可以结合所述细菌生物体的相同或不同片段上的不同结构。在一个实施方式中,在杀伤细菌生物体中协同发挥作用的结合分子也可以能够协同杀伤其它细菌生物体。计算协同性的方法是通过组合指数。组合指数(CI)的概念已经被Chou和Talalay,1984所描述。两种或者更多种具有协同活性的结合分子具有不同的发挥作用的模式。例如,第一结合分子可以具有调理活性,而第二结合分子具有另一种提高/增大/增强吞噬的活性,或者第一结合分子可以具有固有(杀伤)活性,例如降低或抑制细菌生长或直接杀伤细菌,而第二结合分子提高细菌对抗生素处理的敏感性。需要理解其它的组合也是本文所期望的。
本发明的药物组合物还可以包含至少一种其它的治疗、预防和/或诊断剂。优选,所述药物组合物包含至少一种其它预防和/或治疗剂。优选,所述其它治疗和/或预防试剂是能够预防和/或治疗细菌(例如肠球菌感染)和/或由于这类感染所引起病症的药剂。治疗和/或预防剂包括但不限于抗菌剂。这些药剂可以是结合分子、小分子、有机或无机化合物、酶、多聚核苷酸序列、抗微生物肽等。目前用于治疗感染细菌感染(例如肠球菌感染)的患者的其它药剂是抗生素(例如万古霉素、壁霉素)、包含青霉素或万古霉素和氨基糖甙或舒巴克坦的协同组合、盘尼西林(包括广谱盘尼西林)、碳青霉烯类、大环内酯类、喹诺酮、四环素、氯霉素、达岶托霉素、利奈唑胺、奎奴普丁/达福普汀。这些可以与本发明的结合分子联合使用。能够预防和/或治疗细菌感染或在实验期由于这类感染所引起病症的药剂也可以用作本发明中的其它治疗和/或预防剂。
在用于人之前,能够在适当的动物模型系统中对本发明的结合分子或药物组合物进行测试。这些动物模型系统包括但不限于鼠败血症和腹膜炎模型、大鼠败血症和心内膜炎模型和兔心内膜炎模型。
通常,在制造和储存条件下,药物组合物必须是无菌和稳定的。本发明的结合分子、免疫缀合物、核酸分子或组合物能够是以粉末形式用于在传输之前或传输时,在适当的药物上可以接受的赋形剂内重建。在无菌粉末用于制备无菌可注射溶液的情况中,优选的制备方法是真空干燥和冷冻干燥(冻干),其产生活性成分加来自之前其无菌过滤溶液的任何额外所需成分的粉末。
或者,本发明的结合分子、免疫缀合物、核酸分子或组合物可以是在溶液中,并且可以加入适当的药物上可以接受的赋形剂,并且/或者在传输之前或传输时进行混合以提供单位剂量的可注射形式。优选,在本发明中所使用的药物上可以接受的赋形剂是适合高药物浓度,并且能够维持适当的流动性,并且如果必要则能够延迟吸收。
药物组合物最佳给药路线的选择将受到许多因素的影响,包括组合物内活性分子的物理化学性质、临床情况的紧急性和活性分子的血浆浓度与期望治疗效果的关系。例如,如果必要,本发明的结合分子能够通过使用保护结合分子免于快速释放的载体制备,例如控释配方,包括植入物、透皮贴剂和微囊递送系统。尤其可以使用生物可降解、生物兼容的聚合物,例如乙烯-醋酸乙烯酯、聚酸酐、聚乙醇酸、胶原、聚原酸酯和聚乳酸。此外,可以必要的是将结合分子包覆或共同给药预防人结合分子失活的材料或化合物。例如,可以在适当的载体中(例如脂质体或稀释剂中)为对象给药结合分子。
给药的路线可以分成主要两类,口服和经肠胃外给药。优选的给药路线是静脉内给药。
口服剂型可以被配制为例如药片、片剂、锭剂、水悬浮液或油悬浮液、可分散粉末或颗粒、乳剂、硬胶囊、软明胶胶囊、糖浆或酏剂、药丸、糖衣丸、液体、凝胶或浆液。这些制剂可以包含药物上可以接受的赋形剂(包括但不限于惰性稀释剂)、粒化剂和崩解剂、粘结剂、润滑剂、防腐剂、着色剂、调味剂或甜味剂、植物油或矿物油、湿润剂和增稠剂。
本发明的药物组合物还可以被配制成用于肠胃外给药。用于肠胃外给药的制剂可以是尤其是含水或不含水等渗无菌无毒注射或灌注溶液或悬浮液的形式。这些溶液或悬浮液可以包含以所采用的剂量和浓度对受体无毒的试剂,例如1,3-丁二醇、Ringer氏溶液、Hank氏溶液、等渗氯化钠溶液、油、脂肪酸、局部麻醉剂、防腐剂、缓冲液、粘性或溶解性提高剂、水溶性抗氧化剂、油溶性抗氧化剂和金属螯合剂。
在进一步的方面中,本发明的结合分子例如人单克隆抗体(其功能片段和变体)、免疫缀合物、组合物或药物组合物可以被用作药物。因此,使用本发明结合分子、免疫缀合物、组合物或药物组合物治疗和/或预防细菌(革兰氏阳性和/或革兰氏阴性)例如肠球菌感染的方法是本发明的另一部分。上述分子能够尤其是被用于细菌感染的诊断、预防、治疗或其组合。肠球菌所引起的重要临床感染包括但不限于尿道感染、腹内感染、骨盆和软组织感染菌血症、细菌型心内膜炎、憩室炎、脑膜炎、腹膜炎、骨髓炎、败血性关节炎、脓肿、伤口感染和肺炎。它们适合治疗还未接受治疗的患有细菌感染的患者,以及已经接受过细菌感染治疗或者正在接受细菌感染治疗的患者。它们可以用于患者例如住院的婴儿、早产儿、烧伤患者、年长的患者、免疫受损患者例如接受化疗的患者、免疫抑制患者例如接受器官移植的患者、免疫缺陷患者、进行侵入式过程的患者以及卫生保健工人。每次给药可以保护免于细菌生物体进一步感染持续高达3或4周,并且/或者将延迟与感染相关症状的开始或进展。本发明的结合分子还可以提高现有抗生素治疗的有效性,其通过提高细菌对抗生素的敏感性,可以刺激免疫系统通过调理素以外的方式攻击细菌。这种激活可以导致长时间针对感染细菌的持续保护。此外,本发明的结合分子可以直接抑制细菌的生长,或者抑制感染过程中细菌存活所必需的毒力因子。
上述分子或组合物可以结合其它诊断、预防和/或治疗的其它分子而被采用。它们可以在体外、先体外后体内或体内应用。例如,本发明的结合分子如人单克隆抗体(或其功能变体)、免疫缀合物、组合物或药物组合物可以与针对细菌生物体的疫苗(如果可利用)共同给药。或者,也可以在给药本发明的分子之前或者之后给药所述疫苗。抗细菌剂还可以代替疫苗结合本发明的结合分子而被采用。适当的抗细菌剂是上面所提到的。
通常以治疗或诊断有效量在本发明的组合物和药物组合物中配制这些分子。或者,它们可以被分别配制和给药。例如,可以全身性施用其它分子如抗细菌剂,而本发明的结合分子可以被鞘内或心室内施用。
可以调整给药方案以提供最佳的期望应答(例如治疗应答)。适当的剂量范围可以是例如0.1-100mg/kg体重,优选0.5-15mg/kg体重。此外,例如,可以给药单次大丸剂,一段时间内可以给药多次分开的剂量,或者可以优先根据治疗状况的危急情况所显示的降低或提高剂量。优选,本发明的分子和组合物是无菌的。使得这些分子和组合物无菌的方法是本领域中公知的。以与为本发明结合分子所设计相似的给药方案给药可以用于诊断、预防和/或治疗的其它分子。如果单独给药其它分子,则它们可以在给药患者本发明的一种或者多种人结合分子或药物组合物之前(例如之前2分钟、5分钟、10分钟、15分钟、30分钟、45分钟、60分钟、2小时、4小时、6小时、8小时、10小时、12小时、14小时、16小时、18小时、20小时、22小时、24小时、2天、3天、4天、5天、7天、2周、4周或6周),同时或者之后(例如之后2分钟、5分钟、10分钟、15分钟、30分钟、45分钟、60分钟、2小时、4小时、6小时、8小时、10小时、12小时、14小时、16小时、18小时、20小时、22小时、24小时、2天、3天、4天、5天、7天、2周、4周或6周)。通常在人类患者的临床实验中选择出确切的给药方案。
在作为体内治疗剂为人类给药时,人结合分子和包含人结合分子的药物组合物是特别有用的,并且通常是优选的,因为针对所给药该抗体的受体免疫应答通常远远低于给药单克隆鼠、嵌合或人源化结合分子所引起的免疫应答。
另一方面,本发明涉及本发明的结合分子例如杀伤人单克隆抗体(其功能片段和变体)、免疫缀合物、核酸分子、组合物或药物组合物在制备用于细菌(革兰氏阳性和/或革兰氏阴性)例如肠球菌感染的诊断、预防、治疗或其组合的药物中的应用。
之后,包含本发明的至少一种结合分子例如杀伤人单克隆抗体(其功能片段和变体)、至少一种免疫缀合物、至少一种核酸分子、至少一种组合物、至少一种药物组合物、至少一种载体、至少一种宿主或其组合的试剂盒也是本发明的一部分。任选地,上述本发明的试剂盒的组分被包装在适当的容器中,并标记,用于诊断、预防和/或治疗指定的病症。上述组份可以被存储在单位或多剂量容器中作为水溶液优选无菌水溶液,或者作为冻干制剂优选无菌冻干制剂用于重建。这些容器可以由多种材料形成,例如玻璃或塑料,并且可以具有无菌的存取口(例如该容器可以是具有皮下注射针头能够刺穿的塞子的静脉溶液包或者小瓶)。试剂盒还可以包含更多的容器,其包含药物上可以接受的缓冲液。还可以包括从商业和使用者角度优选的其它材料,包括其它缓冲液、稀释剂、过滤器、针头、注射器、一种或者多种适当宿主的培养基,并且可能包含甚至至少一种其它的治疗、预防或诊断剂。与试剂盒相关,在治疗、预防或诊断产品的商业包装盒中通常可以包含说明书,其包含关于例如适应症、用法、剂量、制造、给药、禁忌症和/或关于这些治疗、预防或诊断产品的警告的信息。
本发明的结合分子还可以用于包覆医疗设备或聚合物生物材料。
本发明还涉及一种检测样品中细菌生物体(革兰氏阳性和/或革兰氏阴性)的方法,其中该方法包括步骤:(a)将样品与诊断有效量的本发明结合分子(其功能片段和变体)或免疫缀合物接触;和(b)确定所述结合分子或免疫缀合物是否特异性结合样品的分子。优选,所述方法用于检测样品中的肠球菌(Enterococcus)。该样品可以是生物样品包括但不限于来自被(潜在地)感染对象的血液、血清、尿液、组织或其它生物材料,或非生物样品例如水、饮料等。被(潜在地)感染对象可以是人对象,但也可以是怀疑是这类细菌生物体携带者的动物,其中可以使用本发明的人结合分子或免疫缀合物测试所述细菌生物体的存在。可以首先对样品进行操作,以使其更适合检测的方法。操作的意思尤其是对怀疑含有和/或含有细菌生物体的样品以使得生物体分解成抗原组分例如蛋白质、(多)肽或其它抗原片段的方式进行处理。优选,在能够在人结合分子和样品中可能存在的细菌生物体或其抗原组分之间形成免疫复合物的条件下,将本发明的人结合分子或免疫缀合物与样品接触。接着通过适当的方法检测并测量免疫复合物的形成,如果有的话,说明样品中存在细菌生物体。这些方法包括尤其是同源和异源结合免疫测定例如放射性免疫测定(RIA)、ELISA、免疫荧光、免疫组织化学、FACS、BIACORE和Western印迹分析。
优选的测定技术,特别是用于大规模临床筛选患者血清和血液以及血液衍生产品的测定技术是ELISA和Western印迹技术。ELISA测试是特别优选的。为了用作这些测定中的试剂,本发明的结合分子或免疫缀合物被便利地结合到微孔板的内表面。本发明的结合分子或免疫缀合物可以直接结合到微孔板的内表面。然而,在加入本发明的结合分子或免疫缀合物之前,通过使用聚赖氨酸对孔进行预处理,可以达到本发明结合分子或免疫缀合物与孔的最大结合。此外,通过已知的方法,本发明的结合分子或免疫缀合物可以共价附着到孔上。通常,结合分子或免疫缀合物以0.01-100μg/ml的量用于涂敷,尽管也可以使用更高或者更低的量。接着,将样品加入到涂有本发明结合分子或免疫缀合物的孔中。
此外,本发明的结合分子可以用于鉴定细菌生物体例如肠球菌(Enterococcus)的特异性结合结构。所述结合结构可以是蛋白质和/或多肽上的抗原决定基。它们能够是线性的,也可以是结构和/或构型的。在一个实施方式中,可以通过PEPSCAN分析来分析结合结构(参见尤其是WO84/03564,WO93/09872,Slootstra等人,1996)。或者,包含来自细菌生物体的肽的随机肽文库可以被筛选能够结合本发明结合分子的肽。所发现的结合结构/肽/抗原决定基可以用作疫苗,并用于诊断细菌感染。一旦蛋白质和/或多肽以外的片段被结合分子结合,则可以通过质谱、高效液相色谱和核磁共振对结合结构进行鉴定。
在进一步的方面中,本发明提供了一种对结合分子(或其功能片段或变体)进行筛选的方法,所述结合分子特异性结合与本发明的人结合分子所结合的抗原决定基相同的细菌生物体(革兰氏阳性和/或革兰氏阴性)如肠球菌(Enterococcus)的抗原决定基,其中该方法包括步骤:(a)将待筛选的结合分子、本发明的结合分子和细菌生物体或其片段接触;(b)测量所筛选的结合分子是否能够与本发明结合分子竞争与细菌生物体或其片段的特异性结合。在进一步的步骤中,可以确定能够竞争与细菌生物体或其片段竞争特异性结合的所筛选结合分子是否具有杀伤活性例如调理活性。能够与本发明的结合分子竞争与细菌生物体或其片段特异性结合的结合分子是本发明的另一部分。在上述的筛选方法中,“特异性结合相同的抗原决定基”还涉及特异性结合与本发明结合分子所结合抗原决定基实质上或基本上相同的抗原决定基。阻断或者与本发明的结合分子竞争和细菌生物体结合的能力表明所筛选的结合分子结合细菌生物体上的抗原决定基或结合位点,其中所述细菌生物体上的抗原决定基或结合位点与本发明的结合分子所免疫特异性识别的细菌生物体上的结合位点结构上重叠。或者,这可以说明待筛选的结合分子结合与本发明的结合位点所免疫特异性识别的结合位点充分临近的抗原决定基或者结合位点,以立体地或者以其它方式抑制本发明的结合分子与细菌生物体的结合。
通常,通过抗原组合物即包含细菌生物体或其片段的组合物与参照结合分子即本发明的结合分子、以及待筛选的结合分子混合的测定,对竞争抑制进行检测。通常待筛选的结合分子是过量存在的。基于ELISA和Western印迹的方案适合用于这些简单的竞争性研究。通过使用种或同种型二抗,人们能够仅检测结合的参照结合分子,识别实质上相同抗原决定基的待筛选结合分子的存在会降低其结合。在参照结合分子和任何待筛选结合分子(与种或亚型无关)之间进行结合分子竞争研究时,人们可以首先使用可检测标记(例如生物素、酶、放射性或其它标记)对参照结合分子进行标记,以能够进行后续鉴定。这些竞争测定所鉴定的结合分子(“竞争结合分子”或“交叉反应结合分子”)包括但不限于:结合参照结合分子(即本发明的结合分子)所结合的抗原决定基或结合位点的抗体、抗体片段和其它结合剂,以及结合与参照结合分子所结合的抗原决定簇或结合位点充分临近的抗原决定簇或结合位点的抗体、抗体片段和其它结合剂,用于发生待筛选的结合分子与参照结合分子之间的竞争结合。优选,本发明的竞争结合分子在过量存在时会抑制参照结合分子与所选择目标种的特异性结合至少10%,优选至少25%,更优选至少50%,最优选至少75%-90%,或者甚至更高。鉴定与本发明的结合分子结合大约、实质上、基本上或者相同抗原决定基的一种或者多种竞争结合分子是简单的技术问题。由于竞争结合分子的鉴定是通过与参照结合分子即本发明的结合分子相比确定的,因此可以理解实际上不总是需要确定参照结合分子结合以及竞争结合分子结合的抗原决定基来鉴定竞争结合分子,所述竞争分子结合与参照结合分子相同或基本上相同的抗原决定基。
实施例
为了描述本发明,提供下列实施例。这些实施例不是为了以任何方式限制本发明的范围。
实施例1
使用从供体提取的RNA构建scFv噬菌体展示文库用于筛选调理活性
从年龄在25-50岁的报告最近革兰氏阳性细菌感染的供体以及健康成人提取血液样品。通过离心分离外周血白细胞,并将血清在-80℃下保存和冷冻。使用调理吞噬杀伤测定(Huebner等人,1999)对供体血清筛选杀伤活性,并与正常兔血清进行比较。选择来自吞噬活性高于正常血清的供者的血清用于产生噬菌体展示文库。使用有机相分离和后续的乙醇沉淀从这些供体的外周血白细胞制备总RNA。将所得到的RNA溶解在无RNA酶的水中,并通过OD260nm检测确定其浓度。之后,将RNA溶解成100ng/μl的浓度。下一步,如下,将1μgRNA转化成cDNA:向10μl总RNA中,加入13μl DEPC-处理的超纯水和1μl随机六聚体(500ng/μl),并在65℃加热获得的混合物5分钟,并快速在湿冰上进行冷却。接着,向混合物中加入8μl 5X第一链缓冲液,2μl dNTP(均为10mM)、2μl DTT(0.1M)、2μl RNA酶抑制剂(40U/μl)和2μl SuperscriptTM III MMLV反转录酶(200U/μl),在室温下温育5分钟,并在50℃下温育1小时。通过热失活终止该反应,即在75℃下温育混合物15分钟。使用DEPC处理的超纯水将所获得的cDNA产品稀释成200μl的终体积。将所获得cDNA产品稀释液的50倍稀释溶液(在10mM Tris缓冲液)的OD260nm用于确定cDNA浓度。对于每个供体,使用5-10μl稀释的cDNA产品作为使用特异性寡聚核苷酸PCR扩增免疫球蛋白γ重链家族和κ或λ轻链序列的模板引物(参见表1-7)。另外,对于一个供体,进行免疫球蛋白μ重链家族和κ或λ轻链序列的PCR扩增。在50μl终体积的20mM Tris-HCl(pH8.4)、50mM KCl、1.5mM MgCl2、250μM dNTP和1.25单位Taq聚合酶中,除了稀释的cDNA产物外,PCR反应混合物还包含25pmol正义引物和25pmol反义引物。在温度为96℃的热盖热循环仪中,将所得到的混合物快速熔化2分钟,接着进行30个下列的循环:在96℃下30秒,在55℃或60℃下30秒,在72℃下60秒。最后,将样品在72℃下温育10分钟,并冷藏在4℃下直到以后使用。
在第一轮扩增中,将18种轻链可变区正义引物(12种用于λ轻链(参见表1;在使用之前将HuVLlA-Back、HuVL1B-Back和HuVL1C-Back正义引物混合成等摩尔,以及HuVL9-Back和HuVLlO-Back正义引物),6种用于κ轻链(参见表2))的每一种与反义引物组合,其中所述反义引物识别C-κ恒定区被称作HuCK-FOR5’-ACACTCTCCCCTGTTGAAGCTCTT-3’(参见SEQ ID NO:121)或C-λ恒定区HuCL2-FOR5’-TGAACATTCTGTAGGGGCCACTG-3’(参见SEQ ID NO:122)和HuCL7-FOR5’-AGAGCATTCTGCAGGGGCCACTG-3’(参见SEQ ID NO:123)(在使用之前,将HuCL2-FOR和HuCL7-FOR反义引物混合成等摩尔),这得到了15种大约650碱基对的产品。在琼脂糖凝胶上纯化,并使用Qiagen凝胶提取柱从凝胶分离这些产物。将1/10的每种分离的产物用于与上述同样的PCR反应中,其使用18种正义引物,这样将每种λ轻链正义引物与三种Jλ区特异性反义引物的一种进行组合,并将每种κ轻链正义引物与五种Jλ区特异性反义引物(参见表3;在使用之前将HuVLlA-Back-SAL、HuVLIB-Back-SAL和HuVLlC-Back-SAL正义引物混合成等摩尔,以及HuVL9-Back-SAL和HuVL10-Back-SAL正义引物)的一种组合。在第二轮扩增中所使用正义引物是与在第一轮扩增中所使用的引物相同的引物,但延伸有限制位点(参见表3),以能够在噬菌体展示载体PDV-C06中定向克隆(参见SEQ ID NO:124)。这得到了57种大约400碱基对的产物,其汇集成如图4所示,以维持文库内不同J区段和轻链家族的天然分布,并且不会过分体现或者不能充分体现某些家族。使用Qiagen PCR纯化柱纯化所汇集的产物。在下一步中,使用SalI和NotI将3μg汇集的产物和100μg PDV-C06载体进行消化,并从凝胶上进行纯化。之后如下在16℃进行连接过夜。向500ng PDV-C06载体中加入35ng、70ng或140ng汇集的产物,总体积为50μl连接混合物,其包含50mM Tris-HCl(pH7.5)、10mM MgCl2、10mM DTT、1mM ATP、25μg/ml BSA和2.5μl T4 DNA连接酶(400U/μl)。通过苯酚/氯仿萃取,接着氯仿萃取和乙醇沉淀纯化连接混合物,这些方法是本领域技术人员公知的。将所获得的DNA溶解在50μl 10mMTris-HCl pH8.5中,并根据制造商的用户手册(Stratagene)将每种连接混合物1μl或者2μl电穿孔入40μl TG1感受态大肠杆菌(E.coli)。在37℃下,将转化体培养在被补充50μg/ml青霉素和4.5%葡萄糖的2TY琼脂上过夜。对集落进行计数以确定插入比例的最佳载体。如上从最佳比例的连接混合物,将多份1μl或者2μl进行电穿孔,并将转化体在37℃下培养过夜,通常产生大约107个集落。通过从琼脂平板上刮转化体,获得轻链可变区的(子)文库。直接将该(子)文库用于使用QiagenTM QIAFilter MAXI prep试剂盒进行质粒DNA制备。
以与前面对轻链区所描述的相似两轮PCR程序和相同的反应参数,从相同的cDNA制备物扩增重链免疫球蛋白序列,前提是使用在表5和6中所列的引物。使用一组八种正义方向的引物(参见表5;在使用之前,HuVH1B/7A-Back和HuVH1C-Back正义引物被混合成等摩尔)进行第一轮扩增,其中每种引物均与被称作HuCIgG的IgG特异性恒定区反义引物5'-GTCCAC CTT GGT GTT GCT GGG CTT-3'(SEQ ID NO:125)组合,这产生了7种大约650碱基对的产物。对于一个供体,使用被称作HuCIgM的IgM特异性恒定区反义引物5'-TGG AAG AGG CAC GTT CTT TTC TTT-3′(SEQ IDNO:126)代替引物HuCIgG。在琼脂糖凝胶上纯化,并使用Qiagen凝胶提取柱从凝胶分离这些产物。将1/10的每种分离的产物用于与上述同样的PCR反应中,其使用8种正义引物,这样每种重链正义引物与四种JH区特异性反义引物(参见表6;在使用之间,将HuVHlB/7A-Back-Sfi和HuVH1C-Back-Sfi正义引物混合成等摩尔)之一组合。在第二轮中所使用的正义引物与第一轮扩增所使用的引物相同,但延伸有限制位点(参见表6),以能够在轻链(亚)文库载体中定向克隆。这得到了28种大约400碱基对的产物,并汇集如表7所示以维持文库内不同J区段和重链家族的天然分布,并且不会过分体现或者不能充分体现某些家族。使用Qiagen PCR纯化柱纯化所汇集的产物。接着使用SfiI和XhoI对3μg纯化的产物进行消化,并使用与上面对轻链(亚)文库所描述的相同连接程序和体积,连接在也被相同限制性酶切割的轻链(亚)文库载体中。根据以上对轻链(子)文库所描述的,也进行连接混合物纯化和所得到最后文库的后续转化。所有细菌,通常大约107个,被收获在2TY培养基中,其包含50μg/ml青霉素和4.5%葡萄糖,并与甘油混合成15(v/v)%,在-80℃冷冻成1.5ml一份。根据下面所描述的进行每个文库的回收和选择。各种文库被命名为GPB-05-M01、GPB-05-G01、GPB-05-G02、GPB-05-G03、GPB-05-G04和GPB-05-G05。根据之前在国际专利申请WO2005/118644中所描述的,使用与上述程序类似的方法构建另外两个文库RAB-03-G0l和RAB-04-G01。
实施例2
使用从记忆B细胞提取的RNA构建scFv噬菌体展示文库
从正常健康供体、康复中的供体或者被接种的供体,通过静脉穿刺使用EDTA抗凝血试管收集外周血。使用PBS将血液样品(45ml)稀释两次,并将每份30ml置于10ml Ficoll-Hypaque(Pharmacia)之下,并在900×g,室温下无停顿地离心20分钟。小心地除去上清液至刚好在包含淋巴细胞和血小板部分的上方。下一步,小心取出该层(大约10ml),并转移到新的50ml管中,使用40ml PBS清洗3次,在室温下400×g离心10分钟以除去血小板。将所得到的包含淋巴细胞的沉淀重悬浮在包含2%PBS的RPMI培养基中,并通过细胞计数来确定细胞数目。使用CD24、CD27和表面IgM作为分离转换记忆B细胞和IgM记忆B细胞的标记物,对大约1X108个淋巴细胞染色进行荧光细胞分选。野外模式(Yield Mold)的Becton Dickinson Digital Vantage设备组被用于物理记忆B细胞分选和分离。淋巴细胞被限制为来自FSC/SSC窗口的小紧密群。接着从原始B细胞(CD24+/CD27-)和记忆T细胞(CD24-/CD27+)分离记忆B细胞(CD24+/CD27+)。在下一步中,通过使用IgM表达,IgM记忆B细胞(IgM+)被从转换记忆B细胞(IgM-)分离。在该步骤中,IgM记忆B细胞和转换记忆B细胞被分选在分开的样品试管中。将每群的1x105-1x106个细胞收集在DMEM/50%FBS中,在完成分选之后,它们均被在400xg下离心10分钟。接着根据实施例1所描述的方法,将所分选的IgM记忆B细胞用作构建文库的起始材料,其在第一轮扩增重链免疫球蛋白序列中使用引物HuCIgM。各种文库被命名为MEM-05-M01、MEM-05-M02、MEM-05-M03、MEM-05-M04、MEM-05-M05、MEM-05-M06、MEM-05-M07、MEM-05-M08、MEM-05-M09和MEM-05-M10。
实施例3
选择携带特异性结合肠球菌的单链Fv片段的噬菌体
使用抗体噬菌体展示文库、通常的噬菌体展示技术以及技术对抗体片段进行选择,其主要描述在美国专利No.6,265,150和描述在WO98/15833中(均作为参照被并入本文)。所使用的抗体噬菌体文库是根据实施例1所描述制备的筛选的供体文库,以及根据实施例2所描述制备的IgM记忆文库。在WO 02/103012(通过参照并入本文)所描述的方法和辅助噬菌体被用于本发明。为了鉴定识别肠球菌的噬菌体抗体,使用悬浮液中的活细菌或者被固定在免疫管中的细菌进行噬菌体选择实验。所使用的菌株被描述在表8中。从选择中分离所有的噬菌体抗体,其中在至少一个步骤中,使用悬浮液中的粪肠球菌(E.faecalis)12030。开始使用固定的粪肠球菌(E.faecalis)12030从选择中分离被称作SC05-159和SC05-166的抗体,但后面也用悬浮液中的粪肠球菌(E.faecalis)12030进行分离。
如下进行使用悬浮液中细菌的选择。将细菌在37℃下培养在血琼脂平板上过夜,并刮进包含2%BSA或2%ELK的PBS中,浓度为5x109个细菌/ml,在室温下温育30分钟。在封闭缓冲液(PBS中的2%ELK或2%BSA)对一份噬菌体文库(大约1013cfu,使用CT辅助噬菌体进行扩增的(参见WO02/103012))在室温下封闭0.5-2小时。将被封闭的噬菌体文库加入到被封闭的细菌悬浮液中得到1ml的总体积,并在室温下直立转子(end-over-endrotor)(5rpm)中温育2小时。在室温下对悬浮液以6800xg离心3分钟,并弃掉上清液。使用包含0.05(v/v)%吐温-20的缓冲液对细菌清洗3-8次,接着使用封闭缓冲液3-8次,以除去未结合的噬菌体。通过与1ml 0.1M的三乙胺在室温下直立转子(5rpm)中温育7分钟,将结合的噬菌体从抗原洗脱。在室温下将悬浮液在1700xg下离心3分钟,接着将上清液与0.5ml1M的Tris-HClpH7.5混合以中和pH。将该混合物用于感染5ml已经在37℃生长到OD600nm为大约0.3的XLl-Blue大肠杆菌(E.coli)培养物。接着,在室温下3200xg将混合物离心10分钟,并将细菌沉淀重悬浮在0.5ml2-胰蛋白胨酵母提取物(2TY)培养基中。将所得到的细菌悬浮液分在两块补充四环素、青霉素和葡萄糖的2TY琼脂平板上。在37℃将平板温育过夜之后,从平板上刮下集落并用于制备富集的噬菌体文库,基本上是根据De Kruif等人(1995a)和WO02/103012所描述的。简言之,将刮下的细菌用于接种包含青霉素、四环素和葡萄糖的2TY培养基,并在37℃下培养成OD600nm为大约0.3。加入CT辅助噬菌体,并使其感染细菌,之后,将培养基换为包含青霉素、四环素和卡那霉素的2TY。在30℃下继续温育过夜。第二天,通过离心从2TY培养基除去细菌,之后,使用聚乙二醇(PEG)6000/NaCl将培养基中的噬菌体沉淀。最后,将噬菌体溶解在2ml具有1%牛血清白蛋白(BSA)的PBS中,过滤除菌,并用于下一轮选择。
如下进行使用固定在免疫管中的细菌的选择。将细菌在37℃在血琼脂平板上培养过夜,并刮进碳酸盐缓冲液内,浓度为5x109个细菌/ml。将2ml加入到MaxiSorp Nunc-Immuno Tube(Nunc)中,并在4℃下直立转子(5rpm)内温育过夜。倒空试管,并使用PBS清洗3次。将该管和一份噬菌体文库(大约1013cfu,使用CT辅助噬菌体进行扩增的(参见WO02/103012))室温下在封闭缓冲液(PBS中2%ELK、2%BSA或1%补体素(Protifar))中进行封闭0.5-2小时。倒空管,并加入封闭的噬菌体文库,将试管在室温下直立转子(5rpm)内温育2小时。使用包含0.1(v/v)%吐温-20的PBS清洗5-15次,接着使用PBS5-15次以除去未结合的噬菌体。通过在室温下直立转子(5rpm)内与1.5ml的0.1M三乙胺或50mM甘氨酸-HCl,pH2.2温育10分钟,将结合的噬菌体从抗原洗脱。将所洗脱的噬菌体与0.5ml 1M Tris-HCl pH7.5混合以中和pH。根据上面对使用悬浮液中细菌进行选择的描述,进行后续侵染XLl-Blue大肠杆菌(E.coli),以及制备富集的噬菌体文库。
通常,在分离单独噬菌体抗体之前,进行两轮选择。可以对相同的细菌菌株进行两次选择,或者可以顺序使用不同的菌株。在第二轮选择之后,将单独的大肠杆菌(E.coli)集落用于制备单克隆噬菌体抗体。基本上,将单独的集落培养到对数期,并使用CT或VCSM13辅助噬菌体进行感染,之后进行噬菌体抗体生产过夜。对所产生的噬菌体抗体进行PEG/NaCl-沉淀和过滤除菌,并在ELISA中进行测试与根据前述所制备肠球菌(Enterococcus)的结合。
实施例4
肠球菌特异性单链噬菌体抗体的确认
在ELISA中对上述筛选中所获得的被选择单链噬菌体抗体确认肠球菌的特异性结合活性,即,结合根据前述所制备一种或者多种肠球菌菌株的结合活性。将在50μl50mM碳酸盐缓冲液,pH9.6中的2.5x108个细菌涂布到MaxisorpTM ELISA平板上过夜。作为阴性对照,涂布均在PBS(pH7.4)中的复合抗原2%ELK和1%BSA。使用含有0.1(v/v)%吐温-20的PBS对孔进行清洗,并使用含有2%ELK的300μl PBS在室温下封闭至少一个小时。将所选择的单链噬菌体抗体在等体积含有2%ELK的PBS中温育15分钟,以获得封闭的噬菌体抗体。将平板倒空,并向孔中加入封闭的单链噬菌体抗体。在室温下进行温育1小时,并在含有0.1(v/v)%吐温-20的PBS对平板进行清洗,使用偶联到过氧化物酶的抗M13抗体检测结合的噬菌体抗体。使用光谱仪检测492nm处的吸收。作为对照,同时进行相同的程序,而不是用单链噬菌体抗体,阴性对照是针对西尼罗病毒包膜蛋白(SC04-374)的单链噬菌体抗体。如表9所示,所选择被称作SC05-140、SC05-157、SC05-159、SC05-166、SC05-179、SC05-187、SC06-016、SC06-043、SC06-049、SC06-050、SC06-071、SC06-077、SC06-078、SC06-079、SC06-086、SC06-087、SC06-089、SC06-092、SC06-191、SC06-195、SC06-198、SC06-241、SC06-242、SC06-246、SC06-252、SC06-388、SC06-389、SC06-396、SC06-402、SC06-409、SC06-415、SC06-421、SC06-429和SC06-432的噬菌体抗体特异性结合粪肠球菌(E.faecalis)12030。除了SC05-140和SC06-421之外,所选定的噬菌体抗体都不展示与阴性对照抗原ELK和BSA的任何可检测结合。
实施例5
肠球菌特异性scFv的鉴定
从所选择特异性单链噬菌体抗体(scFv)克隆质粒DNA,并根据标准技术确定核苷酸序列。被称作SC05-140、SC05-157、SC05-159、SC05-166、SC05-179、SC05-187、SC06-016、SC06-043、SC06-049、SC05-050、SC06-071、SC06-077、SC06-078、SC06-079、SC06-086、SC06-087、SC06-089、SC06-092、SC06-191、SC06-195、SC06-198、SC06-241、SC06-242、SC06-246、SC06-252、SC06-388、SC06-389、SC06-396、SC06-402、SC06-409、SC06-415、SC06-421、SC06-429和SC06-432的scFv的核苷酸序列(包括用于克隆的限制位点)分别被显示在SEQ ID NO:350、SEQ ID NO:352、SEQ ID NO:61、SEQ ID NO:63、SEQ ID NO:354、SEQ ID NO:65、SEQ ID NO:67、SEQID NO:69、SEQ ID NO:71、SEQ ID NO:356、SEQ ID NO:73、SEQ IDNO:358、SEQ ID NO:75、SEQ ID NO:360、SEQ ID NO:362、SEQ IDNO:206、SEQ ID NO:208、SEQ ID NO:364、SEQ ID NO:366、SEQ IDNO:368、SEQ ID NO:370、SEQ ID NO:77、SEQ ID NO:372、SEQ IDNO:374、SEQ ID NO:79、SEQ ID NO:376、SEQ ID NO:378、SEQ IDNO:380、SEQ ID NO:382、SEQ ID NO:384、SEQ ID NO:386、SEQ IDNO:388、SEQ ID NO:390和SEQ ID NO:392中。被称作SC05-140、SC05-157、SC05-159、SC05-166、SC05-179、SC05-187、SC06-016、SC06-043、SC06-049、SC05-050、SC06-071、SC06-077、SC06-078、SC06-079、SC06-086、SC06-087、SC06-089、SC06-092、SC06-191、SC06-195、SC06-198、SC06-241、SC06-242、SC06-246、SC06-252、SC06-388、SC06-389、SC06-396、SC06-402、SC06-409、SC06-415、SC06-421、SC06-429和SC06-432的scFv的氨基酸序列被分别显示在SEQ ID NO:351、SEQ ID NO:353、SEQ ID NO:62、SEQ ID NO:64、SEQ ID NO:355、SEQ ID NO:66、SEQ ID NO:68、SEQID NO:70、SEQ ID NO:72、SEQ ID NO:357、SEQ ID NO:74、SEQ IDNO:359、SEQ ID NO:76、SEQ ID NO:361、SEQ ID NO:363、SEQ IDNO:207、SEQ ID NO:209、SEQ ID NO:365、SEQ ID NO:367、SEQ IDNO:369、SEQ ID NO:371、SEQ ID NO:78、SEQ ID NO:373、SEQ IDNO:375、SEQ ID NO:80、SEQ ID NO:377、SEQ ID NO:379、SEQ IDNO:381、SEQ ID NO:383、SEQ ID NO:385、SEQ ID NO:387、SEQ IDNO:389、SEQ ID NO:391和SEQ ID NO:393中。表10和11分别显示了特异性结合肠球菌的scFv的VH和VL基因相同性(参见Tomlinson IM,Williams SC,Ignatovitch O,Corbett SJ,Winter G.V-BASE Sequence Directory.Cambridge United Kingdom:MRC Centre for Protein Engineering(1997))和CDR序列。
实施例6
从所选择的抗肠球菌单链Fv构建全人免疫球蛋白分子(人单克隆抗肠球菌抗体)
通过限制性消化,被称作SC05-140、SC05-157、SC05-159、SC05-166、SC05-179、SC05-187、SC06-016、SC06-043、SC06-049、SC05-050、SC06-071、SC06-077、SC06-078、SC06-079、SC06-086、SC06-087、SC06-089、SC06-092、SC06-191、SC06-195、SC06-198、SC06-241、SC06-242、SC06-246、SC06-252、SC06-388、SC06-389、SC06-396、SC06-402、SC06-409、SC06-415、SC06-421、SC06-429和SC06-432的scFv的重链和轻链可变区被直接克隆,在IgG表达载体pIg-C911-HCγl(参见SEQ ID NO:127)、pIg-C909-Cκ(参见SEQ ID NO:128)和pIg-C910-Cλ(参见SEQ ID NO:129)中表达。通过使用酶SfiI和XhoI的限制性酶切,将被称作SC05-140、SC05-157、SC05-159、SC05-166、SC05-179、SC05-187、SC06-016、SC06-043、SC06-049、SC05-050、SC06-071、SC06-077、SC06-078、SC06-079、SC06-086、SC06-087、SC06-089、SC06-092、SC06-191、SC06-195、SC06-198、SC06-241、SC06-242、SC06-246、SC06-252、SC06-388、SC06-389、SC06-396、SC06-402、SC06-409、SC06-415、SC06-421、SC06-429和SC06-432的scFv的重链可变区克隆到载体pIg-C911-HCγl中。通过使用酶SalI、Xhol和NotI的限制性消化,将被称作SC06-016、SC06-050、SC06-077、SC06-086、SC06-191、SC06-241、SC06-396和SC06-429的scFv的轻链可变区克隆到载体pIg-C909-Cκ中。通过使用酶SalI、Xhol和NotI的限制性消化,将被称作SC05-140、SC05-157、SC05-159、SC05-166、SC05-179、SC05-187、SC06-043、SC06-049、SC06-071、SC06-078、SC06-079、SC06-087、SC06-089、SC06-092、SC06-195、SC06-198、SC06-242、SC06-246、SC06-252、SC06-388、SC06-389、SC06-402、SC06-409、SC06-415、SC06-421和SC06-432的scFv的轻链可变区克隆到载体pIg-C910-Cλ中。之后,根据本领域技术人员已知的标准方法对核苷酸序列进行确认。
将所得到的编码抗肠球菌人IgG1重链的表达pgG105-140C911、pgG105-157C911、pgG105-159C911、pgG105-166C911、pgG105-179C911、pgG105-187C911、pgG106-016C911、pgG106-043C911、pgG106-049C911、pgG106-050C911、pgG106-071C911、pgG106-077C911、pgG106-078C911、pgG106-079C911、pgG106-086C911、pgG106-087C911、pgG106-089C911、pgG106-092C911、pgG106-191C911、pgG106-195C911、pgG106-198C911、pgG106-0241C911、pgG106-242C911、pgG106-246C911、pgG106-252C911、pgG106-388C911、pgG106-389C911、pgG106-396C911、pgG106-402C911、pgG106-409C911、pgG106-415C911、pgG106-421C911、pgG106-429C911和pgG106-432C911,以及编码抗肠球菌人Ig轻链的pgG105-140C910、pgG105-157C910、pgG105-159C910、pgG105-166C910、pgG105-179C910、pgG105-187C910、pgG106-016C909、pgG106-043C910、pgG106-049C910、pgG106-050C909、pgG106-071C910、pgG106-077C909、pgG106-078C910、pgG106-079C910、pgG106-086C909、pgG106-087C910、pgG106-089C910、pgG106-092C910、pgG106-191C909、pgG106-195C910、pgG106-198C910、pgG106-0241C909、pgG106-242C910、pgG106-246C910、pgG106-252C910、pgG106-388C910、pgG106-389C910、pgG106-396C909、pgG106-402C910、pgG106-409C910、pgG106-415C910、pgG106-421C910、pgG106-429C909、和pgG106-432C910在293T细胞中瞬时组合表达,并获得包含人IgG1抗体的上清。被称作CR5140、CR5157、CR5159、CR5166、CR5179、CR5187、CR6016、CR6043、CR6049、CR6050、CR6071、CR6077、CR6078、CR6079、CR6086、CR6087、CR6089、CR6092、CR6191、CR6195、CR6198、CR6241、CR6242、CR6246、CR6252、CR6388、CR6389、CR6396、CR6402、CR6409、CR6415、CR6421、CR6429和CR6432的抗体的重链的核苷酸序列被分别表示在SEQ ID NO:394、SEQ ID NO:396、SEQ ID NO:81、SEQ ID NO:83、SEQ ID NO:398、SEQ ID NO:85、SEQ ID NO:87、SEQ ID NO:89、SEQ ID NO:91、SEQ ID NO:400、SEQ ID NO:93、SEQ ID NO:402、SEQ ID NO:95、SEQ ID NO:404、SEQ ID NO:406、SEQ ID NO:210、SEQ ID NO:212、SEQ ID NO:408、SEQ ID NO:410、SEQ ID NO:412、SEQ ID NO:414、SEQ ID NO:97、SEQ ID NO:416、SEQ ID NO:418、SEQ ID NO:99、SEQ ID NO:420、SEQ ID NO:422、SEQ ID NO:424、SEQ ID NO:426、SEQ ID NO:428、SEQ ID NO:430、SEQ ID NO:432、SEQ ID NO:434和SEQ ID NO:436中。被称作CR5140、CR5157、CR5159、CR5166、CR5179、CR5187、CR6016、CR6043、CR6049、CR6050、CR6071、CR6077、CR6078、CR6079、CR6086、CR6087、CR6089、CR6092、CR6191、CR6195、CR6198、CR6241、CR6242、CR6246、CR6252、CR6388、CR6389、CR6396、CR6402、CR6409、CR6415、CR6421、CR6429和CR6432的抗体的重链的氨基酸序列被分别表示在SEQ ID NO:395、SEQ ID NO:397、SEQID NO:82、SEQ ID NO:84、SEQ ID NO:399、SEQ ID NO:86、SEQ IDNO:88、SEQ ID NO:90、SEQ ID NO:92、SEQ ID NO:401、SEQ ID NO:94、SEQ ID NO:403、SEQ ID NO:96、SEQ ID NO:405、SEQ ID NO:407、SEQ ID NO:211、SEQ ID NO:213、SEQ ID NO:409、SEQ ID NO:411、SEQ ID NO:413、SEQ ID NO:415、SEQ ID NO:98、SEQ ID NO:417、SEQ ID NO:419、SEQ ID NO:100、SEQ ID NO:421、SEQ ID NO:423、SEQ ID NO:425、SEQ ID NO:427、SEQ ID NO:429、SEQ ID NO:431、SEQ ID NO:433、SEQ ID NO:435和SEQ ID NO:437中。
被称作CR5140、CR5157、CR5159、CR5166、CR5179、CR5187、CR6016、CR6043、CR6049、CR6050、CR6071、CR6077、CR6078、CR6079、CR6086、CR6087、CR6089、CR6092、CR6191、CR6195、CR6198、CR6241、CR6242、CR6246、CR6252、CR6388、CR6389、CR6396、CR6402、CR6409、CR6415、CR6421、CR6429和CR6432的抗体的轻链的核苷酸序列分别被表示在SEQID NO:438、SEQ ID NO:440、SEQ ID NO:101、SEQ ID NO:103、SEQID NO:442、SEQ ID NO:105、SEQ ID NO:107、SEQ ID NO:109、SEQID NO:111、SEQ ID NO:444、SEQ ID NO:113、SEQ ID NO:446、SEQID NO:115、SEQ ID NO:448、SEQ ID NO:450、SEQ ID NO:214、SEQID NO:216、SEQ ID NO:452、SEQ ID NO:454、SEQ ID NO:456、SEQID NO:458、SEQ ID NO:117、SEQ ID NO:460、SEQ ID NO:462、SEQID NO:119、SEQ ID NO:464、SEQ ID NO:466、SEQ ID NO:468、SEQID NO:470、SEQ ID NO:472、SEQ ID NO:474、SEQ ID NO:476、SEQID NO:478和SEQ ID NO:480中。被称作CR5140、CR5157、CR5159、CR5166、CR5179、CR5187、CR6016、CR6043、CR6049、CR6050、CR6071、CR6077、CR6078、CR6079、CR6086、CR6087、CR6089、CR6092、CR6191、CR6195、CR6198、CR6241、CR6242、CR6246、CR6252、CR6388、CR6389、CR6396、CR6402、CR6409、CR6415、CR6421、CR6429和CR6432的抗体的轻链的氨基酸序列分别被表示在SEQ ID NO:439、SEQ ID NO:441、SEQID NO:102、SEQ ID NO:104、SEQ ID NO:443、SEQ ID NO:106、SEQID NO:108、SEQ ID NO:110、SEQ ID NO:112、SEQ ID NO:445、SEQID NO:114、SEQ ID NO:447、SEQ ID NO:116、SEQ ID NO:449、SEQID NO:451、SEQ ID NO:215、SEQ ID NO:217、SEQ ID NO:453、SEQID NO:455、SEQ ID NO:457、SEQ ID NO:459、SEQ ID NO:118、SEQID NO:461、SEQ ID NO:463、SEQ ID NO:120、SEQ ID NO:465、SEQID NO:467、SEQ ID NO:469、SEQ ID NO:471、SEQ ID NO:473、SEQID NO:475、SEQ ID NO:477、SEQ ID NO:479和SEQ ID NO:481中。本领域技术人员能够根据Kabat等人(1991)在Sequences of Proteins ofImmunological Interest中所描述的,确定上述抗体的重链和轻链的可变区。这些抗体的可变区被提供在表12中。
基本上根据上面对scFv所描述的,通过ELISA确认人抗肠球菌IgG1抗体与肠球菌结合的能力;除了下列IgG1之外,以5g/ml的浓度对IgGl进行测定:以1.6g/ml测定CR6191,以3.1g/ml测定CR6195,以4.1g/ml测定CR6198,以2.7g/ml测定CR6241,以2.6g/ml测定CR6246,以3.0g/ml测定CR6252。阴性对照是抗西尼罗病毒抗体(CR4374)。另外,对人抗肠球菌IgG1抗体测试它们与粪肠球菌(Enterococcus.faecalis)和屎肠球菌(Enterococcus.faecium)的不同临床分离物结合的能力(参见表13)。如果与单独实验中阴性对照的数值相比,单独实验中的数值为至少3倍,则抗体被认为结合分离物。表13中的阴性对照的数值是6次实验的平均值。除了CR5157、CR5179、CR6016、CR6043、CR6050、CR6246、CR6388、CR6409和阴性对照外的所有抗体都特异性结合粪肠球菌(Enterococcus.faecalis)12030,除了CR5157、CR6016、CR6043、CR6050、CR6241、CR6242、CR6246、CR6388和CR6409外的所有IgG1结合多于一种临床分离物。抗体CR5187、CR6049、CR6396、CR6402和CR6421结合所测试的所有粪肠球菌(Enterococcus.faecalis)菌株,和两种屎肠球菌(Enterococcus.faecium)菌株。
或者,使用标准程序制备并纯化多批超过1mg的每种抗体。
实施例7
通过调理吞噬杀伤测定检测肠球菌特异性IgG的体外调理吞噬活性
进行调理吞噬测定以对针对肠球菌临床分离物12030的抗肠球菌人IgG1的杀伤活性进行定量。将新提取的人血(10-30ml)与等体积的葡聚糖-肝素缓冲液(500ml蒸馏水内的4.5g葡聚糖,Sigma Chemical,St.Louis;28.4mg肝素钠)混合;并将该混合物在37℃温育1小时。通过离心收集含有白细胞的上层,并通过将细胞沉淀悬浮在1(w/v)%的NH4Cl完成对残余红细胞的等渗裂解。接着在含有15%胎牛血清的RPMI中对白细胞群进行清洗。将台盼蓝染色和血细胞计数器中的计数用于确定活的白细胞的浓度,并将最终的白细胞浓度调节到2x107个细胞/ml。使用或不使用加入到100l细菌(根据光谱将浓度调节到2x107个细胞/ml,并通过活菌计数来确认),100l在RPMI中稀释的抗肠球菌人IgG1,以及100l幼兔补体的100l白细胞悬浮液进行两次吞噬测定。将反应混合物在37℃下转子架(rotor rack)上温育90分钟;在时间0和90分钟后提取样品,稀释在1%示蛋白胨(Difco Laboratories,Detroit,Mich.)中,铺到胰酶大豆琼脂平板上。杀伤活性(%)被计算为在包含白细胞的样品中存活的CFU平均数减去在不包含白细胞的样品中存活的CFU平均数,并除以后者,而后乘以100。在两次独立的实验中测试四种浓度的抗肠球菌人IgG1(2500、250、25、2.5ng/ml)。采用概率单位模型的顺序回归分析被用于计算测定中杀伤50%细菌所需要的浓度(参见表14)。
实施例8
肠球菌特异性IgG在鼠败血症模型中的体内活性
将肠球菌的鼠败血症模型(参见Hufnagel等人,2004)用于对抗肠球菌人IgG1在从血流中清除肠球菌临床分离物12030的能力进行定量。根据上面所述制备纯化的被证明在体外针对肠球菌(Entercoccus)具有杀伤活性的IgG1分子CR5159、CR5187、CR6016、CR6043、CR6049、CR6071、CR6089和CR6241以及针对肠球菌(Entercoccus)不具有杀伤活性的一种阴性对照,除了CR6016和CR6241被以7.5mg/kg的剂量注射以外,都被以15mg/kg的剂量腹腔注射(在PBS中0.5-1ml)到八只BALB/c小鼠组中。此外,一组小鼠注射了PBS。在24小时后,通过对动物进行静脉内接种6x108CFU的肠球菌(Entercoccus)菌株12030。四小时后,细菌攻击的小鼠以相同剂量接受了第二次腹腔注射CR5159、CR5187、CR6016、CR6043、CR6049、CR6071、CR6089和CR6241。全身感染三天后,动物被安乐死,并通过心脏穿刺收集大约0.5ml血液。将血液样品定量培养在肠球菌选择性琼脂培养基上;将稀释在900l THB的100l血液铺到平板上,一式两份。在温育过夜后,从平板上读出CFU的数目,并乘以10以得到血液的CFU/ml。该数值与处死时循环系统中细菌的数目直接相关。
该模型中的主要重点是接种后3天血液中肠球菌(Entercoccus)的CFU。如图1所示,3天后,所有接受PBS或对照IgG1的动物在血液中具有>102CFU/ml的肠球菌,而中位数是大约103CFU/ml。相反所有接受抗肠球菌抗体的动物的组血液中均具有<102CFU/ml的肠球菌(Entercoccus)。另外,在除CR5187的所有情况中,中位数比对照的中位数低一个对数。一种抗体CR6089在测定中具有低于敏感性水平的中位数(10CFU/ml),在8只动物的6只中,血液中没有可以检测到的细菌。以更低剂量使用的CR6016和CR6241仍然具有接近10CFU/ml血液的中位数,这表明它们具有高效力。非参数方差分析(Kruskal-Wallis)表明差异是高度显著的(p<0.001)。使用Mann-Whitney测试利用Bonferroni校正,在测试Ig1和阴性对照IgG1之间进行成对比较。与对照抗体相比,抗体CR5159、CR5187、CR6043、CR6049、CR6089和CR6241都是显著差异的(p<0.05),而在与对照抗体相比时,抗体CR6043和CR6071的中位数差异没有达到显著。
实施例9
IgG1竞争测定
为了确定名单中的抗体是否竞争结合相同的目标,开发了竞争ELISA。将肠球菌菌株12030在血琼脂平板上划线,并在37℃下温育过夜。使用5ml50mM的碳酸盐缓冲液(8体积的0.2M Na2CO3,17体积的NaHCO3以及75体积的蒸馏水)将集落从平板上刮下,并在4000rpm离心3分钟。将所得到的沉淀重悬浮在500μl碳酸盐缓冲液中,再次离心,将沉淀重悬浮在500μl碳酸盐缓冲液中。通过测量系列稀释的细菌的OD600而确定细胞密度。
将肠球菌菌株稀释至密度为5x109个细胞/ml,并在4℃下在Nunc-Immuno Maxisorp F96平板的每个孔涂布100μl(5x108个细胞)过夜。接种后,使用PBS清洗3次,并在室温下使用每孔300μl PBS中的2(v/v)%ELK封闭1小时。在分别的试管中,将稀释成亚饱和水平(根据上面ELISA所确定的)的每种scFv-噬菌体大量制备物(maxiprep)(如上制备)与25μl封闭缓冲液(PBS中4(v/v)%ELK)和在PBS中稀释到10μg/ml的50μl IgG1上清液进行混合。从孔中除去封闭溶液后,将100μl混合物加入到每个孔中,并在室温下温育1小时。接着使用PBS/0.01(v/v)%吐温对孔清洗3次,并使用PBS一次。清洗之后,每孔加入100μl抗-M13HRP(在PBS中的2(v/v)%ELK内1:5000),并在室温下温育60分钟。对孔进行再次清洗,并通过向每个孔中加入100μl OPD溶液使染色显现。在5-10分钟后,通过向每个孔中加入50μl1M的H2SO4停止显现反应,并在492nm下检测OD。使用全部抗体和对照IgG14374重复实验两次。结果显示抗体可以分成不同的几组。由CR6089和CR6092构成的组A;由CR5157、CR5187、CR6043、CR6049、CR6388、CR6389、CR6396、CR6402、CR6409、CR6421和CR6429构成的组B;以及由CR5159、CR5166、CR6050、CR6077、CR6078、CR6086和CR6191构成的组C;其余的抗体CR5140、CR5179、CR6016、CR6071、CR6079、CR6087、CR6195、CR6198、CR6241、CR6242、CR6246、CR6252、CR6415和CR6432不与任何其它的抗体竞争结合。
实施例10
通过调理吞噬杀伤测定测得的抗肠球菌IgG1分子针对不同粪肠球菌(Efaecalis)、球菌(E.faecium)和金黄色葡萄球菌(S.aureus)菌株的体外调理吞噬活性
为了确定抗肠球菌单克隆抗体名单的杀伤活性的宽度,测定上述所制备纯化的几批IgG1在上述调理吞噬杀伤活性测定中的杀伤活性。测试了另外的II型粪肠球菌(E.faecalis)菌株;两种不同的屎肠球菌(E.faecium)临床分离物740220和838970;以及金黄色葡萄球菌(S.aureus)分离物502。根据无竞争结合能力和在调理吞噬杀伤测定中的效力,从最初名单中的34种抗体中选择18种抗体。如表15所示,所选择的名单显示以两种浓度2.5μg/ml和0.025μg/ml针对屎肠球菌(E.faecium)的杀伤活性,不过CR5140、CR6016和CR6078的活性在最高浓度针对838970菌株也低于20%。除了一种抗体外,全部针对II型粪肠球菌(E.faecalis)菌株具有可测的活性,尽管18种抗体中有11种在所检测的最高浓度时仍具有低于25%的活性。令人惊奇的是所有的抗体针对金黄色葡萄球菌(S.aureus)菌株502均具有杀伤活性,这说明抗体识别广泛的交叉反应目标。我们测试是否所有抗体都结合金黄色葡萄球菌(S.aureus)的脂磷壁酸质(LTA),似乎这些抗体中没有结合的。这些抗体中有3种(CR6252、CR6415和CR6421)被测试针对另一种金黄色葡萄球菌(Staphylococcus aureus)菌株(Newman),以及针对表皮葡萄球菌(Staphylococcus epidermidis)菌株(RP62A)的调理吞噬杀伤活性,所测试的全部三种抗体都显示针对这些不同金黄色葡萄球菌(Staphylococcus)种和菌株的杀伤活性。
表1:人λ链可变区引物(正义)
Figure BDA00001865300700611
表2:人κ链可变区引物(正义)
Figure BDA00001865300700621
表3:延伸有SalI限制位点的人κ链可变区引物(正义),延伸有NotI限制位点的人κ链J区引物(反义),延伸有SalI限制位点的人λ链可变区引物(正义)和延伸有NotI限制位点的人λ链J区引物(反义)
Figure BDA00001865300700622
Figure BDA00001865300700631
Figure BDA00001865300700641
Figure BDA00001865300700651
表4:根据琼脂糖凝胶分析所确定的浓度,最终混合物中不同轻链产物的百分比
Figure BDA00001865300700652
Figure BDA00001865300700661
Figure BDA00001865300700671
表5:人IgG重链可变区引物(正义)
Figure BDA00001865300700672
表6:延伸有SfiI/NcoI限制位点的人IgG重链可变区引物(正义)以及延伸有XhoI/BstEII限制位点的人IgG重链J区引物(反义)
Figure BDA00001865300700681
Figure BDA00001865300700691
表7最终混合物中不同重链产物的百分比
表8用于选择和筛选抗肠球菌单链(scFv)噬菌体抗体的肠球菌菌株
  菌株   来源
  粪肠球菌(E.faecalis)12030   Veterans Administration医院,克里夫兰,俄亥俄州
  粪肠球菌(E.faecalis)T2   原型日本菌株
  粪肠球菌(E.faecalis)6814   Brigham and Women’s医院,波士顿,马萨诸塞州
  粪肠球菌(E.faecalis)B8610A   Brigham and Women’s医院,波士顿,马萨诸塞州
  屎肠球菌(E.faecium)740220   Brigham and Women’s医院,波士顿,马萨诸塞州
  屎肠球菌(E.faecium)B210860   Brigham and Women’s医院,波士顿,马萨诸塞州
表9根据ELISA所检测单链(scFv)噬菌体抗体的肠球菌特异性结合活性
Figure BDA00001865300700711
Figure BDA00001865300700721
ND的意思是未确定
表10肠球菌(Enterococcus)特异性单链scFv的数据
Figure BDA00001865300700731
Figure BDA00001865300700741
*括号内显示构成重链可变区(VH)和轻链可变区(VL)的氨基酸
表11肠球菌(Enterococcus)特异性单链scFv的CDR区数据
Figure BDA00001865300700751
Figure BDA00001865300700761
表12肠球菌(Enterococcus)特异性IgG的数据
Figure BDA00001865300700762
Figure BDA00001865300700771
*括号内显示构成重链可变区(VH)和轻链可变区(VL)的氨基酸
表13根据ELISA所测得的人IgG1抗体针对不同粪肠球菌(Enterococcusfaecalis)和屎肠球菌(Enterococcus faecium)菌株的特异性结合活性
Figure BDA00001865300700781
表14人IgG1抗体针对粪肠球菌(Enterococcus faecalis)菌株12030的体外调理吞噬杀伤活性
  抗体名称   提供50%细菌杀伤的抗体浓度(ng/ml)
  CR5140   ND
  CR5157   20.7
  CR5159   130
  CR5166   27.8
  CR5179   312
  CR5187   295
  CR6016   2.20
  CR6043   8.94
  CR6049   3794
  CR6050   5.82
  CR6071   12.4
  CR6077   54.7
  CR6078   10.5
  CR6079   >10000
  CR6086   10.8
  CR6087   21.2
  CR6089   3.67
  CR6092   >10000
  CR6191   178
  CR6195   >10000
  CR6198   4787
  CR6241   0.613
  CR6242   ND
  CR6246   >10000
  CR6252   29.2
  CR6388   0.64
  CR6389   0.33
  CR6396   4.71
  CR6402   1.00
  CR6409   36.6
  CR6415   ND
  CR6421   21.6
  CR6429   1.2
  CR6432   >10000
ND的意思是未确定
表15通过调理吞噬杀伤测定所测得的IgG1抗体的杀伤活性
参考文献
Boel E,Verlaan S,Poppelier MJ,Westerdaal NA,Van Strijp JA andLogtenberg T(2000),Functional human monoclonal antibodies of all isotypesconstructed from phage display library-derived single-chain Fv antibodyfragments.J.Immunol.Methods239:153-166。
Burton DR and Barbas CF(1994),Human antibodies from combinatoriallibraries.Adv.Immunol.57:191-280。
Chou,TC and P Talalay(1984),Quantitative analysis of dose-effectrelationships:the combined effects of multiple drugs or enzyme inhibitors.AdV.Enzyme Regul.22:27-55。
De Kruif J,Terstappen L,Boel E and Logtenberg T(1995a),Rapid selectionof cell subpopulation-specific human monoclonal antibodies from a syntheticphage antibody library.Proc.Natl.Acad.Sci.USA92:3938。
De Kruif J,Boel E and Logtenberg T(1995b),Selection and application ofhuman single-chain Fv antibody fragments from a semi-synthetic phage antibodydisplay library with designed CDR3 regions.J.MoI.Biol.248:97-105。
Huebner J,WangY,Krueger WA,Madoff LC,Martirosian G,Boisot S,Goldmann DA,Kasper DL,Tzianabos AO and Pier GB(1999),Isolation andchemical characterization of a capsular polysaccharide antigen shared by clinicalisolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium.Infect.Immun.67:1213-1219.
Hufnagel M,Koch S,Creti R,Baldassarri L and Huebner J(2004),Aputative sugar- binding transcriptional regulator in a novel gene locus inEnterococcus faecalis contributes to production of biofilm and prolongedbacteremia in mice.J.Infect.Dis.189:420-430。
Huls G,Heijnen IJ,Cuomo E,van der Linden J,Boel E,van de Winkel J andLogtenberg T(1999),Antitumor immune effector mechanisms recruited by phagedisplay-derived fully human IgGl and IgAl monoclonal antibodies.Cancer Res.59:5778-5784。
Slootstra JW,Puijk WC,LigtVoet GJ,Langeveld JP,Meloen RH(1996),Structural aspects of antibody-antigen interaction revealed through small randompeptide libraries.MoI.Divers.1:87-96。
Figure IDA00001865301200011
Figure IDA00001865301200021
Figure IDA00001865301200031
Figure IDA00001865301200041
Figure IDA00001865301200051
Figure IDA00001865301200071
Figure IDA00001865301200081
Figure IDA00001865301200101
Figure IDA00001865301200111
Figure IDA00001865301200121
Figure IDA00001865301200151
Figure IDA00001865301200161
Figure IDA00001865301200171
Figure IDA00001865301200181
Figure IDA00001865301200201
Figure IDA00001865301200211
Figure IDA00001865301200221
Figure IDA00001865301200231
Figure IDA00001865301200251
Figure IDA00001865301200261
Figure IDA00001865301200271
Figure IDA00001865301200281
Figure IDA00001865301200291
Figure IDA00001865301200301
Figure IDA00001865301200311
Figure IDA00001865301200321
Figure IDA00001865301200331
Figure IDA00001865301200341
Figure IDA00001865301200351
Figure IDA00001865301200361
Figure IDA00001865301200371
Figure IDA00001865301200381
Figure IDA00001865301200401
Figure IDA00001865301200411
Figure IDA00001865301200421
Figure IDA00001865301200431
Figure IDA00001865301200441
Figure IDA00001865301200451
Figure IDA00001865301200461
Figure IDA00001865301200471
Figure IDA00001865301200491
Figure IDA00001865301200501
Figure IDA00001865301200521
Figure IDA00001865301200541
Figure IDA00001865301200551
Figure IDA00001865301200561
Figure IDA00001865301200571
Figure IDA00001865301200581
Figure IDA00001865301200591
Figure IDA00001865301200611
Figure IDA00001865301200631
Figure IDA00001865301200641
Figure IDA00001865301200661
Figure IDA00001865301200671
Figure IDA00001865301200691
Figure IDA00001865301200701
Figure IDA00001865301200711
Figure IDA00001865301200731
Figure IDA00001865301200741
Figure IDA00001865301200751
Figure IDA00001865301200761
Figure IDA00001865301200771
Figure IDA00001865301200791
Figure IDA00001865301200801
Figure IDA00001865301200811
Figure IDA00001865301200821
Figure IDA00001865301200831
Figure IDA00001865301200841
Figure IDA00001865301200861
Figure IDA00001865301200871
Figure IDA00001865301200881
Figure IDA00001865301200901
Figure IDA00001865301200931
Figure IDA00001865301200951
Figure IDA00001865301200961
Figure IDA00001865301200971
Figure IDA00001865301200981
Figure IDA00001865301201011
Figure IDA00001865301201021
Figure IDA00001865301201031
Figure IDA00001865301201041
Figure IDA00001865301201051
Figure IDA00001865301201061
Figure IDA00001865301201071
Figure IDA00001865301201081
Figure IDA00001865301201091
Figure IDA00001865301201101
Figure IDA00001865301201111
Figure IDA00001865301201121
Figure IDA00001865301201131
Figure IDA00001865301201151
Figure IDA00001865301201161
Figure IDA00001865301201171
Figure IDA00001865301201181
Figure IDA00001865301201191
Figure IDA00001865301201201
Figure IDA00001865301201211
Figure IDA00001865301201221
Figure IDA00001865301201231
Figure IDA00001865301201241
Figure IDA00001865301201251
Figure IDA00001865301201261
Figure IDA00001865301201271
Figure IDA00001865301201301
Figure IDA00001865301201311
Figure IDA00001865301201321
Figure IDA00001865301201331
Figure IDA00001865301201341
Figure IDA00001865301201351
Figure IDA00001865301201361
Figure IDA00001865301201371
Figure IDA00001865301201391
Figure IDA00001865301201401
Figure IDA00001865301201411
Figure IDA00001865301201421
Figure IDA00001865301201431
Figure IDA00001865301201441
Figure IDA00001865301201451
Figure IDA00001865301201461
Figure IDA00001865301201471
Figure IDA00001865301201501
Figure IDA00001865301201511
Figure IDA00001865301201521
Figure IDA00001865301201531
Figure IDA00001865301201551
Figure IDA00001865301201561
Figure IDA00001865301201571
Figure IDA00001865301201581
Figure IDA00001865301201591
Figure IDA00001865301201611
Figure IDA00001865301201621
Figure IDA00001865301201631
Figure IDA00001865301201651
Figure IDA00001865301201661
Figure IDA00001865301201671
Figure IDA00001865301201681
Figure IDA00001865301201691
Figure IDA00001865301201701
Figure IDA00001865301201711
Figure IDA00001865301201731
Figure IDA00001865301201741
Figure IDA00001865301201751
Figure IDA00001865301201761
Figure IDA00001865301201771
Figure IDA00001865301201781
Figure IDA00001865301201791
Figure IDA00001865301201801
Figure IDA00001865301201811
Figure IDA00001865301201821
Figure IDA00001865301201831
Figure IDA00001865301201851
Figure IDA00001865301201861
Figure IDA00001865301201871
Figure IDA00001865301201881
Figure IDA00001865301201891
Figure IDA00001865301201901
Figure IDA00001865301201911
Figure IDA00001865301201921
Figure IDA00001865301201931
Figure IDA00001865301201941
Figure IDA00001865301201951
Figure IDA00001865301201961
Figure IDA00001865301201971
Figure IDA00001865301201981
Figure IDA00001865301201991
Figure IDA00001865301202011
Figure IDA00001865301202021
Figure IDA00001865301202031
Figure IDA00001865301202041
Figure IDA00001865301202051
Figure IDA00001865301202061
Figure IDA00001865301202071
Figure IDA00001865301202081
Figure IDA00001865301202091
Figure IDA00001865301202101
Figure IDA00001865301202111
Figure IDA00001865301202121
Figure IDA00001865301202131
Figure IDA00001865301202141
Figure IDA00001865301202151
Figure IDA00001865301202181
Figure IDA00001865301202191
Figure IDA00001865301202201
Figure IDA00001865301202211
Figure IDA00001865301202221
Figure IDA00001865301202231
Figure IDA00001865301202241
Figure IDA00001865301202251
Figure IDA00001865301202261
Figure IDA00001865301202271
Figure IDA00001865301202281
Figure IDA00001865301202291
Figure IDA00001865301202301
Figure IDA00001865301202311
Figure IDA00001865301202321
Figure IDA00001865301202341
Figure IDA00001865301202351
Figure IDA00001865301202371
Figure IDA00001865301202381
Figure IDA00001865301202391
Figure IDA00001865301202401
Figure IDA00001865301202411
Figure IDA00001865301202421
Figure IDA00001865301202431
Figure IDA00001865301202441
Figure IDA00001865301202451
Figure IDA00001865301202461
Figure IDA00001865301202481
Figure IDA00001865301202501
Figure IDA00001865301202511
Figure IDA00001865301202521
Figure IDA00001865301202531
Figure IDA00001865301202541
Figure IDA00001865301202551
Figure IDA00001865301202561
Figure IDA00001865301202571
Figure IDA00001865301202581
Figure IDA00001865301202591
Figure IDA00001865301202601
Figure IDA00001865301202611
Figure IDA00001865301202621
Figure IDA00001865301202631
Figure IDA00001865301202641
Figure IDA00001865301202651
Figure IDA00001865301202661
Figure IDA00001865301202671
Figure IDA00001865301202681
Figure IDA00001865301202691
Figure IDA00001865301202701
Figure IDA00001865301202711
Figure IDA00001865301202721
Figure IDA00001865301202741
Figure IDA00001865301202751
Figure IDA00001865301202771
Figure IDA00001865301202781
Figure IDA00001865301202791
Figure IDA00001865301202801
Figure IDA00001865301202811
Figure IDA00001865301202821
Figure IDA00001865301202831
Figure IDA00001865301202841
Figure IDA00001865301202851
Figure IDA00001865301202861
Figure IDA00001865301202871
Figure IDA00001865301202881
Figure IDA00001865301202891
Figure IDA00001865301202901
Figure IDA00001865301202911
Figure IDA00001865301202921
Figure IDA00001865301202931
Figure IDA00001865301202941
Figure IDA00001865301202951
Figure IDA00001865301202961
Figure IDA00001865301202971
Figure IDA00001865301202981
Figure IDA00001865301202991
Figure IDA00001865301203001
Figure IDA00001865301203011
Figure IDA00001865301203031
Figure IDA00001865301203041
Figure IDA00001865301203051
Figure IDA00001865301203061
Figure IDA00001865301203071
Figure IDA00001865301203081
Figure IDA00001865301203101
Figure IDA00001865301203121
Figure IDA00001865301203131
Figure IDA00001865301203141
Figure IDA00001865301203151
Figure IDA00001865301203161
Figure IDA00001865301203171
Figure IDA00001865301203181
Figure IDA00001865301203191
Figure IDA00001865301203201
Figure IDA00001865301203211
Figure IDA00001865301203221
Figure IDA00001865301203231
Figure IDA00001865301203241
Figure IDA00001865301203251
Figure IDA00001865301203261
Figure IDA00001865301203271
Figure IDA00001865301203281
Figure IDA00001865301203301
Figure IDA00001865301203321
Figure IDA00001865301203331
Figure IDA00001865301203341
Figure IDA00001865301203351
Figure IDA00001865301203361
Figure IDA00001865301203371
Figure IDA00001865301203381
Figure IDA00001865301203401
Figure IDA00001865301203411
Figure IDA00001865301203421
Figure IDA00001865301203431
Figure IDA00001865301203441
Figure IDA00001865301203451
Figure IDA00001865301203461
Figure IDA00001865301203471
Figure IDA00001865301203481
Figure IDA00001865301203501
Figure IDA00001865301203521
Figure IDA00001865301203551
Figure IDA00001865301203571
Figure IDA00001865301203591
Figure IDA00001865301203601
Figure IDA00001865301203611
Figure IDA00001865301203621
Figure IDA00001865301203631
Figure IDA00001865301203641
Figure IDA00001865301203651
Figure IDA00001865301203671
Figure IDA00001865301203681
Figure IDA00001865301203691
Figure IDA00001865301203701
Figure IDA00001865301203711
Figure IDA00001865301203721
Figure IDA00001865301203731
Figure IDA00001865301203741
Figure IDA00001865301203751
Figure IDA00001865301203761
Figure IDA00001865301203781
Figure IDA00001865301203791
Figure IDA00001865301203801
Figure IDA00001865301203821
Figure IDA00001865301203831
Figure IDA00001865301203841
Figure IDA00001865301203851
Figure IDA00001865301203861
Figure IDA00001865301203871
Figure IDA00001865301203881
Figure IDA00001865301203891
Figure IDA00001865301203901
Figure IDA00001865301203921
Figure IDA00001865301203931
Figure IDA00001865301203941
Figure IDA00001865301203951
Figure IDA00001865301203961
Figure IDA00001865301203981
Figure IDA00001865301203991
Figure IDA00001865301204011
Figure IDA00001865301204031
Figure IDA00001865301204041
Figure IDA00001865301204051
Figure IDA00001865301204061
Figure IDA00001865301204071

Claims (11)

1.一种人单克隆抗体,其特征在于具有针对至少两种不同肠球菌(Enterococcus)中每一种的至少一种菌株和针对金黄色葡萄球菌(Staphylococcus aureus)的至少一种菌株的调理吞噬杀伤活性。
2.根据权利要求1所述的人单克隆抗体,其中所述抗体选自包含本文所公开抗体CR5140、CR5157、CR6016、CR6043、CR6050、CR6078、CR6087、CR6089、CR6241、CR6252、CR6388、CR6389、CR6396、CR6402、CR6409、CR6415、CR6421或CR6429中任一种抗体的可变区的抗体以及可变区与这些本文所公开抗体的可变区具有至少80%的相同性的抗体。
3.根据权利要求1或2所述的人单克隆抗体,其特征在于所述肠球菌(Enterococcus)种包括粪肠球菌(E.faecalis)和屎肠球菌(E.faecium)。
4.一种免疫缀合物,其包含根据权利要求1-3中任一项所述的人单克隆抗体,所述免疫缀合物还包含至少一种标签。
5.一种核酸分子,其编码根据权利要求1-3中任一项所述的人单克隆抗体。
6.一种载体,其包含至少一种根据权利要求5所述的核酸分子。
7.一种宿主细胞,其包含至少一种根据权利要求6所述的载体。
8.一种制备根据权利要求1-3中任一项所述的人单克隆抗体的方法,其中所述方法包括步骤:
a)在适合表达所述人单克隆抗体的条件下,培养根据权利要求7所述的宿主细胞;以及任选地
b)回收所表达的人单克隆抗体或功能变体。
9.一种药物组合物,其包含根据权利要求1-3中任一项所述的人单克隆抗体,或者根据权利要求4所述的免疫缀合物,所述药物组合物还包含至少一种药物上可以接受的赋形剂。
10.根据权利要求9所述的药物组合物,其还包含至少一种其它的治疗剂。
11.权利要求1-3中任一项所述的人单克隆抗体、权利要求4所述的免疫缀合物、或者权利要求9或10所述药物组合物在肠球菌感染和/或葡萄球菌感染的诊断、预防、治疗或其组合中的应用。
CN201210236654.5A 2006-06-06 2007-06-05 针对肠球菌和金黄色葡萄球菌具有杀伤活性的人结合分子及其应用 Active CN102731651B (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US81154206P 2006-06-06 2006-06-06
EP06115013 2006-06-06
US60/811,542 2006-06-06
EP06115013.2 2006-06-06
EP06116719 2006-07-06
EP06116719.3 2006-07-06
EP06121258 2006-09-26
EP06121258.5 2006-09-26
EP07103587.7 2007-03-06
EP07103587 2007-03-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2007800207128A Division CN101460518B (zh) 2006-06-06 2007-06-05 针对肠球菌和金黄色葡萄球菌具有杀伤活性的人结合分子及其应用

Publications (2)

Publication Number Publication Date
CN102731651A true CN102731651A (zh) 2012-10-17
CN102731651B CN102731651B (zh) 2015-02-04

Family

ID=45220170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210236654.5A Active CN102731651B (zh) 2006-06-06 2007-06-05 针对肠球菌和金黄色葡萄球菌具有杀伤活性的人结合分子及其应用

Country Status (5)

Country Link
KR (3) KR20160003317A (zh)
CN (1) CN102731651B (zh)
CA (1) CA2891316C (zh)
EA (1) EA021767B1 (zh)
NZ (3) NZ594945A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039437A (zh) * 2018-08-30 2021-06-25 微流体生物制品公司 用于微生物物种检测、定量和抗生素敏感性鉴定的系统
CN113493510A (zh) * 2021-07-07 2021-10-12 上海交通大学 一种牛源抗金黄色葡萄球菌LukD毒力因子的单链抗体及其制备和应用
CN114196586A (zh) * 2021-12-20 2022-03-18 郑州大学 一株蒙氏肠球菌及其在发酵中草药中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059259A2 (en) * 2001-12-21 2003-07-24 Biosynexus Incorporated Multifunctional monoclonal antibodies directed to peptidoglycan of gram-positive bacteria

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610293B1 (en) * 1997-06-16 2003-08-26 The Henry M. Jackson Foundation For The Advancement Of Military Medicine Opsonic and protective monoclonal and chimeric antibodies specific for lipoteichoic acid of gram positive bacteria
US6908994B1 (en) * 1999-05-10 2005-06-21 The Texas A&M University System Collagen-binding proteins from enterococcal bacteria
JP2006502968A (ja) * 2002-02-21 2006-01-26 ユニヴエルシタ デリ スツディ ディ パヴィア 細菌性コラーゲン結合タンパク質に対して交差反応性のモノクロナール抗体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059259A2 (en) * 2001-12-21 2003-07-24 Biosynexus Incorporated Multifunctional monoclonal antibodies directed to peptidoglycan of gram-positive bacteria

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BILLOT-KLEIN DANIELE ET AL: "Peptidoglycan structure of Enterococcus faecium expressing vancomycin resistance of the VanB type", 《BIOCHEMICAL JOURNAL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039437A (zh) * 2018-08-30 2021-06-25 微流体生物制品公司 用于微生物物种检测、定量和抗生素敏感性鉴定的系统
CN113493510A (zh) * 2021-07-07 2021-10-12 上海交通大学 一种牛源抗金黄色葡萄球菌LukD毒力因子的单链抗体及其制备和应用
CN114196586A (zh) * 2021-12-20 2022-03-18 郑州大学 一株蒙氏肠球菌及其在发酵中草药中的应用
CN114196586B (zh) * 2021-12-20 2023-04-11 郑州大学 一株蒙氏肠球菌及其在发酵中草药中的应用

Also Published As

Publication number Publication date
CN102731651B (zh) 2015-02-04
CA2891316A1 (en) 2007-12-13
NZ606828A (en) 2014-08-29
KR20160003317A (ko) 2016-01-08
EA201200182A1 (ru) 2012-06-29
NZ594945A (en) 2013-03-28
KR20170042376A (ko) 2017-04-18
KR20180072676A (ko) 2018-06-29
NZ572775A (en) 2011-09-30
EA021767B1 (ru) 2015-08-31
CA2891316C (en) 2020-07-21

Similar Documents

Publication Publication Date Title
CN101460518A (zh) 针对肠球菌和金黄色葡萄球菌具有杀伤活性的人结合分子及其应用
CN103351435B (zh) 具有杀灭葡萄球菌活性的人结合分子及其应用
CN102731651B (zh) 针对肠球菌和金黄色葡萄球菌具有杀伤活性的人结合分子及其应用
AU2012268821B2 (en) Human binding molecules having killing activity against staphylococci and uses thereof
IL237843A (en) Human binding molecules with Staphylococcus killing abilities, preparations containing them, method for their production and uses

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant