CN102721636B - 一种基于尺度模型确定裂缝性低渗储层应力敏感性的方法 - Google Patents

一种基于尺度模型确定裂缝性低渗储层应力敏感性的方法 Download PDF

Info

Publication number
CN102721636B
CN102721636B CN201210213535.8A CN201210213535A CN102721636B CN 102721636 B CN102721636 B CN 102721636B CN 201210213535 A CN201210213535 A CN 201210213535A CN 102721636 B CN102721636 B CN 102721636B
Authority
CN
China
Prior art keywords
stress
reservoir
fractured
rock core
scale model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210213535.8A
Other languages
English (en)
Other versions
CN102721636A (zh
Inventor
赵海峰
张伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN201210213535.8A priority Critical patent/CN102721636B/zh
Publication of CN102721636A publication Critical patent/CN102721636A/zh
Application granted granted Critical
Publication of CN102721636B publication Critical patent/CN102721636B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明采用岩石力学分析方法及介质串并联模型,得到裂缝性致密储层应力敏感性的尺度模型。尺度模型中考虑岩心尺寸、井下流动尺寸、裂缝密度、裂缝产状、地应力等因素。对孔隙型岩心和裂缝性岩心分别进行应力敏感实验,尺度模型给出由小尺寸孔隙型岩心和裂缝性岩心的应力敏感实验规律推导实际储层大范围流动规律的方法。本方法同时还指出应力敏感模型中的有效应力不能简单等于储层有效应力(上覆压力-孔隙压力),而应取为裂缝面法向有效应力。可以将本发明中得出的应力敏感尺度模型应用于产能预测,研究裂缝性致密储层水平井、多分支水平井及分段压裂水平井产能计算的新方法。

Description

一种基于尺度模型确定裂缝性低渗储层应力敏感性的方法
技术领域
本发明是关于一种裂缝性低渗储层应力敏感性确定的方法,以预测应力变化、裂缝密度、裂缝产状等因素对裂缝性低渗储层渗透率的影响,从而为致密低渗裂缝性储层的产能预测提供技术指导。
背景技术
我国低渗透油气资源十分丰富,到2009年为止,陆上已开发地质储量中低渗透油气储量占27.5%,在已探明未动用储量中低渗透储量占70.8%。随着对石油需求的日益增大,易开采的中、高渗透油田的可采储量逐渐下降,低渗透油田,包括致密性油田对油气产量的贡献将越来越大。
裂缝性致密储层存在非均质性、应力敏感性及各向异性,而应力敏感性评价实验的岩心尺寸(通常为25mm)受取心条件及实验条件限制,不可能无限放大,因此实验测试的流动尺度远远小于井下实际流动尺度,导致实验数据不能直接描述实际储层流动规律。本发明采用岩石力学分析方法及介质串并联模型,得到裂缝性致密储层应力敏感性的尺度模型。尺度模型中考虑岩心尺寸、井下流动尺寸、裂缝密度、裂缝产状、地应力等因素。对孔隙型岩心和裂缝性岩心分别进行应力敏感实验,尺度模型给出由小尺寸孔隙型岩心和裂缝性岩心的应力敏感实验规律推导实际储层大范围流动规律的方法。并且指出应力敏感模型中的有效应力不能简单等于储层有效应力(上覆压力-孔隙压力),而应取为裂缝面法向有效应力。
发明内容
本发明的目的是基于尺度模型给出由小尺寸孔隙型岩心和裂缝性岩心的应力敏感实验规律推导实际储层大范围流动规律的方法。该方法指出对裂缝性低渗储层需对孔隙型岩心和裂缝性岩心分别进行应力敏感实验,并给出了由小尺寸孔隙型岩心和裂缝性岩心的应力敏感实验规律推导实际储层大范围流动规律的方法,得到渗透率与裂缝密度近似成线性关系。该方法还指出应力敏感模型中的有效应力不能简单等于储层有效应力(上覆压力-孔隙压力),而应取为裂缝面法向有效应力。
本发明目的是这样实现的:储层中发育一组倾角为β的天然裂缝,裂缝走向与最大地应力方向夹角为θ,天然裂缝的密度为n条/米,假定非均质性仅由裂缝造成,应力敏感实验结果与取心方向与位置相关,如图1所示。
对于岩心2、3,取心方向均平行裂缝面,岩心3包含裂缝,岩心2不包含裂缝,其应力敏感规律不同。对岩心3、4,取心均包含天然裂缝,但取心方向不同其应力敏感规律也将不同。只有对岩心1、2,取心均不含天然裂缝,岩心是均质的,其应力敏感规律相同。以天然裂缝延伸方向为x,垂直裂缝方向为y,建立坐标系研究储层水平面内的渗透率。
沿x方向的取心包括岩心2、3两类,其应力敏感性可用幂函数表示:
k 2 = a 2 ( σ eff ) - b 2 , k 3 = a 3 ( σ eff ) - b 3 - - - ( 1 )
考虑实际流动范围的尺寸l>>Φ(岩心直径),实际储层可视为由宽度Φ的k3介质与宽度1000/n的k2介质并联,得
k x = Φn k 3 + ( 1000 - Φn ) k 2 1000 - - - ( 2 )
沿y方向的取心包括岩心1、4两类,由于取心方向与裂缝垂直,裂缝对渗透率无贡献:
ky=k2    (3)
任意流动方向N的渗透率应力敏感性可用渗透率张量表示为:
k N = N · k x 0 0 k y · N - - - ( 4 )
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中,
图1:取芯方向与位置俯视图
图2:孔隙型岩心应力敏感实验结果
图3:裂缝型岩心应力敏感实验结果
图4:渗透率与天然裂缝密度的关系(有效应力取30MPa)
图5:渗透率与有效应力的关系(裂缝密度28条/m)
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现举例说明本发明的具体实施方式。
1.分别确定孔隙型岩心和裂缝型岩心有效应力与渗透率间的关系,例如选取鄂尔多斯盆地盒8、山2及太原组三储层的低渗致密砂岩为分析实例对象,根据井深和压力梯度选择测量用的净应力值。我们选择的净应力值为2、4、6、10、15、20、30、40共8个点,测定不同净应力下岩心的渗透率值,如图2、3所示,则渗透率与有效应力的关系可用幂函数表示为:
k2=1.54(σe)-0.5925,k3=233.3(σe)-0.7445    (5)
2.确定裂缝面法向有效应力。例如测试岩心Φ=25mm,地层深度2500米,岩石密度2.4,上覆压力60MPa,地层压力22MPa,水平地应力45MPa,天然裂缝密度每口井变化较大,优势发育的天然裂缝倾角45°。按以往解释方法,储层岩石有效应力为60-22=38MPa。本发明解释方法:裂缝面法向有效应力为60*cos2(45°)+45*sin2(45°)-22=30MPa。
3.确定渗透率与天然裂缝密度的关系及渗透率与有效应力的关系。应用式(5)及(2),计算得到渗透率与天然裂缝密度的关系及渗透率与有效应力的关系,如图4、5所示。

Claims (1)

1.一种基于尺度模型确定裂缝性低渗储层应力敏感性的方法,其特征是:沿着平行天然裂缝方向,将储层视为由宽度为Φ的裂缝型岩心(3)与宽度为1000/n的孔隙型岩心(2)并联,其中Φ为单个岩心直径,n为天然裂缝密度;对孔隙型岩心(2)和裂缝型岩心(3)分别进行应力敏感实验,得到各自应力敏感规律的幂函数
k 2 = a 2 ( σ eff ) - b 2 , k 3 = a 3 ( σ eff ) - b 3 - - - ( 1 )
x方向储层渗透率kx可通过裂缝型岩心(3)的渗透率k3及孔隙型岩心(2)的渗透率k2表示为
k x = Φ nk 3 + ( 1000 - Φn ) k 2 1000 - - - ( 2 )
y方向应力敏感规律由孔隙型岩心(2)实验结果给出
ky=k2       (3)
任意流动方向N的渗透率应力敏感性可用 k N = N · k x 0 0 k y · N 计算。
CN201210213535.8A 2012-06-27 2012-06-27 一种基于尺度模型确定裂缝性低渗储层应力敏感性的方法 Expired - Fee Related CN102721636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210213535.8A CN102721636B (zh) 2012-06-27 2012-06-27 一种基于尺度模型确定裂缝性低渗储层应力敏感性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210213535.8A CN102721636B (zh) 2012-06-27 2012-06-27 一种基于尺度模型确定裂缝性低渗储层应力敏感性的方法

Publications (2)

Publication Number Publication Date
CN102721636A CN102721636A (zh) 2012-10-10
CN102721636B true CN102721636B (zh) 2015-02-18

Family

ID=46947460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210213535.8A Expired - Fee Related CN102721636B (zh) 2012-06-27 2012-06-27 一种基于尺度模型确定裂缝性低渗储层应力敏感性的方法

Country Status (1)

Country Link
CN (1) CN102721636B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106295095A (zh) * 2015-05-15 2017-01-04 中国石油化工股份有限公司 基于常规测井资料预测低渗透砂岩储层产能的新方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105184034B (zh) * 2014-06-23 2016-08-31 中国石油化工股份有限公司 一种校正页岩储层覆压物性的方法
CN105370267B (zh) * 2014-08-29 2018-07-10 中国石油天然气股份有限公司 一种分析致密砂岩弹性系数应力敏感性的方法及装置
CN107132170B (zh) * 2017-04-10 2019-09-06 中国石油天然气股份有限公司 一种储层应力敏感性的确定方法和装置
CN107220493B (zh) * 2017-05-24 2020-04-17 王欣 基于微地震事件的页岩气水平井网络裂缝建模方法
CN112525795B (zh) * 2020-11-20 2023-03-28 中国电建集团华东勘测设计研究院有限公司 一种结构裂缝处土体渗蚀试验装置
CN112780246A (zh) * 2021-02-28 2021-05-11 西南石油大学 一种增强并保持致密砂岩储层裂缝导流能力的有机酸液处理方法
CN113670793B (zh) * 2021-08-27 2023-05-16 中国石油大学(华东) 一种水力裂缝渗透率实时监测装置和方法
CN115405286A (zh) * 2022-08-16 2022-11-29 中国石油大学(华东) 一种各向异性储层应力敏感性测量装置及测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462872A (zh) * 2002-05-30 2003-12-24 大庆油田有限责任公司 大直径岩石气体渗透率测试标定方法
CN201032480Y (zh) * 2007-01-12 2008-03-05 中国石油大学(北京) 各向异性渗透率的测试装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462872A (zh) * 2002-05-30 2003-12-24 大庆油田有限责任公司 大直径岩石气体渗透率测试标定方法
CN201032480Y (zh) * 2007-01-12 2008-03-05 中国石油大学(北京) 各向异性渗透率的测试装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
低渗透气藏应力敏感性分析及对开采的影响;张李 等;《特种油气藏》;20070630;第14卷(第3期);55-58 *
国家经济贸易委员会.压力敏感性评价实验.《SY/T 5358-2002 储层敏感性流动实验评价方法》.2002,9-10. *
特低渗储层应力敏感性实验研究;李转红 等;《中外能源》;20100630;第15卷(第6期);41-44 *
苏里格气田压力敏感性分析及对气井动态影响研究;何亚宁 等;《石油工业技术监督》;20120131;1-5 *
高艳霞.川西致密储层岩石力学特性及裂缝应力敏感性研究.《中国优秀硕士学位论文全文数据库(电子期刊)基础科学辑》.2008,(第09期),A011-55. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106295095A (zh) * 2015-05-15 2017-01-04 中国石油化工股份有限公司 基于常规测井资料预测低渗透砂岩储层产能的新方法
CN106295095B (zh) * 2015-05-15 2018-11-30 中国石油化工股份有限公司 基于常规测井资料预测低渗透砂岩储层产能的方法

Also Published As

Publication number Publication date
CN102721636A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
CN102721636B (zh) 一种基于尺度模型确定裂缝性低渗储层应力敏感性的方法
Xiao et al. A new methodology of constructing pseudo capillary pressure (Pc) curves from nuclear magnetic resonance (NMR) logs
Lianbo et al. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China
Zhang et al. Pressure–dependent fracture permeability of marine shales in the Northeast Yunnan area, Southern China
Close et al. Integrated workflows for shale gas and case study results for the Horn River Basin, British Columbia, Canada
CN101894189B (zh) 煤层底板突水评价的新方法
Yin et al. In situ stress field evaluation of deep marine tight sandstone oil reservoir: A case study of Silurian strata in northern Tazhong area, Tarim Basin, NW China
Al-Dhafeeri et al. Characteristics of high-permeability zones using core analysis, and production logging data
Qiao et al. Determination of Biot's effective-stress coefficient for permeability of Nikanassin sandstone
CN102852516A (zh) 用于油气藏开发的全缝长三维压裂数值模拟的方法和装置
CN102220865B (zh) 一种检测灰岩地层孔隙压力的方法
CN103256046A (zh) 非常规油气藏水平井全缝长压裂参数模拟的方法及装置
Ju et al. Variation of in situ stress regime in coal reservoirs, eastern Yunnan region, South China: Implications for coalbed methane production
Tian Experimental study on stress sensitivity of naturally fractured reservoirs
Chang et al. Hydraulic fracturing in situ stress estimations in a potential geothermal site, Seokmo Island, South Korea
Fan et al. Prediction of the horizontal stress of the tight sandstone formation in eastern Sulige of China
Yaghoubi et al. Determination of magnitude and orientation of the in-situ stress from borehole breakout and effect of pore pressure on borehole stability—Case study in Cheshmeh Khush oil field of Iran
CN106295119A (zh) 一种页岩气地层地应力计算方法
Kuchuk et al. Determination of in situ two-phase flow properties through downhole fluid movement monitoring
Kabir et al. Reservoir characterisation of Surat Basin coal seams using drill stem tests
Li et al. In situ estimation of relative permeability from resistivity measurements
CN104749642B (zh) 一种判断隧道围岩类别的方法
Shchipanov et al. A new approach to deformable fractured reservoir characterization: case study of the Ekofisk field
Crawford et al. Incorporating universal scaling of fracture stiffness and surface roughness effects for improved productivity prediction in naturally fractured reservoirs
Cai et al. Investigation of geomechanical response of fault in carbonate reservoir and its application to well placement optimization in YM2 Oilfield in Tarim Basin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150218

Termination date: 20150627

EXPY Termination of patent right or utility model