CN102705107A - Solid chemical micro-thruster - Google Patents
Solid chemical micro-thruster Download PDFInfo
- Publication number
- CN102705107A CN102705107A CN2012101401382A CN201210140138A CN102705107A CN 102705107 A CN102705107 A CN 102705107A CN 2012101401382 A CN2012101401382 A CN 2012101401382A CN 201210140138 A CN201210140138 A CN 201210140138A CN 102705107 A CN102705107 A CN 102705107A
- Authority
- CN
- China
- Prior art keywords
- ignition
- wire
- igniter
- combustion chamber
- micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007787 solid Substances 0.000 title claims abstract description 7
- 239000000126 substance Substances 0.000 title claims abstract description 7
- 239000011521 glass Substances 0.000 claims abstract description 25
- 238000002485 combustion reaction Methods 0.000 claims abstract description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 18
- 239000010703 silicon Substances 0.000 claims abstract description 18
- HJELPJZFDFLHEY-UHFFFAOYSA-N silicide(1-) Chemical compound [Si-] HJELPJZFDFLHEY-UHFFFAOYSA-N 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 7
- 238000013461 design Methods 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000003380 propellant Substances 0.000 abstract description 2
- 239000000446 fuel Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 108091092878 Microsatellite Proteins 0.000 description 2
- 238000000708 deep reactive-ion etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002121 Hydroxyl-terminated polybutadiene Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Landscapes
- Micromachines (AREA)
Abstract
本发明公开了一种微型固体化学推进器,属于微推进技术和微机电系统(MEMS)领域。该采用硅片和耐热玻璃键合形成微型推进器,上层硅片1表面2内凹形成燃烧室4和喷嘴3;燃烧室4和喷嘴3连通处的喉部为曲率半径为R的圆弧;所述下层玻璃片7由耐热玻璃8和其上的点火电路结构组成。本发明的有益效果是:点火槽在硅表面呈直线形式,在相同的点火槽宽度和键合面积下,直线型点火槽使得硅玻键合难度降低;喉部为具有一定曲率半径的圆弧并使之与进气口、出气口的边界相切,减小气体边界层,提高器件的推力;采用多根电阻并联设计形式的点火器增大了与推进剂的接触面积,扩大加热区域,不因一根点火器的熔断致使整个器件功能失效,提高了点火器的可靠性。
The invention discloses a micro solid chemical propeller, which belongs to the field of micro propulsion technology and micro electromechanical system (MEMS). The silicon wafer and heat-resistant glass are bonded to form a micro-propeller, and the surface 2 of the upper silicon wafer 1 is concave to form the combustion chamber 4 and the nozzle 3; the throat at the connection between the combustion chamber 4 and the nozzle 3 is an arc with a radius of curvature R ; The lower glass sheet 7 is made up of heat-resistant glass 8 and the ignition circuit structure thereon. The beneficial effects of the invention are: the ignition groove is in the form of a straight line on the silicon surface, and under the same width and bonding area of the ignition groove, the linear ignition groove reduces the difficulty of silicon-glass bonding; the throat is an arc with a certain radius of curvature And make it tangent to the boundary of the air inlet and the air outlet, reduce the gas boundary layer, and increase the thrust of the device; the igniter adopting the design form of multiple resistors connected in parallel increases the contact area with the propellant, expands the heating area, The fuse of one igniter does not cause the function failure of the whole device, which improves the reliability of the igniter.
Description
所属领域:Field:
本发明涉及了一种微型固体化学推进器,用于微型空间飞行器的位置保持、姿态控制、引力补偿和轨道调整等,属于微推进技术和微机电系统(MEMS)领域。The invention relates to a micro-solid chemical propulsion device, which is used for position maintenance, attitude control, gravitational compensation, orbit adjustment, etc. of a micro-space vehicle, and belongs to the fields of micro-propulsion technology and micro-electromechanical systems (MEMS).
背景技术: Background technique:
推进系统是大多数航天器的关键子系统,主要用于航天器的位置保持、姿态控制、引力补偿和轨道调整等。随着微型航天器,如微卫星、纳卫星、皮卫星技术的不断成熟,若需要微型航天器完成某些特殊任务,如卫星编队飞行,则需要给这些微型航天器配备推进系统。由于传统的推进系统体积和质量都比较大,不能适用于微型航天器,因此迫切需求适合于微型卫星的高可靠性、低功耗、微推力、微冲量的微型推进系统。The propulsion system is a key subsystem of most spacecraft, mainly used for position keeping, attitude control, gravitational compensation and orbit adjustment of the spacecraft. With the continuous maturity of micro-spacecraft, such as micro-satellites, nano-satellites, and pico-satellites, if micro-spacecraft are required to complete certain special tasks, such as satellite formation flight, these micro-spacecraft need to be equipped with propulsion systems. Because the traditional propulsion system is relatively large in size and mass, it cannot be applied to micro-spacecraft. Therefore, there is an urgent need for a micro-propulsion system suitable for micro-satellites with high reliability, low power consumption, micro-thrust, and micro-impulse.
基于MEMS技术的微型推进器在结构上对传统的推进器进行了改进,在工艺上结合了微纳米及微细加工技术,具有易实现小型化、集成化、低功耗等优点,因此成为微推进系统的重要研究方向。在Zhang K L等人报道的“Development of a solidpropellant microthruster with chamber and nozzle etched on a wafer surface”以及“A MEMS-based solid propellant microthruster with Au/Ti igniter”,参见图1和图2,提出一种采用DRIE工艺,利用硅和玻璃键合而成的微型推进器,微型推进器包括硅结构层和玻璃层,硅结构层有喷嘴3、燃烧室4和下导线槽5,上导线槽6;玻璃层上包括点火器9、上点火导线10,下点火导线11,该推进器采用DRIE工艺得到燃烧室4、喷嘴3和导线槽5,采用金属溅射及刻蚀工艺得到点火器9和点火导线10。这种推进器的点火槽在硅表面呈直角形式,在硅表面键合面积一定的情况下,点火槽表面积越大,玻璃和硅表面键合难度越大;喷嘴的喉部与进气口、出气口相交成尖角,导致喷出气体的边界层增大,难以产生更大的推力;而在玻璃板上的点火电阻采用单根的设计形式,单根设计形式的点火器通电后在点火器线宽最窄处发热温度最高,容易产生熔断现象,导致点火器不可逆失效,因此Zhang等人提出的推进器的点火槽结构存在硅玻键合难度大,气体边界层增大而无法增大推力,点火器可靠性低等问题。The micro propeller based on MEMS technology has improved the traditional propeller in structure, combined with micro-nano and micro-processing technology in technology, and has the advantages of easy miniaturization, integration, low power consumption, etc., so it has become a micro propulsion An important research direction of the system. In "Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface" and "A MEMS-based solid propellant microthruster with Au/Ti igniter" reported by Zhang K L et al., see Figure 1 and Figure 2, a proposed Using DRIE technology, the micro-propeller is bonded by silicon and glass. The micro-propeller includes a silicon structure layer and a glass layer. The silicon structure layer has a
发明内容: Invention content:
本发明的目的是:为克服现有微型推进器技术中硅玻键合工艺难度大,气体边界层大而无法增大推力以及点火器可靠性低的缺点,本发明提出一种采用硅片和耐热玻璃通过键合工艺形成微型推进器。The purpose of the present invention is: to overcome the shortcomings of the silicon-glass bonding process in the existing micro-propulsion technology that is difficult, the gas boundary layer is too large to increase the thrust and the reliability of the igniter is low. Heat-resistant glass is bonded to form the micro-propellers.
如图3所示,本发明所采用的技术方案是:微型固体化学推进器,包括键合的上层硅片1和下层玻璃片7;所述上层硅片1表面2内凹形成燃烧室4和喷嘴3;燃烧室4和喷嘴3连通处的喉部为曲率半径为R的圆弧,喉宽r满足:r=R;燃烧室4相对两侧分别有直线形的下导线槽5和上导线槽6;下导线槽5和上导线槽6的深度小于燃烧室4和喷嘴3的深度;所述下层玻璃片7由耐热玻璃8和其上的点火电路结构组成,点火电路结构包括与燃烧室4相应位置处的点火器9,点火器9为多根并联点火器;点火器9两端分别连有位于下导线槽5内的上点火导线10和位于上点火槽6内的下点火导线11;上点火导线10和下点火导线11与上层硅片1相应区域外的上焊盘12和下焊盘13连接;上点火导线10和下点火导线11的厚度小于下点火槽5和上点火槽6的深度,使得上层硅片1与下层玻璃片7上的点火器9、上点火导线10、下点火导线11、上焊盘12和下焊盘13非接触。As shown in Fig. 3, the technical scheme that the present invention adopts is: miniature solid chemical propeller, comprises the upper
工作时,通过上焊盘12、下焊盘13、上点火导线10、下点火导线11给位于燃烧室4内的点火器9通电,点火器9温度升高达到燃烧室4内燃料的点燃温度,燃料点燃,燃烧室4内压强增大,气体通过喷嘴3喷出,产生推进效果。During work, the
本发明的有益效果是:点火槽在硅表面呈直线形式,在相同的点火槽宽度和键合面积下,直线型的点火槽使得硅玻键合难度降低;喉部加工成具有一定曲率半径的圆弧并使之与进气口、出气口的边界相切,减小气体边界层,提高器件的推力;采用多根电阻并联设计形式的点火器增大了与推进剂的接触面积,扩大加热区域,不因一根点火器的熔断致使整个器件功能失效,提高了点火器的可靠性The beneficial effects of the present invention are: the ignition groove is in the form of a straight line on the silicon surface, and under the same width and bonding area of the ignition groove, the linear ignition groove reduces the difficulty of silicon-glass bonding; the throat is processed to have a certain radius of curvature The arc is tangent to the boundary of the air inlet and the air outlet to reduce the gas boundary layer and improve the thrust of the device; the igniter with multiple resistors in parallel design increases the contact area with the propellant and expands the heating area, the entire device will not fail due to the fusing of one igniter, which improves the reliability of the igniter
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
附图说明 Description of drawings
图1是现有技术中MEMS推进器燃烧室和喷嘴结构示意图;Fig. 1 is a structural schematic diagram of a combustion chamber and a nozzle of a MEMS thruster in the prior art;
图2是现有技术中MEMS推进器点火电路结构示意图;Fig. 2 is a structural schematic diagram of the MEMS thruster ignition circuit in the prior art;
图3是本发明中的微型固体化学推进器结构示意图;Fig. 3 is the structural representation of the miniature solid chemical propeller among the present invention;
图4是实施例中的上层硅片结构示意图;Fig. 4 is a schematic diagram of the structure of the upper silicon chip in the embodiment;
图5是实施例中的下层玻璃片结构示意图;Fig. 5 is a schematic structural view of the lower glass sheet in the embodiment;
图6是实施例中的点火器的结构放大示意图;Fig. 6 is the enlarged schematic view of the structure of the igniter in the embodiment;
图中,1-上层硅片,2-表面,3-喷嘴,4-燃烧室,5-下导线槽,6-上导线槽,7-下层玻璃片,8-耐热玻璃,9-点火器,10-上点火导线,11-下点火导线,12-上焊盘,13-下焊盘。In the figure, 1-upper silicon wafer, 2-surface, 3-nozzle, 4-combustion chamber, 5-lower wire groove, 6-upper wire groove, 7-lower glass sheet, 8-heat-resistant glass, 9-igniter , 10-upper ignition wire, 11-lower ignition wire, 12-upper pad, 13-lower pad.
具体实施方式: Detailed ways:
实施例1:Example 1:
参阅图3-6,本实施例中的微型固体化学推进器,包括键合的上层硅片1和下层玻璃片7;所述上层硅片1表面2内凹500μm形成燃烧室4和喷嘴3;燃烧室4和喷嘴3连通处的喉部为曲率半径为500μm的圆弧,喉宽r也为500μm;燃烧室4相对两侧分别有直线形的下导线槽5和上导线槽6;下导线槽5和上导线槽6的深度均为1μm;所述下层玻璃片7由耐热玻璃8和其上的点火电路结构组成,本实施例中耐热玻璃8为Pyrex7740;点火电路结构包括与燃烧室4相应位置处的点火器9,点火器9为两根并联的蛇形折叠状金属铬薄膜电阻,厚度为200nm;点火器9两端分别连有位于下导线槽5内的上点火导线10和位于上导线槽6内的下点火导线11;上点火导线10和下点火导线11与上层硅片1相应区域外的上焊盘12和下焊盘13连接;上点火导线10、下点火导线11、上焊盘12和下焊盘13的材料均为铜;上点火导线10和下点火导线11的厚度为200nm,使得上层硅片1与下层玻璃片7上的点火器9、上点火导线10、下点火导线11、上焊盘12和下焊盘13非接触;Referring to Figures 3-6, the micro solid chemical propeller in this embodiment includes a bonded upper
工作时,通过上焊盘12、下焊盘13、上点火导线10、下点火导线11给位于燃烧室4内的点火器9通电,点火器9温度升高达到燃烧室4内燃料HTPB/AP的点燃温度350°,燃料点燃,燃烧室4内压强增大,气体通过喷嘴3喷出,产生推进效果。During work, the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210140138.2A CN102705107B (en) | 2012-05-06 | 2012-05-06 | Solid chemical micro-thruster |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210140138.2A CN102705107B (en) | 2012-05-06 | 2012-05-06 | Solid chemical micro-thruster |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102705107A true CN102705107A (en) | 2012-10-03 |
CN102705107B CN102705107B (en) | 2014-04-16 |
Family
ID=46898119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210140138.2A Expired - Fee Related CN102705107B (en) | 2012-05-06 | 2012-05-06 | Solid chemical micro-thruster |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102705107B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103511125A (en) * | 2013-06-04 | 2014-01-15 | 西北工业大学 | Resistor top-mounted type micro-thruster and manufacturing method thereof |
CN104401507A (en) * | 2014-10-21 | 2015-03-11 | 上海微小卫星工程中心 | Cold gas micro-thruster |
CN104986357A (en) * | 2015-05-28 | 2015-10-21 | 西北工业大学 | Silicon-based self-sealed miniature thruster and preparation method thereof |
CN105673252A (en) * | 2015-12-17 | 2016-06-15 | 北京航空航天大学 | Nozzle-variable micro solid rocket engine and manufacturing method thereof |
CN106043743A (en) * | 2016-06-03 | 2016-10-26 | 西北工业大学 | Non-gunpowder thermal expansion type miniature propeller and preparation method thereof |
CN106050473A (en) * | 2016-06-03 | 2016-10-26 | 西北工业大学 | Horizontal self-sealing micro-propeller and preparation method thereof |
CN106089491A (en) * | 2016-06-02 | 2016-11-09 | 西北工业大学 | A kind of resistance immersion micro-thruster and preparation method thereof |
CN107740734A (en) * | 2017-09-28 | 2018-02-27 | 江苏大学 | A kind of self energizing igniting propeller based on micro-scale gas flow |
CN107975462A (en) * | 2016-10-21 | 2018-05-01 | 南京理工大学 | Electric heating microthruster |
CN108725847A (en) * | 2018-05-31 | 2018-11-02 | 北京控制工程研究所 | A kind of multichannel solid thruster antenna array control drive system and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0994325A2 (en) * | 1998-10-16 | 2000-04-19 | TRW Inc. | Micro-electromechanical nozzle propulsion system |
US20020023427A1 (en) * | 2000-03-27 | 2002-02-28 | Mojarradi Mohammad M. | Micro-colloid thruster system |
JP2003148248A (en) * | 2001-11-15 | 2003-05-21 | Masaki Esashi | Rocket array thruster for microsatellite |
CN102434316A (en) * | 2011-10-09 | 2012-05-02 | 北京理工大学 | Bipropellant micro chemical propulsion array device |
-
2012
- 2012-05-06 CN CN201210140138.2A patent/CN102705107B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0994325A2 (en) * | 1998-10-16 | 2000-04-19 | TRW Inc. | Micro-electromechanical nozzle propulsion system |
US20020023427A1 (en) * | 2000-03-27 | 2002-02-28 | Mojarradi Mohammad M. | Micro-colloid thruster system |
JP2003148248A (en) * | 2001-11-15 | 2003-05-21 | Masaki Esashi | Rocket array thruster for microsatellite |
CN102434316A (en) * | 2011-10-09 | 2012-05-02 | 北京理工大学 | Bipropellant micro chemical propulsion array device |
Non-Patent Citations (2)
Title |
---|
ZHANG K.L. ECT.: "A MEMS-based solid propellant microthruster with Au/Ti igiter", 《SCIENCE DIRECT》 * |
周海清等: "固体微推力器设计与数值分析", 《推进技术》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103511125A (en) * | 2013-06-04 | 2014-01-15 | 西北工业大学 | Resistor top-mounted type micro-thruster and manufacturing method thereof |
CN103511125B (en) * | 2013-06-04 | 2015-10-07 | 西北工业大学 | Resistance top set type micro-thruster and preparation method thereof |
CN104401507A (en) * | 2014-10-21 | 2015-03-11 | 上海微小卫星工程中心 | Cold gas micro-thruster |
CN104986357A (en) * | 2015-05-28 | 2015-10-21 | 西北工业大学 | Silicon-based self-sealed miniature thruster and preparation method thereof |
CN105673252A (en) * | 2015-12-17 | 2016-06-15 | 北京航空航天大学 | Nozzle-variable micro solid rocket engine and manufacturing method thereof |
CN106089491A (en) * | 2016-06-02 | 2016-11-09 | 西北工业大学 | A kind of resistance immersion micro-thruster and preparation method thereof |
CN106043743A (en) * | 2016-06-03 | 2016-10-26 | 西北工业大学 | Non-gunpowder thermal expansion type miniature propeller and preparation method thereof |
CN106050473A (en) * | 2016-06-03 | 2016-10-26 | 西北工业大学 | Horizontal self-sealing micro-propeller and preparation method thereof |
CN107975462A (en) * | 2016-10-21 | 2018-05-01 | 南京理工大学 | Electric heating microthruster |
CN107740734A (en) * | 2017-09-28 | 2018-02-27 | 江苏大学 | A kind of self energizing igniting propeller based on micro-scale gas flow |
CN108725847A (en) * | 2018-05-31 | 2018-11-02 | 北京控制工程研究所 | A kind of multichannel solid thruster antenna array control drive system and method |
CN108725847B (en) * | 2018-05-31 | 2020-06-09 | 北京控制工程研究所 | Multi-path solid thruster array control driving system and method |
Also Published As
Publication number | Publication date |
---|---|
CN102705107B (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102705107A (en) | Solid chemical micro-thruster | |
US5755408A (en) | Fluid flow control devices | |
CN104196650B (en) | Silica-based MEMS array formula propeller and preparation method thereof | |
CN104986357B (en) | A kind of self-sealed micro-thruster of silicon substrate and preparation method thereof | |
CN103288041B (en) | One is detonated sequence V-structure MEMS actuator | |
CN106089491B (en) | A kind of resistance immersion micro-thruster and preparation method thereof | |
US10436148B2 (en) | Convergent-divergent nozzle | |
CN101619954A (en) | A fully integrated impact plate igniter and its preparation method | |
CN104989552B (en) | A kind of Micro-Solid Rocket Motors structure based on 3D printing technique | |
CN104443437B (en) | A kind of piezoelectric type microthruster | |
CN103511125B (en) | Resistance top set type micro-thruster and preparation method thereof | |
CN101787937A (en) | Porous wall expanding type dual throat nozzle | |
CN107975462B (en) | Electric heating micro thruster | |
JP2009509850A (en) | A device for controlling the swirl flow generated by an elliptical element on the bearing surface of an aircraft. | |
CN106050473B (en) | A kind of preparation method of horizontal self sealss micro-thruster | |
CN102650245A (en) | Miniature solid rocket engine | |
CN110733651B (en) | Control system for an aircraft | |
KR20140014214A (en) | Flight control using distributed micro-thrusters | |
CN103528445B (en) | Low ignition voltage miniature semiconductor bridge ignition components | |
CN102175305A (en) | Single chip integrated trivector vibration sensor | |
CN114934861A (en) | A rocket-enhanced ramjet for low dynamic pressure flight | |
US8662412B2 (en) | Advanced modified high performance synthetic jet actuator with curved chamber | |
CN201972812U (en) | Miniature solid rocket engine | |
CN103662094B (en) | A kind of inserted laminate side spray nose cone | |
CN109425266A (en) | Based on Al/MxOyThe interdigital structure transducing member of the film containing energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140416 Termination date: 20190506 |