CN102709795A - Helium-neon gas laser with built-in cavity - Google Patents
Helium-neon gas laser with built-in cavity Download PDFInfo
- Publication number
- CN102709795A CN102709795A CN2012101947512A CN201210194751A CN102709795A CN 102709795 A CN102709795 A CN 102709795A CN 2012101947512 A CN2012101947512 A CN 2012101947512A CN 201210194751 A CN201210194751 A CN 201210194751A CN 102709795 A CN102709795 A CN 102709795A
- Authority
- CN
- China
- Prior art keywords
- concave
- mirror
- kovar
- glass tube
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Lasers (AREA)
Abstract
本发明涉及一种内置腔氦氖激光器,其特征在于:它包括玻璃管外壳和两采用可伐金属材料制作的凹形连接件,凹形可伐连接件包括支撑结构和定位结构,定位结构端部设置凹形连接块;玻璃管外壳内设置阴极筒,阴极筒外壁与玻璃管外壳内壁贴合,阴极筒通过钨杆穿出玻璃管外壳连接高压电源负极,玻璃管外壳的两端分别通过连接管与凹形连接块烧结成一体,玻璃管外壳内还设置有毛细管,毛细管的两端分别插设在两定位结构中;一凹形可伐连接件从内到外依次设置全反射镜、弹簧和窗片,且此凹形可伐连接件连接高压电源的正极;另一凹形可伐连接件从内到外依次设置输出镜、弹簧和窗片,每一窗片与每一凹形可伐连接件的端部固定后通过挤压两弹簧分别使全反射镜和输出镜紧贴在毛细管两端面。本发明可以广泛应用于氦氖激光器的制造中。
The invention relates to a helium-neon laser with a built-in cavity, which is characterized in that it includes a glass tube shell and two concave connectors made of Kovar metal materials, the concave Kovar connectors include a supporting structure and a positioning structure, and the positioning structure ends A concave connection block is set at the bottom; a cathode cylinder is arranged inside the glass tube shell, and the outer wall of the cathode cylinder is bonded to the inner wall of the glass tube shell. The tube and the concave connection block are sintered into one body, and a capillary is arranged in the glass tube shell, and the two ends of the capillary are respectively inserted in two positioning structures; a concave kovar connector is provided with a total reflection mirror and a spring in sequence from the inside to the outside. And the window, and this concave kovar connector is connected to the positive pole of the high-voltage power supply; the other concave kovar connector is provided with output mirror, spring and window sequentially from the inside to the outside, each window and each concave can After the ends of the connecting piece are fixed, the total reflection mirror and the output mirror are respectively pressed against the two ends of the capillary by squeezing the two springs. The invention can be widely used in the manufacture of helium-neon lasers.
Description
技术领域 technical field
本发明涉及一种激光器,特别是关于一种内置腔氦氖激光器。The invention relates to a laser, in particular to a helium-neon laser with a built-in cavity.
背景技术 Background technique
传统氦氖激光器谐振腔结构中的腔镜是通过可伐材料与玻璃外壳高温烧结在一起(可伐材料和玻璃外壳材料膨胀系数相当),高温烧结在一起的不同材料内部一般会产生内应力,当温度发生变化时,这些内应力会被不同程度的放大,此种谐振腔结构存在以下问题:1、氦氖激光器在工作过程中,不同部位产生的热量会有所差别,具体表现为:阴极筒热,阳极处冷;玻璃外壳上面热,下面冷,这种温度梯度使激光器的不同部位产生不同程度的膨胀,导致谐振腔中的两个腔镜不平行,而且不同材料的膨胀系数不同造成谐振腔扭曲和变形,进一步加剧了温度梯度对两个腔镜不平行造成的影响。2、通常情况下,氦氖激光器的出光功率在刚开始工作时会在很大的范围内剧烈波动,当激光器外壳各部位随着时间逐渐达到热平衡时,激光器的出光功率才会比较稳定,波动也才会比较有规律。高温烧结产生的内应力在温度梯度的影响下,使谐振腔的两腔镜的蠕动状态更难预料,严重地影响了激光器的出光功率稳定度。The cavity mirror in the traditional helium-neon laser resonator structure is sintered together with Kovar material and glass shell at high temperature (the expansion coefficient of Kovar material and glass shell material is similar), and different materials sintered together at high temperature generally generate internal stress. When the temperature changes, these internal stresses will be amplified to varying degrees. This kind of resonant cavity structure has the following problems: 1. During the working process of the He-Ne laser, the heat generated by different parts will be different. The specific performance is: the cathode The cylinder is hot and the anode is cold; the top of the glass shell is hot and the bottom is cold. This temperature gradient causes different parts of the laser to expand to different degrees, resulting in the two cavity mirrors in the resonator not being parallel, and the expansion coefficients of different materials are different. The distortion and deformation of the resonant cavity further exacerbate the influence of the temperature gradient on the non-parallel effect of the two cavity mirrors. 2. Under normal circumstances, the output power of the He-Ne laser will fluctuate violently in a large range when it first starts working. When the parts of the laser shell gradually reach thermal equilibrium over time, the output power of the laser will be relatively stable and fluctuate. It will also be more regular. Under the influence of temperature gradient, the internal stress generated by high-temperature sintering makes the creeping state of the two-cavity mirror of the resonator more unpredictable, which seriously affects the stability of the output power of the laser.
发明内容 Contents of the invention
针对上述问题,本发明的目的是提供一种能够有效解决不同材料的膨胀系数不同造成谐振腔的扭曲和变形,且保证谐振腔的两腔镜平行、同时具有很好的出光功率稳定性的内置腔氦氖激光器。In view of the above problems, the object of the present invention is to provide a built-in resonator that can effectively solve the distortion and deformation of the resonant cavity caused by the different expansion coefficients of different materials, and ensure that the two cavity mirrors of the resonant cavity are parallel and have good light output power stability. cavity helium-neon laser.
为实现上述目的,本发明采取以下技术方案:一种内置腔氦氖激光器,其特征在于:它包括一玻璃管外壳和两采用可伐金属材料制作的两端开口的凹形可伐连接件,每一所述凹形可伐连接件包括一支撑结构和一与所述支撑结构一体成型的定位结构,每一所述定位结构端部设置一圈凹形连接块;所述玻璃管外壳内设置一阴极筒,所述阴极筒外壁与所述玻璃管外壳内壁相贴合,所述阴极筒通过一钨杆穿出所述玻璃管外壳连接一高压电源的负极,所述玻璃管外壳的两端分别通过一连接管与两所述定位结构的凹形连接块烧结成一体,所述玻璃管外壳内还设置有一毛细管,所述毛细管的两端分别插设在两凹形可伐连接件的定位结构中;一所述凹形可伐连接件从内到外依次设置一全反射镜、一弹簧和一窗片,且此所述凹形可伐连接件通过一金属线引出连接高压电源的正极;另一所述凹形可伐连接件从内到外依次设置一输出镜、一弹簧和一窗片,每一所述窗片与每一所述凹形可伐连接件的端部固定后通过挤压两弹簧分别使所述全反射镜和输出镜紧贴在所述毛细管两端面。To achieve the above object, the present invention adopts the following technical solutions: a built-in cavity helium-neon laser, characterized in that it includes a glass tube shell and two concave kovar connectors with openings at both ends made of kovar metal material, Each of the concave connectors includes a supporting structure and a positioning structure integrally formed with the supporting structure, and a circle of concave connecting blocks is provided at the end of each positioning structure; A cathode cylinder, the outer wall of the cathode cylinder is attached to the inner wall of the glass tube shell, and the cathode cylinder passes through the glass tube shell through a tungsten rod to connect to the negative electrode of a high-voltage power supply. The two ends of the glass tube shell The two concave connection blocks of the positioning structure are respectively sintered into one body through a connecting tube, and a capillary is also arranged in the outer shell of the glass tube, and the two ends of the capillary are respectively inserted in the positioning positions of the two concave connectors. In the structure: a said concave kovar connector is provided with a total reflection mirror, a spring and a window sequentially from the inside to the outside, and the said concave kovar connector is connected to the positive pole of the high-voltage power supply through a metal wire ; Another said concave kovar connector is provided with an output mirror, a spring and a window in sequence from inside to outside, after each said window is fixed with the end of each said concave kovar connector By squeezing the two springs, the total reflection mirror and the output mirror are respectively attached to the two ends of the capillary.
所述毛细管上设置一阳极放电孔和一阴极放电孔,所述阳极放电孔对准一凹形可伐连接件的定位结构,所述阴极放电孔对准所述阴极筒;所述阳极放电孔和阴极放电孔与高压电源的正、负级之间形成一放电通道。An anode discharge hole and a cathode discharge hole are arranged on the capillary, the anode discharge hole is aligned with the positioning structure of a concave Kovar connector, and the cathode discharge hole is aligned with the cathode cylinder; the anode discharge hole A discharge channel is formed between the cathode discharge hole and the positive and negative poles of the high voltage power supply.
所述毛细管两端面设置为凹面且所述凹面倒角,使所述全反射镜和输出镜与所述毛细管的接触部位为线接触。The two ends of the capillary are concave, and the concave is chamfered, so that the contact parts of the total reflection mirror and the output mirror and the capillary are in line contact.
所述全反射镜和输出镜构成谐振腔,所述谐振腔采用平凹腔。The total reflection mirror and the output mirror form a resonant cavity, and the resonant cavity adopts a flat concave cavity.
所述全反射镜为凹面镜,凹面镀有高反膜,所述输出镜为双折射平面镜,所述双折射平面镜内侧镀有增透膜,外侧镀有高反膜。The total reflection mirror is a concave mirror, and the concave surface is coated with a high-reflection film. The output mirror is a birefringent plane mirror. The inside of the birefringence plane mirror is coated with an anti-reflection film, and the outside is coated with a high-reflection film.
所述全反射镜为平面镜,所述平面镜内侧镀高反膜,所述输出镜为双折射凹面镜,凹面镀增透膜,平面镀高反膜。The total reflection mirror is a plane mirror, the inner side of the plane mirror is coated with a high-reflection film, the output mirror is a birefringent concave mirror, the concave surface is coated with an anti-reflection film, and the plane is coated with a high-reflection film.
所述玻璃管外壳上还设置一排气孔,且所述玻璃管外壳、连接管和凹形可伐连接件的膨胀系数相当。An exhaust hole is also arranged on the glass tube shell, and the expansion coefficients of the glass tube shell, the connecting pipe and the concave kovar connector are equivalent.
本发明由于采取以上技术方案,其具有以下优点:1、本发明包括一玻璃管外壳、两凹形可伐连接件和一毛细管,玻璃管外壳的两端分别通过一连接管与两凹形可伐连接件固定在一起,在每一凹形可伐连接件中依次设置有腔镜(全反射镜或输出镜)、弹簧和窗片,每一窗片与每一凹形可伐连接件的端部固定后通过挤压弹簧分别使全反射镜和输出镜紧贴在毛细管两端面,由于本发明是通过弹簧压紧的方式固定腔镜,因此与现有技术相比使腔镜不再通过高温烧结的方法与玻璃外壳连接在一起,不仅降低了不同膨胀系数的材料在温度变化时对腔镜平行性的不利作用,而且消除了高温封接产生的内应力造成的腔镜蠕动、变形问题。2、本发明的玻璃外壳以及玻璃外壳和凹型可伐连接件之间因烧结而产生的内应力可以被弹簧有效吸收,对“相对独立的谐振腔”几乎不产生影响,因此使激光器的出光功率稳定性提高了接近一个量级,而且使激光器的出光功率的稳定速度得到大幅提高。本发明可以广泛应用于氦氖激光器的制造中。The present invention has the following advantages due to the adoption of the above technical scheme: 1. The present invention comprises a glass tube shell, two concave shaped connectors and a capillary, and the two ends of the glass tube shell pass through a connecting tube and two concave shaped connectors respectively. The connecting parts are fixed together, and the cavity mirror (total reflection mirror or output mirror), spring and window are arranged in sequence in each concave kovar connecting part, and each window and each concave kovar connecting part After the end is fixed, the total reflection mirror and the output mirror are respectively attached to the two ends of the capillary by squeezing the spring. Since the present invention fixes the cavity mirror by means of spring compression, compared with the prior art, the cavity mirror no longer passes through the capillary. The method of high-temperature sintering is connected with the glass shell, which not only reduces the adverse effects of materials with different expansion coefficients on the parallelism of the cavity mirror when the temperature changes, but also eliminates the problems of creep and deformation of the cavity mirror caused by internal stress generated by high-temperature sealing . 2. The glass shell of the present invention and the internal stress generated by sintering between the glass shell and the concave Kovar connector can be effectively absorbed by the spring, which has almost no impact on the "relatively independent resonant cavity", so that the output power of the laser The stability is improved by nearly an order of magnitude, and the stabilization speed of the light output power of the laser is greatly improved. The invention can be widely used in the manufacture of helium-neon lasers.
附图说明 Description of drawings
图1是本发明激光器的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the laser of the present invention;
图2是本发明玻璃管外壳与阴极筒安装状态示意图;Fig. 2 is a schematic diagram of the installation state of the glass tube shell and the cathode cylinder of the present invention;
图3是本发明玻璃管外壳与两端凹形可伐连接件的安装状态示意图;Fig. 3 is a schematic diagram of the installation state of the glass tube shell and the concave kovar connectors at both ends of the present invention;
图4是本发明输出镜和弹簧封入凹形可伐连接件的安装状态示意图;Fig. 4 is a schematic diagram of the installation state of the output mirror and the spring-enclosed concave Kovar connector of the present invention;
图5是本发明毛细管的安装状态示意图;Fig. 5 is a schematic diagram of the installation state of the capillary of the present invention;
图6是本发明全反射镜和弹簧封入凹形可伐连接件的安装状态示意图。Fig. 6 is a schematic diagram of the installation state of the total reflection mirror and the spring-enclosed concave kovar connector of the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明进行详细的描述。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
如图1所示,本发明包括一采用钨族玻璃制作的玻璃管外壳1和两采用可伐金属材料制作的具有两端开口的凹形可伐连接件2,每一凹形可伐连接件2包括一支撑结构21和一与支撑结构21一体成型的定位结构22,每一定位结构22的端部外侧设置有一圈凹形连接块23。玻璃管外壳1内设置一阴极筒3,阴极筒3的外壁与玻璃管外壳1的内壁相贴合,阴极筒3通过一钨杆4穿出玻璃管外壳1与氦氖激光器的高压电源的负极连接,为了限制阴极筒3在玻璃管外壳1内轴向移动,钨杆4与玻璃管外壳1的连接处烧结成一体。玻璃管外壳1的两端分别向内收缩为喇叭状且分别固定连接一连接管5。每一连接管5的外端部与凹形连接块23射频高温封接,使每一凹形可伐连接件2与玻璃管外壳1固定连接成一体。玻璃管外壳1内设置有一细长的毛细管6,毛细管6的两端分别插设在两凹形可伐连接件2的定位结构22中,其中一侧的凹形可伐连接件2的支撑结构21从内到外依次设置有一全反射镜7、一弹簧8和一窗片9,另一侧的凹形可伐连接件2的支撑结构从内到外依次设置有一输出镜10、一弹簧11和一窗片12,每一窗片与每一凹形可伐连接件的端部固定后通过挤压弹簧分别使全反射镜7和输出镜10紧贴在毛细管6两端面上。As shown in Figure 1, the present invention includes a
上述实施例中,毛细管6采用玻璃制作而成,毛细管6上设置一阳极放电孔61和一阴极放电孔(图中未示出),阳极放电孔6对准左侧凹形可伐连接件2的定位结构22,将凹形可伐连接件2通过金属线62引出连接氦氖激光器高压电源的正极,阴极放电孔对准阴极筒3,阳极放电孔和阴极放电孔的孔径略大于毛细管6的内径,其作用就是使毛细管与高压电源的正、负极之间形成放电通道,而且还使毛细管6内的气体与储气室联通,以保持放电区气体的压力。In the above-mentioned embodiment, the
上述各实施例中,全反射镜7和输出镜10构成谐振腔,谐振腔可以采用平凹腔,即全反射镜7为凹面镜,凹面镀有高反膜,输出镜10为双折射平面镜,内侧镀有增透膜,外侧镀有高反膜;或者全反射镜7为平面镜,平面镜内侧镀高反膜,输出镜10为双折射凹面镜,凹面(内侧)镀增透膜,平面(外侧)镀高反膜。In each of the above-mentioned embodiments, the
上述各实施例中,阴极筒3可以采用铝材料制作而成,阴极筒3的直径略小于玻璃管外壳1的直径。In the above-mentioned embodiments, the
上述各实施例中,毛细管6与全反射镜7和输出镜10的接触部位采用线接触,可以通过将毛细管6的两端面磨出凹面并将凹面倒角,目的是尽量减少毛细管6与全反射镜7和输出镜10的接触面积,防止热透镜效应。In above-mentioned each embodiment, the contact position of capillary 6 and
上述各实施例中,玻璃管外壳1上还设置有一排气孔13,用于向玻璃管外壳1内充、放气体,且玻璃管外壳1、连接管5和凹形可伐连接件2的膨胀系数相当。In each of the above-mentioned embodiments, the
如图2~6所示,本发明的内置腔氦氖激光器封装过程如下:As shown in Figures 2 to 6, the packaging process of the built-in cavity He-Ne laser of the present invention is as follows:
1、将阴极筒3的一端焊接固定一钨杆4后插入玻璃管外壳1内,通过“烧珠”将钨杆4的一端穿出玻璃管外壳1与氦氖激光器的高压电源负极连接(如图2所示)。1. Weld and fix one end of the
2、将玻璃管外壳1两端通过火焰烧烤软化收缩为喇叭状,且将两连接管5分别烧结在玻璃管外壳1的两端。2. The two ends of the
3、两连接管5分别与两凹形可伐连接件2的每一定位结构22的凹型连接块23通过射频高温封接成一体,从而使两凹形可伐连接件2分别与玻璃外壳1连接成一体(如图3所示)。3. The two connecting
4、将输出镜10和弹簧11依次放置在右侧凹形可伐连接件2的支撑结构21中,并将窗片12粘贴固定在凹形可伐连接件2的端部(如图4所示)。4. Place the
5、将毛细管6通过左侧凹形可伐连接件2插入到右侧凹形可伐连接件2的定位结构22中,并将毛细管6的阴极放电孔对准阴极筒3,且将毛细管6的阳极放电孔61正对左侧凹形可伐连接件2的定位结构22(如图5所示)。5. Insert the
6、将全反射镜7和弹簧8依次放入左侧的凹形可伐连接件2的支撑结构21中,并将窗片9粘贴固定在凹形可伐连接件2的端部,两个窗片9、12通过挤压两个弹簧8、11将全反射镜7和输出镜10分别与毛细管6的端面贴紧,且将左侧的凹形可伐连接件2通过金属线62引出连接氦氖激光器高压电源的正极(如图6所示)。6. Put the
上述各实施例仅用于说明本发明,其中各部件的结构和连接方式等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。Above-mentioned each embodiment is only for illustrating the present invention, and wherein the structure of each component and connection mode etc. all can be changed to some extent, every equivalent conversion and improvement carried out on the basis of the technical solution of the present invention, all should not be excluded from the present invention. outside the scope of protection of the invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210194751 CN102709795B (en) | 2012-06-13 | 2012-06-13 | Helium-neon gas laser with built-in cavity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210194751 CN102709795B (en) | 2012-06-13 | 2012-06-13 | Helium-neon gas laser with built-in cavity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102709795A true CN102709795A (en) | 2012-10-03 |
CN102709795B CN102709795B (en) | 2013-06-12 |
Family
ID=46902414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210194751 Expired - Fee Related CN102709795B (en) | 2012-06-13 | 2012-06-13 | Helium-neon gas laser with built-in cavity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102709795B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868348A (en) * | 2015-05-11 | 2015-08-26 | 北京镭海激光科技有限公司 | Carbon dioxide laser tube with new structure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4429399A (en) * | 1981-03-03 | 1984-01-31 | Tokyo Shibaura Denki Kabushiki Kaisha | Gas laser tube |
US5127018A (en) * | 1989-08-08 | 1992-06-30 | Nec Corporation | Helium-neon laser tube with multilayer dielectric coating mirrors |
CN1085015A (en) * | 1993-08-23 | 1994-04-06 | 东南大学 | 1.3 μ m helium neon laser |
CN102294080A (en) * | 2011-09-30 | 2011-12-28 | 南京乐翔科技发展有限公司 | Helium-neon laser treatment device and manufacturing method thereof |
CN102340091A (en) * | 2011-09-30 | 2012-02-01 | 南京乐翔科技发展有限公司 | He-Ne laser tube with flat inner cavity and manufacturing method thereof |
-
2012
- 2012-06-13 CN CN 201210194751 patent/CN102709795B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4429399A (en) * | 1981-03-03 | 1984-01-31 | Tokyo Shibaura Denki Kabushiki Kaisha | Gas laser tube |
US5127018A (en) * | 1989-08-08 | 1992-06-30 | Nec Corporation | Helium-neon laser tube with multilayer dielectric coating mirrors |
CN1085015A (en) * | 1993-08-23 | 1994-04-06 | 东南大学 | 1.3 μ m helium neon laser |
CN102294080A (en) * | 2011-09-30 | 2011-12-28 | 南京乐翔科技发展有限公司 | Helium-neon laser treatment device and manufacturing method thereof |
CN102340091A (en) * | 2011-09-30 | 2012-02-01 | 南京乐翔科技发展有限公司 | He-Ne laser tube with flat inner cavity and manufacturing method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868348A (en) * | 2015-05-11 | 2015-08-26 | 北京镭海激光科技有限公司 | Carbon dioxide laser tube with new structure |
Also Published As
Publication number | Publication date |
---|---|
CN102709795B (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN206922187U (en) | A kind of micro temperature control device of temperature-compensating frequency-doubling crystal | |
CN102709795B (en) | Helium-neon gas laser with built-in cavity | |
JP2002062586A (en) | Short arc discharge lamp with reflector | |
CN204668710U (en) | A kind of CO 2 laser tube of new construction | |
CN104868348A (en) | Carbon dioxide laser tube with new structure | |
CN207651791U (en) | A kind of high pressure activation carbon dioxide sealed type laser | |
CN203135198U (en) | Full-glass structure double-core carbon dioxide laser tube | |
CN202434884U (en) | Resonant cavity adjustable carbon dioxide laser tube | |
CN102340091B (en) | He-Ne laser tube with flat inner cavity and manufacturing method thereof | |
CN206250561U (en) | Laser tube high pressure end cap | |
CN101882559B (en) | Ceramic electric arc tube with isothermal structure | |
CN100438233C (en) | Sealed RF Excited CO2 Waveguide Laser | |
CN2371700Y (en) | He-Ne laser tube | |
CN106549293A (en) | A kind of negative branch confocal unstable resonator and its application in high energy gas laser | |
CN205752099U (en) | A kind of high-power Xe lamp bulb | |
CN100559547C (en) | Ceramic metal halide lamp with a power of less than 15 watts and its manufacturing method | |
CN104051222B (en) | Annular-section cavity discharge pulse xenon lamp and manufacturing method thereof | |
CN215898040U (en) | Heat conduction metal tube structure of PTC heating tube | |
CN203967500U (en) | A kind of radiator with radiating fin for carbon dioxide laser output eyeglass | |
CN103715594A (en) | SESAM with adaptive mode field | |
CN203300947U (en) | Carbon dioxide laser with oil liquid cooling sleeve | |
CN204680892U (en) | A kind of he-ne laser tube | |
CN102761050A (en) | Helium-neon laser based on metal bellows | |
CN211372380U (en) | Sealing device of superheater | |
CN104950395B (en) | A kind of optical fiber end face reflector method for packing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130612 Termination date: 20190613 |