CN102725443A - 氮化硅基坩埚 - Google Patents

氮化硅基坩埚 Download PDF

Info

Publication number
CN102725443A
CN102725443A CN2010800590174A CN201080059017A CN102725443A CN 102725443 A CN102725443 A CN 102725443A CN 2010800590174 A CN2010800590174 A CN 2010800590174A CN 201080059017 A CN201080059017 A CN 201080059017A CN 102725443 A CN102725443 A CN 102725443A
Authority
CN
China
Prior art keywords
crucible
silicon
boron
concentration
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800590174A
Other languages
English (en)
Inventor
H·索尔海姆
A·索尔海姆
E·范德朔特布鲁格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain IndustrieKeramik Roedental GmbH
Original Assignee
Saint Gobain IndustrieKeramik Roedental GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain IndustrieKeramik Roedental GmbH filed Critical Saint Gobain IndustrieKeramik Roedental GmbH
Publication of CN102725443A publication Critical patent/CN102725443A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种可重复使用的含氮化硅坩埚以及该坩埚用于结晶硅的用途,该坩埚包括以下的至少一种:浓度<19ppmw的硼(B)或含硼化合物;以及浓度<3.7ppmw的磷(P)或含磷化合物。

Description

氮化硅基坩埚
本发明涉及一种可重复使用的含氮化硅坩埚以及该可重复使用的含氮化硅坩埚用于结晶硅的用途。
背景:
熔融石英和石英坩埚(fused silica and quartz crucible)是最常用的用于太阳能电池晶体硅锭生产的坩埚。这些坩埚只能使用一次,因此导致高的生产成本。坩埚需要用来结晶硅,其能够制造太阳能电池。含氮化硅坩埚的优点是,它们是可重复使用的,且具有降低太阳能电池生产成本的较高潜力。坩埚的可重复使用性也已经得到证明。太阳能电池产生的电力在今天比常规电力贵得多。因此,对于太阳能产业非常重要的是要降低太阳能电池的生产成本。一种新的可重复使用的氮化硅基坩埚可能有助于此。氮化硅基坩埚,不仅必须是可重复使用的,而且也能生产与标准熔融石英或石英坩埚相比更好的或相等的硅锭质量。本专利涉及在氮化硅基坩埚中生产的硅锭的质量。
由专利NO317080可知一种用来产生可重复使用的氮化硅坩埚的方法。它使用一种由Elkem AS生产的称为Silgrain
Figure BPA00001568273000011
的硅粉作为生产坩埚的原料。由相同原料生产的氮化硅坩埚现已通过在此坩埚生长多晶晶锭进行了测试。令人惊讶的是,硅锭含有比预期高得多的硼和磷含量。硅锭具有正常量级的如铁、铝和钙等元素。晶锭中相对较高含量的B和P导致与硅锭预期的电阻率有较大的偏差。用于生产太阳能电池的硅锭需要特定的电阻率,以具有良好的太阳能电池性能。
本发明的目的是提供用于生产太阳能电池及硅片的令人满意的晶锭质量。此外,本发明的目的是制备旨在取代标准熔融石英坩埚的可重复使用的氮化硅基坩埚。标准熔融石英坩埚在下文中作为参考标准。
发明概述
本发明提供了一种可重复使用的含氮化硅的结晶硅用坩埚,其中该坩埚包括下面的至少一种:浓度<19ppmw的硼或含硼化合物;以及还包括下面的至少一种:浓度<3.7ppmw的磷或含磷化合物。
此外,本发明涉及氮化硅坩埚用于结晶硅的用途,该坩埚包括下面的至少一种:浓度<19ppmw的硼(B)或含硼化合物;以及还包括浓度<3.7ppmw的磷(P)或含磷化合物。
发明详述
制备含氮化硅的坩埚的通常原料是硅、碳化硅和氮化硅。购买到的这些原材料品质有不同,具有不同数量的杂质。普遍存在的元素是Al、Ca、Fe、Ti、B和P。
主要由于杂质含量较低,高纯度的氮化硅基坩埚与标准熔融石英和石英坩埚相比将对晶锭有较少的污染。氮化硅基坩埚与熔融石英和石英坩埚相比也具有不同的材料性能。它们主要含有氮化物杂质,高温不会软化。熔融石英和石英坩埚主要含有氧化物形式的杂质,这些坩埚高温会软化。
坩埚总是涂覆有氮化硅粉,使得坩埚从来不与硅直接接触。来自坩埚的任何污染,一定是从坩埚扩散并通过涂层。挥发性化合物可快速扩散。固体化合物必须根据比气体扩散慢得多的固-固扩散进行扩散。熔融石英和石英坩埚由于存在氧化物且它们会高温软化,可能具有比氮化硅基坩埚更高含量的挥发性化合物。
覆盖坩埚至少一部分的涂层也会导致晶锭的污染。高纯度的涂层确实生产出较高质量的晶锭。使用改进涂覆材料的效果已经由E.Olsen等进行了探讨:“Silicon Nitride Coating and Crucible-Effects of Using Upgraded Materials in theCasting of Multicrystalline Silicon Ingots”,Progress in Photovoltaics(2008),16(2),93-100。在某些时候,来自涂层的污染将会主导来自坩埚的污染。那么,改进涂层是必要的。
为了能够生产优质的坩埚,使用高纯硅原料可能是个挑战。已知纯硅与氮反应缓慢,因此,难以实现高转化。一些含量的杂质,如Fe、Al、Ca和Zr会改善氮化。
可以认为,氮化硅坩埚中B和P可能以氧化物形式存在。B和P的氧化物在1400-1500℃有相对较高的蒸气压,该温度是熔化坩埚中的硅的温度。硅锭的B和P污染可能是由于挥发性的硼化合物和磷化合物的存在。其他元素如Fe、Al、Ca和Ti,尽管以比B和P高得多的浓度存在,但并不污染晶锭。已经发现,氮化硅基坩埚中的B含量必须低于19ppmw,以便不对硅锭产生任何重大的污染。优选地,B的含量<1ppmw。此外,氮化硅基坩埚中的P含量必须低于3.7ppmw,以便不对硅锭产生任何重大的污染。优选地,P含量<0.5ppmw。
坩埚中的B化合物和P化合物必须具有不同于存在的其他元素的特性,因为它们尽管以相对低的浓度存在,但也会对晶锭产生污染。上述同类型的坩埚被加热到1400-1500℃,该处理后,坩埚中的B含量和P含量显著降低。其他元素如Fe、Al和Ca的含量并没有降低。这表明,B和P化合物在这些温度下是挥发性的,这些温度是使用坩埚来制造硅锭的温度。
预测坩埚中什么含量的B和P不会对硅锭产生任何重要的污染是非常困难的。出于某种原因,一部分B化合物和P化合物可能是挥发性的,而一部分不是挥发性的,例如,一部分B可以以不挥发的氮化硼存在。因此,进行了一系列的测试,以便找到B和P的限值,从而不会对硅锭产生任何重大的污染。
实施例:
对不同氮化硅基坩埚进行多次试验并与熔融石英坩埚中制造的参照硅锭进行比较。传统熔融石英坩埚中制造的参照硅锭在下面的实施例中称为参照硅锭。
试验1:
通过使用由Silgrain
Figure BPA00001568273000031
制造的坩埚A已制成了硅锭,根据分析(ICP)该硅锭具有以下组成:
Figure BPA00001568273000032
通过GDMS对硅锭进行分析。使用坩埚A制备的硅锭的硼(B)和磷(P)含量显著高于参照硅锭。使用坩埚A制备的硅锭的其他元素与参照硅锭相比具有正常数值。试验1的结果表明,氮化物基坩埚中少量的B和P将污染硅锭。即使其他元素以较高数量存在,也不会污染硅锭。
试验2:
使用坩埚B已经制造了一个硅锭,坩埚B的组成如下:
Figure BPA00001568273000041
该硅锭具有与参照相同的B含量。P含量显著高于参照。所有其他的共同元素与参照相似。这表明,坩埚中1ppmw以下的B含量不会造成硅锭的任何污染。
试验3:
使用坩埚C已制造了一个硅锭。坩埚C的组成如下:
Figure BPA00001568273000042
该硅锭具有与参照相同的B含量。P含量显著高于参照。所有其他的共同元素与参照相似。这表明,坩埚中<1ppmw的B含量不会造成硅锭的任何污染。
试验4:
使用坩埚D已制造了一个硅锭。坩埚D的组成如下:
Figure BPA00001568273000043
该硅锭具有与参照相同的B和P含量。所有其他的共同元素与参照相似。这表明,坩埚中<1ppmw的B含量和<0.5的P含量不会造成硅锭的任何污染。

Claims (6)

1.一种用于结晶硅的可重复使用的含氮化硅坩埚,其特征在于,所述坩埚包含以下的至少一种:浓度<19ppmw的硼或含硼化合物;以及还包含下面的至少一种:浓度<3.7ppmw的磷或含磷化合物。
2.根据权利要求1的含氮化硅坩埚,其中磷或含磷化合物的浓度优选为<0.5ppmw。
3.根据权利要求1或2的含氮化硅坩埚,其中硼或含硼化合物的浓度优选为≤1ppmw。
4.氮化硅组合物用于制备结晶硅用坩埚的用途,该组合物包括下面的至少一种:浓度<19ppmw的硼(B)或含硼化合物;以及浓度<3.7ppmw的磷(P)或含磷化合物。
5.根据权利要求4的用途,其中硼或含硼化合物的浓度≤1ppmw。
6.根据权利要求4或5的用途,其中磷或含磷化合物的浓度<0.5ppmw。
CN2010800590174A 2009-12-22 2010-12-22 氮化硅基坩埚 Pending CN102725443A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20093584 2009-12-22
NO20093584 2009-12-22
PCT/NO2010/000483 WO2011078693A1 (en) 2009-12-22 2010-12-22 Silicon nitride based crucible

Publications (1)

Publication Number Publication Date
CN102725443A true CN102725443A (zh) 2012-10-10

Family

ID=43589903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800590174A Pending CN102725443A (zh) 2009-12-22 2010-12-22 氮化硅基坩埚

Country Status (7)

Country Link
US (1) US20120275983A1 (zh)
EP (1) EP2516699A1 (zh)
JP (1) JP2013514964A (zh)
KR (1) KR20120107477A (zh)
CN (1) CN102725443A (zh)
SG (1) SG181418A1 (zh)
WO (1) WO2011078693A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162199A (ja) * 1982-12-23 1984-09-13 テキサス・インスツルメンツ・インコ−ポレイテツド 窒化シリコンを用いる結晶成長方法及びそれに使用する部品の製造方法
NO317080B1 (no) * 2002-08-15 2004-08-02 Crusin As Silisiumnitriddigler som er bestandige mot silisiumsmelter og fremgangsmate for fremstilling av slike digler
US20040211496A1 (en) * 2003-04-25 2004-10-28 Crystal Systems, Inc. Reusable crucible for silicon ingot growth

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E. OLSEN ET AL.: "Silicon Nitride Coating and Crucible-Effects of Using Upgraded Materials in the Casting of Multicrystalline Silicon Ingots", 《PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS》 *

Also Published As

Publication number Publication date
KR20120107477A (ko) 2012-10-02
JP2013514964A (ja) 2013-05-02
WO2011078693A1 (en) 2011-06-30
US20120275983A1 (en) 2012-11-01
SG181418A1 (en) 2012-07-30
EP2516699A1 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
CA2700757C (en) Polycrystalline silicon and method for the production thereof
US9487405B2 (en) Method for manufacturing SiC powders with high purity
Patil et al. Preparation of silica powder from rice husk
US9382121B2 (en) Silicon carbide powder and method for producing same
CA2749635C (en) Process for production of polycrystalline silicon
JP2009541194A (ja) 再利用可能な坩堝及びその製造方法
EP0015422B1 (en) Method for producing powder of alpha-silicon nitride
US20080314446A1 (en) Processes for the preparation of solar-grade silicon and photovoltaic cells
CN108315813A (zh) 一种多晶硅铸锭的制备方法
CN102725443A (zh) 氮化硅基坩埚
US20080314445A1 (en) Method for the preparation of high purity silicon
JP6297812B2 (ja) 炭化珪素の製造方法
KR20130086305A (ko) 다결정 실리콘의 표면 오염도의 판정 방법
TWI523827B (zh) 坩堝
KR20100115993A (ko) 고순도 베타상 탄화규소 미세 분말의 저온 제조 방법
US5585084A (en) Silicon nitride powder
CN102452837B (zh) 用于太阳能级多晶硅制备中的炉外精炼用坩埚及其制法
CN112110731A (zh) Sc2SC层状材料及其制备方法
CN110790245A (zh) 一种热爆合成-重力分选制备氧氮化硅纳米粉体的方法
JP3997596B2 (ja) 窒化ケイ素粉末
US20020071803A1 (en) Method of producing silicon carbide power
Mukashev et al. Study of silicon production processes and development of solar-cell fabrication technologies
US20180245237A1 (en) Method of production of langatate-based single crystal and langatate-based single crystal
PRAHU et al. Characterization and nitridation behaviors of silicon sawdust generated in the photovoltaic industry
Rustioni et al. Solar silicon from directional solidification of MG silicon produced via the silicon carbide route

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121010