CN102694584A - 音频无线网络传输系统 - Google Patents

音频无线网络传输系统 Download PDF

Info

Publication number
CN102694584A
CN102694584A CN2011100676330A CN201110067633A CN102694584A CN 102694584 A CN102694584 A CN 102694584A CN 2011100676330 A CN2011100676330 A CN 2011100676330A CN 201110067633 A CN201110067633 A CN 201110067633A CN 102694584 A CN102694584 A CN 102694584A
Authority
CN
China
Prior art keywords
audio signal
audio
wireless network
central control
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100676330A
Other languages
English (en)
Inventor
冯汉英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2011100676330A priority Critical patent/CN102694584A/zh
Publication of CN102694584A publication Critical patent/CN102694584A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本发明涉及一种通过无线网络传输数字音频信号的无线音频网络系统,包括:音频信号发送单元,中央控制单元;其中所述音频信号发送单元接收来自上级音频设备传来的音频信号,将模拟音频信号转换成数字音频信号,并转换为网络数据包,通过无线网络传递给中央控制单元;所述中央控制单元在收到音频数据之后,将其还原为音频信号。所述系统还包括音频处理设备,用于存储、处理或混合音频信号。

Description

音频无线网络传输系统
发明领域
本发明涉及网络传输系统,特别涉及一种通过无线网络双向无损传输多通道音频信号的音频无线网络传输系统。
发明背景
录音师和扩音师在每一场剧院演出中,都要面对成百上千米的传声器线缆和其他信号线缆。在演出开始之前用线缆将传声器和舞台接口箱连接起来,同时还要将线缆的路径选择好,不要给演员和观众的移动带来麻烦。结束之后还要将所有线缆收拾干净。最重要的还要面对线缆破损带来的无可挽回的噪声和失真。可以说,铺设所有线缆占据了录音和扩音准备工作的一大半时间,而这些琐碎而繁重的工作对于提升音频信号质量来说是毫无意义的。
现有的音频传输方式,可以概括为线缆传输,无线传输,以及网络传输三种。其中各自有一定的优势,同时也有各自的局限性,具体如下。
1.线缆传输
现有的音频传输方式主要是借助音频线缆,这种方式自从爱迪生发明留声机以来一直沿用至今。通过线缆传递音频信号在方便稳定的同时也存在潜在问题:
模拟信号随着线缆长度增加会有衰减,尤其是低电平传声器信号;
线缆破损和接头脱焊会引入严重的噪声,造成无可挽回的信号失真;
向电容传声器的幻象供电会随着线缆距离的增加而衰减,影响传声器性能;
这种传统线缆连接的音频设备,其参数只能在本设备上设定和调整,不能实现远程控制。
线缆成本高,特别是一些进口传声器线缆价格不菲。
布线人力和时间成本高:布线时间大约占整个音乐会录制之前准备工作的70%。
舞台上和后台的线缆过多显得凌乱,影响演职人员行走安全和场地效果。
一条线缆只能够传输一路音频信号,如需多通道信号则需要多通道线缆,导致成本增加。
2.无线传输
现有的无线音频传输主要是应用于流行音乐歌手和晚会主持人的手持无线传声器,一定程度上解决了线缆传输的一些缺陷。但是其存在的主要问题在于:
应用范围窄,通常只是应用于歌手和主持人。
绝大部分无线传声器输出的模拟信号直接经过调制发送和接收解调,此过程中会导致信号失真,属于有损传输。
容易跑频,容易受干扰。
无线传声器的种类和用途以及指向性十分有限,无法胜任所有工作。
普通传声器很难连接到无线装置,无法实现无线化。
在实际应用中,传声器有多种多样。同一品牌同一型号传声器在同一场地只能同时使用有限几套无线传声器,否则会互相干扰。
一支传声器占用一个频段,对于无线频谱的利用效率低。
这种无线传输只应用于扩声中,几乎所有录音师都不会在录音中使用无线传声器。
3.网络传输
现有的网络音频传输技术均是通过有线网络运行,例如CobraNet,Dante等,技术比较成熟,可以在延时短小的情况下传输多通道音频信号。这种方式虽然能够支持多通道音频信号通过一根网线传输,但是却仍旧处于线缆链接的状态。在现场演出和同期录音等大型活动中,线缆的铺设仍旧会给录音师和调音师带来很多麻烦。同时线缆的破损,接头的松动也会给音频信号的质量带来无可挽回的损失。
综上所述,目前这三种音频信号的传输方式都有各自的问题,而这些问题都是其无法根本逾越的。所以如果想实现音频信号无损、低延时、无线传输,本发明就称为最佳解决方案。
发明概述
鉴于现有技术中上述缺陷,本发明人提供一种音频无线网络传输系统。
根据本发明的一个方面,提供一种音频无线网络传输系统,其包括:音频信号发送单元,中央控制单元;其中所述音频信号发送单元接收来自上级音频设备传来的音频信号,将模拟音频信号转换成数字音频信号,并转换为网络数据包,通过无线网络传递给中央控制单元;所述中央控制单元在收到音频数据之后,将其还原为音频信号。
根据本发明的另一方面,所述音频无线网络传输系统还包括音频信号接收单元,用于通过无线网络从所述中央控制单元接收音频信号,并将所述音频信号转换为相应的格式,输出给下级音频设备。
根据本发明的另一方面,所述音频信号发送单元包括传声器信号放大部分,模拟到数字转换部分,无线网络部分,以及控制部分;其中输入音频信号发送单元的模拟信号经过传声器信号放大部分进行放大,由模拟到数字转换部分进行数字转换,进入无线网络部分发送给中央控制单元;输入音频信号发送单元的数字信号则直接进入无线网络部分发送。
根据本发明的另一方面,所述音频信号发送单元的无线网络部分在向中央控制单元发送数据包的同时也接收来自中央控制部分的控制信号,并将控制信息发送给控制部分,所述控制部分会将来自中央控制部分的控制信息传递给传声器信号放大部分,模拟到数字转换部分或无线网络部分。
根据本发明的另一方面,所述音频无线网络传输系统的音频信号发送单元还包括供电部分,和显示部分;所述供电部分用于给整个音频信号发送单元提供电力供应,包括电池以及无线充电模块。
根据本发明的另一方面,所述音频信号接收单元包括数字模拟转换部分,无线网络接收部分,以及控制部分;其中无线网络接收部分负责接收来自中央控制单元的音频信号和控制信号,将接收到的信号组成一个不间断的数字音频流,送给数字模拟转换部分;所述模拟数字转换部分将数字音频信号转换成模拟音频信号并输出;所述控制部分负责将无线网络接收部分接收到的来自中央控制单元的控制信号传递给数模转换装置和无线网络装置,控制音频信号接收单元的工作状态。
根据本发明的另一方面,所述音频信号接收单元还包括供电部分和显示部分,所述供电部分包括电池以及无线充电模块。
根据本发明的另一方面,所述音频无线网络传输系统还包括音频处理设备,用于存储、处理或混合音频信号;其中所述音频处理设备包括数字音频工作站、调音台和音频综合处理器。
根据本发明的另一方面,所述中央控制单元包括无线网络收发部分和音频信号转换部分;其中所述无线网络收发部分负责同音频信号发送部分和音频信号接收部分传送控制信号和音频信号;所述音频信号转换部分负责将接收到的数据转换成音频信号,传送到音频处理设备。
根据本发明的另一方面,所述中央控制单元中无线网络收发部分采用轮询的方式同各个信号接收单元和信号发送单元建立连接,进行数据传输。
根据本发明的另一方面,所述中央控制单元中音频信号转换部分还包括字时钟模块,其具有Word Clock In,Word Clock Out 1,2三个接口,分别用于接收和发送数字音频时钟信号,以便同其他数字音频设备保持同步。
根据本发明的另一方面,音频无线网络传输系统还包括控制设备;所述控制设备可以实现在中央控制单元中,或者以有线或者无线的方式与中央控制单元相连接;所述控制设备将控制指令通过中央控制单元发送给音频信号发送单元和音频信号接收单元,以及通过中央控制单元接收音频信号发送单元和音频信号接收单元的反馈状态。
根据本发明的另一方面,所述中央控制单元还包括音频信号备份装置,将无线网络收发部分中获得的音频信号备份在存储设备中。
根据本发明的另一方面,所述音频信号发送单元还包括数据实时备份部分,用于将上级音频设备传来的音频信号存储在存储设备中。
本发明的音频无线网络传输系统,通过无线网络传输数字音频信号的方式,克服传统无线传声器传输过程中音质损耗大的问题,使得传输过程中彻底实现无损;同时体积小,可以连接各种传声器;通过无线网络无损传输多通道数字音频信号,包括传声器低电平信号和线路高电平信号,同时也可以传输数字音频信号,彻底取代通过线缆传输音频信号的传统方式;克服了传统线缆连接的音频设备只能在本设备上调整该设备参数在控制功能方面的不便,通过无线网络,使得中央控制单元可以遥控音频信号发送单元和音频信号接收单元的参数设定,同时监视网络和各个音频信号发送单元以及音频信号接收单元的工作状态。
根据本发的音频无线网络传输系统,将传声器放大器和模数转换器内嵌到音频信号发送单元中,将传声器信号在传声器输出端直接进行放大和模数转换,以便在最大程度上保证模拟信号不失真。同时,通过网络传输的方式数字化传输数字音频信号也可以保证传输过程中没有失真。最终保证音频信号在整个传输链路中没有失真,同时通过优化无线网络协议的方式保证传输过程中的延时。
本发明借助IEEE 802.11无线网络协议成熟的机制和高性价比,同时对其协议进行针对性优化,使其有利于音频信号实时传输,同时增强传输安全性。
根据本发明的音频无线网络传输系统,提供了音频信号发送单元内部以及中央控制单元中的实时备份系统。实时备份系统根据需要可以置于音频信号发送单元内部以及中央控制的单元内部,将音频信号发送单元接收到的来自上级音频设备的音频信号实时备份在音频信号接收单元中,也可以将中央控制部分接收到的音频信号实时备份到中央控制单元中。
下面结合附图对本发明的较佳实施例的非限制性的描述,将有利于对本发明的理解。
附图说明
图1为根据本发明的一个实施例的系统构成示意图。
图2为根据本发明一个实施例的音频信号发送单元组成部分示意图。
图3为根据本发明的一个实施例的无线充电模块示意图。
图4为根据本发明的一个实施例的音频信号接收单元示意图。
图5为根据本发明的一个实施例的中央控制单元工作流程。
图6为根据本发明的一个实施例的中央控制部分示意图。
图7为根据本发明的一个实施例的1个轮询周期示意图。
图8为根据本发明一个实施例的控制软件流程图。
图9为根据本发明的一个实施例的信号发送和接收单元工作流程图。
具体实施方式
本发明为音频无线网络传输系统,以无线网络为介质无损低延时传输多通道数字音频信号。如图1所示。系统主要包括音频信号发送单元,音频信号接收单元,中央控制单元,以及控制软件。音频信号发送单元接收来自上级音频设备(例如传声器)传来的音频信号,将模拟音频信号转换成数字音频信号,并转换为网络数据包,通过无线网络传递给中央控制单元。中央控制单元在收到音频数据之后,将其还原为标准格式音频信号,并根据用户需求,通过相应的数字音频信号或模拟音频信号格式输出给音频处理设备(例如调音台或者数字音频工作站等),音频处理设备主要用于存储、处理、播放以及混合音频信号,主要包括数字音频工作站,调音台,音频综合处理器等设备。同时,中央控制单元也可以将调音台或者数字音频工作站输出的音频信号通过无线网络传递给音频信号接收单元,音频信号接收单元再将音频信号转换为相应的格式,包括AES数字音频格式,平衡模拟输出格式等,输出给下级音频设备(例如监听耳机或返送音箱等)。整个无线网络运行状态的设置和监管由控制软件完成,该控制软件可以与中央控制单元集成在一起,也可以安装在与中央控制单元无线或者有线连接的笔记本电脑或者iPad等便携设备上。
下面结合本发明的实施例。分别对于该系统的各个单元进行详细说明
一、音频信号发送单元
音频信号发送单元可以直接同上级音频设备连接,例如传声器、调音台等,主要功能是接收来自上一级设备的音频信号,将信号进行模拟到数字的转换,之后打包为网络数据包发送给中央控制单元。同时接收中央控制单元的控制信息,对自身内部工作参数进行调整。
图2所示为音频信号发送单元的主要结构。音频信号发送单元包括传声器信号放大部分,模拟到数字转换部分,无线网络部分,以及控制部分和供电部分。输入音频信号发送单元的模拟信号经过传声器信号放大部分进行放大,之后由模拟到数字转换部分进行数字转换,之后进入无线网络部分发送给中央控制单元,再由中央控制单元传送给下级音频设备。输入音频信号发送单元的数字信号则直接进入无线网络部分发送。无线网络部分在向中央控制单元发送数据包的同时也接收来自中央控制部分的控制信号,并将控制信息发送给控制部分。控制部分会根据情况将来自中央控制部分的控制信息传递给传声器信号放大部分,模拟到数字转换部分以及无线网络部分。供电部分则通过电池负责整个音频信号发送单元的电力供应。
所述传声器信号模拟放大装置的作用是将低电平传声器信号放大到线路电平,之后送入模数转换器中进行模数转换处理。传声器信号模拟放大装置可以提供固定增益放大模式和可调增益放大模式两种方式。固定增益放大模式具有更低的THD失真(总谐波失真),配合DSD模数转换方式协同工作;可变增益放大模式配合PCM方式进行模拟数字转换。
传声器模拟放大装置有以下参数需要通过控制软件遥控调整:可变增益版本中的增益大小,以0.5dB为步长,最大增益为60dB;48v幻象供电的开关,用于给电容传声器供电;反相,用于纠正输入信号中的反相信号,或者制作特殊效果;Pad衰减,通过Pad可以将输入信号衰减20dB,防止信号过载引起失真;Mic/Line/AES信号源选择,使音频信号发送单元既可以接收传声器电平信号和线路电平信号,又可以接收数字信号,并根据不同的输入信号源进行不同的处理。
如前所述,音频信号发送单元的模数转换装置负责将模拟信号转换为数字信号。共有两种格式,PCM格式以及DSD格式。PCM格式支持传统PCM脉冲编码调制格式的数字音频格式,采用脉冲编码调制的方式,支持44.1KHz,48KHz,88.2KHz,96KHz采样频率,以及16bit,24bit量化精度。搭配可变增益放大器使用。DSD格式通过和差调制的方式,形成直接数据流,这也是SACD标准方式。在DSD状态下支持2.8224MHz采样频率以及1bit量化精度。搭配固定增益放大器使用。模数转换部分具有时钟发生器,可以提供稳定的晶振,从而取得稳定的时钟源,在最大程度上减少时钟抖动Jitter给模数转换中带来的副作用。(Jitter即为时钟抖动,可以对数字音频信号的质量带来不良影响。)对于PCM模式,时钟发生器提供从44.1KHz,48KHz,88.2KHz,96KHz的时钟源;对于DSD模式,则提供44.1kHz的时钟源。
在本发明的一个实施方案中,音频信号发送单元中可以实现DSD(直接数据流)方式的模数转换。音频信号发送单元中的模数转换装置可以选用DSD的模数转化方式,DSD为直接数据流,即采用2.8224MHz采样频率和1bit量化精度的模数转换方式。搭配DSD方式模数转换器,音频信号发送单元的传声器信号放大装置可以采用固定增益的传声器信号模拟放大器,使得信号在放大的过程中失真更小。在本发明的另一个实施方案中在PCM(脉冲编码调制)模式下,支持44.1KHz,48KHz,88.2kHz,以及96KHz采样频率,16bit和24bit量化精度的PCM数字音频流。
在模数转换部分,有如下参数和状态需要通过遥控软件来监视和设置,包括:PCM状态下的采样频率的设置,用于选择不同的采样频率;PCM状态下量化精度的设置,用于选择不同的量化精度;SRC On/Off(Sample RateConverter,采样频率转换),在接收数字信号的时候同外来信号源进行再同步以及采样频率转换。对于采样频率和量化精度的设置取决于用户使用要求。设置的方式在系统初始化的阶段,通过中央控制单元向音频信号发送单元和音频信号接收单元发送的参数设定信息设定。
音频信号发送单元的无线网络发送部分将模数转换器送出的数字信号进行编码和传送。在接收到数字音频信号之后,无线网络发送部分首先对其进行编码,主要包括给数据流加上通道识别代码以及纠错码。之后放入缓存中进行短暂存放,网络处理器会在中央控制单元轮询到音频信号发送单元的时刻进行数据传输。其余时间无线网络发送部分将接收到的信号放入缓存中。在一般情况下中央控制单元会在一个周期内轮流连接若干个音频信号发送单元或者音频信号接收单元。根据信号发送终端的优先级高低,中央控制单元会在一个轮询周期内同无线网络发送部分建立1次或者多次连接。在将数据传输给中央控制单元的同时,无线网络发送部分将缓存内部的信号送给数据实时备份系统进行备份记录。数据实时备份系统为音频信号发送单元中无线网络发送部分内的可选模块。无线网络传输部分支持但不限于2.4G和5G两个频段,根据现场电磁环境的情况决定使用的频段。传输协议基于IEEE 802.11,但是针对音频传输的特点和特殊要求进行了优化,主要包括轮询方式的建立以及编码开销的控制,同时增加传输的安全性。
音频信号发送单元中的控制部分主要功能为,将无线网络部分接收到的来自中央控制单元的控制信号传递给传声器信号放大部分,模拟到数字转换部分,以及无线网络部分。
可选择地,在音频信号发送单元中,还可以包括若干部件,包括供电部分,数据实时备份部分,LCD显示部分。
供电部分包括电池,以及无线充电模块。电池可以为充电锂电池。如图3所示,无线充电模块为音频信号发送单元的可选部分,包括发射端和接收端,嵌入在音频信号发送单元内部的接收端可以在30米的范围内接收发射端的电力,为电池进行无线充电。同时,音频信号发送单元内部储存一部分电能,使得更换电池的短暂过程中,单元可以继续工作不中断。
数据实时备份部分也是音频信号发送单元的可选部分,通过嵌入在音频信号发送单元内部的SD卡槽和SD卡可以将传声器拾取到的信号转换为WAV,AIFF文件,或者DSDI FF文件,实时备份在SD卡中。
LCD显示部分可以显示每一个音频信号发送单元的状态,包括通过控制软件遥控设定的通道名称、电池电量、连接状态等。可以通过控制软件遥控闪亮,以便在众多的信号发送端中进行识别。LCD显示屏具有一个背光照明按钮,可以在暗处进行照明,可以将其设定为会在预定时间,例如10秒后自动关闭。
二、音频信号接收单元
音频信号接收单元的主要功能是,接收来自中央控制单元的音频数据,并将其转换为下级音频设备(例如耳机、扬声器、数字录音机等)需要的音频格式(包括平衡模拟线路信号,数字AES-3格式信号,即AES/EBU信号等),将信号输出。同时可以接收中央控制单元的控制信号,使用户遥控设定和监看其工作状态。
如图4所示,音频信号接收单元主要结构包括数字模拟转换部分,无线网络接收部分,以及控制部分和供电部分。其中无线网络接收部分负责接收来自中央控制单元的音频信号和控制信号,首先将接收到的信号放入缓存,同时对其进行检错和纠错处理,之后同上一周期传送的数据一起组成一个不间断的数字音频流,送给数字模拟转换部分。音频信号接收单元可以根据控制软件的设置接收单声道信号或者立体声信号,在接收单声道信号的时候占用轮询周期中的一个时槽,在接收立体声信号的时候占用轮询周期中的两个时槽。
模拟数字转换部分将数字音频信号转换成模拟音频信号,并通过两个XLR卡侬输出接口左右两路平衡模拟信号。根据下级设备的要求,音频信号接收单元也可以输出数字音频信号,此时两个XLR卡侬接口输出的为数字音频流。根据下级设备的具体情况,可以选择两个XLR卡侬接口同时输出同样的立体声信号,或者分别输出左声道信号和右声道信号。与此同时,数模转换装置还具有一个耳机输出接口,可以直接连接耳机用于监听。耳机接口的旁边具有一个音量调节旋钮,通过电位器的衰减来控制耳机的音量。较佳地,其兼容阻抗为50欧姆到600欧姆的各类监听耳机。
控制部分负责将无线网络接收部分接收到的来自中央控制单元的控制信号传递给数模转换装置和无线网络装置,控制音频信号接收单元的工作状态。这些控制信息包括,数字音频信号的采样频率以及量化精度;输出数字音频信号还是模拟音频信号等。
可选择地,在音频信号接收单元中,还有若干部件,包括供电部分,和LCD显示部分。
供电部分包括电池,以及无线充电模块。电池例如可以为充电锂电池。无线充电模块为音频信号发送单元的可选部分,参见图2,包括发射端和接收端,嵌入在音频信号接收单元内部的接收端可以在30米的范围内接收发射端的电力,为电池进行无线充电,从而实现电力无限续航。同时,音频信号接收单元内部通过小电容储存一部分电能,使得更换电池的短暂过程中,单元也可以继续工作不中断。
LCD显示部分可以显示每一个音频信号接收单元的状态,包括通过控制软件遥控设定的通道名称,电池电量,连接状态等。可以通过控制软件遥控闪亮,以便在众多的信号发送端中进行识别。LCD显示屏具有一个背光照明按钮,可以在暗处进行照明,例如可以将其设定为会在10秒后自动关闭。
三、中央控制单元
中央控制单元的主要作用就是将外部音频设备(例如调音台)输出的音频信号通过无线网络发送给音频信号接收单元;同时接收来自音频信号发送单元发送的音频信号,并将音频信号送给外部音频设备(例如调音台)。
图5为中央控制单元的工作流程图。中央控制单元在开机后首先搜寻来自音频信号发送单元和音频信号接收单元的握手信息,根据二者的数量和用户的需要建立轮询机制,之后开始收发音频信号和控制信号。中央控制单元同时将接收到的音频信号根据CRC进行检错和纠错,音频信号的格式转换和输出,以及音频信号的备份。
图6为中央控制单元的主要组成部分。其中无线网络收发部分负责同音频信号发送部分和音频信号接收部分传送控制信号和音频信号;音频信号转换部分负责将接收到的数据根据用户需要转换成标准格式的音频信号,一遍连接调音台和数字音频工作站等音频设备。控制软件可以内嵌到中央控制单元内部,也可以安装到外置笔记本电脑中,用于控制整个系统的参数,同时监看其工作状态。
中央控制单元中无线网络收发部分采用轮询的方式同各个信号接收和发送单元建立连接,进行数据传输。音频信号的传输对于实时性的要求非常高,多个信号发送和接收单元同中央控制单元的连接不能够采取传统的竞争方式,任由多个单元竞争有限的网络资源。要达到在96kHz采样频率和24bit量化精度的状态下,可以在一个网络内部同时传输多路音频数据(通常小于24路),同时延时小于2ms的目标,必须通过无线网络收发部分控制同各个信号接收和发送单元的联系,协调其传输时间和顺序。一般情况下一个轮询周期不超过1ms,即在1ms内中央控制单元分别同24个信号发送和接收单元建立连接,完成其上一周期内累计的数据传输。无线网络收发部分在接收信号的过程中先将接收到的信号放入缓存,再同上一周期接收到的信号进行首尾相连,形成不间断的数据流送给音频信号接口部分。数据在进入缓存的同时进行检错纠错处理。发送信号的过程和接收信号的过程原理相同,不过中央控制单元发送信号,音频信号接收单元接收信号。轮询以及在其过程中的两次缓存也解决了多个信号发送和接收单元中的数字音频信号的字时钟同步问题。在电磁环境恶劣的情况下,可以通过减少通道数目,降低采样频率,提高延时等方式来缓解网络压力。同时,也可以通过将传声器无线网络适配器划分优先级的方式,在空闲时槽对于优先级高的音频信号发送单元和音频信号接收单元进行二次传输,这样也可以防止数据传输过程中产生的问题。在轮询机制建立完成之后,某个音频信号发送单元和音频信号接收单元的意外退出不会影响轮询机制的继续运行。
音频信号转换部分将从音频信号发送单元收到的数据转换为音频数据格式输入输出,同下级设备进行连接。音频信号转换部分支持的输入输出格式包括:平衡模拟输入输出,例如包括XLR卡侬口和D-Sub25针接口;数字音频AES-3格式,即AES/EBU格式输入输出;数字音频ADAT格式输入输出;数字音频AES10格式,即Madi格式输入输出;数字音频DSD格式,即通过BNC格式插口输入输出的数字音频流。信号可以通过控制软件的设置被分配到某一个输入输出端口。同时,音频信号转换部分还含有字时钟(Word Clock)模块,其中具有Word Clock In,Word Clock Out 1,2三个接口,分别用于接收和发送数字音频时钟信号,以便同其他数字音频设备保持同步。
控制部分允许中央控制单元通过IEEE 802.11协议或者USB协议连接到外部计算机或者iPad等便携设备,通过安装在该设备上的控制软件来控制和监看整个系统的参数和运行状态。如图6所示。外置控制设备通过控制软件将控制指令发送给控制部分,控制部分将其转换为相应的代码在中央控制单元,音频信号发送单元和音频信号接收单元建立连接的时候将指令传送给相应的单元。同时该单元对于指令的接收和执行情况,以及自己的工作状态反馈给中央控制单元,中央控制单元通过控制部分传递给外置控制设备,从而实现了对于网络运行情况的监看。控制部分也可以通过中央控制单元上的LCD显示屏以及控制按钮来实现控制软件实现的大部分功能。如果控制软件安装在外置笔记本电脑上,也可以将其视为一个终端,编入轮询机制。
中央控制单元内的音频信号备份系统首先根据控制软件的要求选择需要进行备份的音频信号发送单元和音频信号接收单元,将无线网络收发部分中获得的音频信号备份在内置硬盘中。备份的文件支持WAV格式,AIFF格式,或者DSDIFF格式。
中央控制单元预先开机并选择干净可用的无线频道,根据802.11协议,首选5GHz,其次选择2.4GHz。如果在数据传输过程中,中央控制单元判定需要调频,将在保留的下行控制信息传输槽位通知各个信号收发单元,并约定调频时间点。
在系统初始化阶段,各个信号收发单元以被动全频道扫描的方式发现中央控制单元,然后与中央控制单元进行连接并初始化各项参数。
信号收发单元报告各自的数据模式(包括采样频率,量化精度,以及编码方式),中央控制单元汇集所有收发单元的信息后,向用户建议轮询周期(后面详细介绍轮询周期的设定),并为收发单元分配唯一的标志码和通道序位号,以及该通道序位所对应的时间槽位。
对于音频信号接收单元,如果是多个单元接收同一份音频信号的情况下,还将下发通知该单元所属的组播组号。这样将大大节约无线传输的带宽和中央控制单元的数据处理资源耗用。
如果是标准协议模式,中央控制单元还将根据802.11协议为各个音频信号接收单元指定IP地址。
在轮询周期中将保留两个到数个时间槽位用于控制信息的交互。时钟同步、组播组的调整,编码模式、信号模式的调整,都将使用这些保留槽位。为避免无线信道的争用,这些保留槽位是各个收发单元轮流使用的。其中一个槽位保留给中央控制单元的下行控制信息发送,另外一个或者数个槽位可以以轮询方式或者预申请方式提供给信号收发单元作为上行控制信息发送使用。
中央控制单元在系统初始化阶段可以进行无线信号扫描和屏蔽,这是本系统的一个可选组件。利用802.11无线传输协议的特性,中央控制单元可以进行强制性的频道信号覆盖,以迫使该频道内的非本系统无线设备强制关闭或者移动到其他频道。在每个轮询周期内,也可以发送特殊的频道占用帧迫使非本系统设备不得发送无线信号。
图8示出了本发明控制软件的流程图。本发明的控制软件部分为一个安装在便携设备(包括笔记本电脑,iPad,Android系统的平板电脑等)中的软件,通过IEEE 802.11协议或者USB协议同中央控制单元建立联系,也可以是集成在中央控制单元中的一个模块。首先读取中央控制单元的运行状态,包括音频监听信号以及各个部件的工作参数,其次将用户设定的运行参数发送到中央控制单元中,实现对于无线音频传输网络工作状态的监看以及参数的设置。
对于音频信号发送单元,控制软件可以调整的参数以及监看的状态包括:音频信号发送单元的通道名称,传声器幻象供电开关,传声器信号和线路信号选择,传声器模拟放大部分的状态,增益调整,衰减开关,反相开关,模数转换器的采样频率和量化精度,信号电平大小,音频信号发送单元同中央控制单元的连接情况,包括通道优先级和信号强度,电池使用情况,无线充电情况。
对于音频信号接收单元,控制软件可以调整的参数以及监看的状态包括:音频信号接收单元的通道名称,立体声信号或者单声道信号,输出模拟信号或者数字信号,输出数字信号的方式:每个XLR接口都输出立体声信号或者分别输出左右声道信号,反相开关,数模转换器的采样频率和量化精度,信号电平大小,音频信号接收单元同中央控制单元的连接情况,包括通道优先级和信号强度,电池使用情况,无线充电情况。
对于中央控制单元,控制软件可以调整的参数以及监看的状态包括:音频信号输入输出矩阵以及接口的使用情况,整个系统延时情况,每一个信号发送或者接收单元的信号强度,整个系统的同步情况,通过连接在外置设备上的耳机监听任意一路音频信号发送单元或者音频信号接收单元的传输信号,启动某一路音频信号发送单元以及音频信号接收单元上的LCD,并使其闪亮,从而进行通道识别,整个系统的采样频率和量化精度,整个系统的已经使用的带宽和允许增加的通道数量,周边电磁环境的评估,中央控制单元内部备份硬盘的使用情况,选择需要进行信号备份的单元。
以上所述监看状态的数据传输,通过中央控制单元内的标准802.11n模块,通过无线网络同笔记本,iPad,Android系统的移动设备相连接。移动设备中安装控制软件。中央控制单元将上述网络运行状态和参数传递给移动设备,从而实现用于通过移动设备对网络运行的监管。同时,用户在移动设备上做出的参数调整也可以通过无线网络发给中央控制单元,实现对网络运行参数的设定。
此外,控制软件可以实现的基本功能还包括:系统快照功能,即用户预置功能,设定参数的存储和调用,在线升级。
四、轮询机制
为了实现本发明,需要对于IEEE 802.11协议进行优化,主要包括轮询机制的建立以及信道编码的简化。
轮询就是将一个轮询周期,例如1毫秒,根据用户需求按照音频信号发送单元和音频信号接收单元的数目分割成为若干时槽,每个时槽只和相对应编号的音频信号发送单元或音频信号接收单元相连接并传输数据。如图7所示。在时槽之间有时隙。这样做一方面控制了多个音频信号发送单元之间对于有限网络资源的竞争,使得传输变得有序,从而使传输延时变得可控;另外一方面,伴随轮询周期引入的缓存,使得多个音频信号发送单元之间实现了字时钟同步。一个轮询周期内,每个时槽的帧结构,即信号收发单元接受或发送的音频数据封装信息如下:
Figure BSA00000455379500201
轮询周期的设定在系统初始化阶段完成。根据信号收发单元的采样频率与无线网络的带宽,由用户根据需求指定轮询周期。轮询周期建议为1ms~5ms,特殊要求下可以小于1ms。
各个通道的数据量之和不能超过无线网络的传输带宽。采样频率和量化精度此二者决定了某一通道的数据量。例如,某个信号收发单元以24bit精度,48KHz频率采样,则该单元占用的无线通道需要传输的数据量是24bit*48K=1.152Mbit。轮询周期越短,单一时间槽内可发送的音频数据量就越小,有效传输率就越低。轮询周期越长,单一时槽内可发松的音频数据越多,但是产生的延时越大。
在实际情况下,各个信号收发单元与中央控制单元之间是有信号质量差异的,不能保证所有信号收发单元都能工作在最高传输速率。此时,中央控制单元将通过智能算法来调整每一个信号收发单元在时间轴上的序位和分配的时槽大小。
单向延时为一个轮询周期加上DA/AD转换耗时、音频信号发送单元/中央控制单元的数据处理耗时、无线网络的空中传输耗时之和。其中除了轮询周期之外的各项都在微秒级,所以单向延时略微大于一个轮询周期。
在TCP/IP协议中,线传输的信号层、MAC层以及IP、UDP层都占用相当的固定开销。以一个24bit精度48KHz采样的通道计算,如果轮询周期是1ms,则一次传输的有效载荷为1152bit即144Byte。但是,无线MAC层大致占用34Byte,IP层20Byte,UDP层8Byte,再加上一些控制、同步和时钟戳开销,有效传输率约为60%~70%。传输效率不高会直接影响传输延时以及传输安全性。
增加有效载荷可以有两种方式,一是在符合传输要求的情况下,加大轮询周期,一是定制无线MAC层及以上的数据封装。其中后者是在对实时性要求极高的情况下,轮询周期可以缩小到一个采样周期,约0.01ms。此时,将完全不使用无线MAC地址、IP地址,而只保留每个信号收发单元所分配的序位和通道号,组播组,绝对时间戳等开销。此时的有效传输率将可达到80%以上,但是在轮询周期非常小的时候,有效传输率仍可能低至50%以下。
同时,采用UDP/IP的方式,取代TCP/IP方式中出错重新传输的机制。通过CRC校验来保证UDP方式下数据传输的质量。
在数字音频系统中,时钟同步是一个必须解决的问题。在本发明中,采用I EEE1588精密时钟协议进行时钟同步,中央控制单元提供精密的主时钟,每个信号收发单元的本地时钟都跟这个唯一的基准时钟同步,基准时钟采用绝对时间标识。
每一个信号收发单元在加入无线音频网络时,会分配一个唯一的序位号,也即通道号。在这个阶段,也将与中央控制单元的主时钟完成同步。另外,根据时钟的精度,可以指定以特定的时间间隔,由中央控制单元发出时钟同步广播。信号收发单元在一个同步周期内如果发现与主时钟发生较大的差异,在调整本地时钟后,应将时钟差值在指定的控制回传时间发送给中央控制单元。
信号收发单元在进行音频信号的采样时,采样点可以实现时间轴的精确定位,不同的采样单元根据预先分配的信道号按照相应的序位依次采样。当采样数据编码后,和通道序位号、绝对时间戳等同步信息一起封装在UDP/IP数据包中。随后,在指定的时间点上,同样依照该序位经无线收发模块发送出去。
原则上,中央控制单元提供内置的主时钟,在多个中央控制单元级联的情况下,系统可以自动协商也可指定一个中央控制单元为主时钟,其他中央控制单元与其同步,各中央控制单元下联的信号收发单元再与各自从属的中央控制单元同步时钟。
必要的时候,提供主时钟的中央控制单元可以配置为跟随外接时钟源模式。这一功能由中央控制单元上的时钟模块通过连接调音台等设备的信号接口提取或者连接专门的时钟信号发生器进行提取。
在电池和无线充电技术方面,本发明可以采用锂电池作为音频信号发送单元和音频信号接收单元的供电装置。如图3。同时通过遥控节电技术,在不需要的时候可以将传声器无线网络适配器置于休眠状态。对于无线充电技术,可以通过无线充电器在距离传声器无线网络适配器30米以内的距离对电池进行充电。在这种情况下,每一个传声器无线网络适配器可以连续工作无限制时间。这样做的还可以进一步减小电池体积,同时实行电源双备份。同时,音频信号发送单元和音频信号接收单元内部通过小电容储存一部分电能,使得更换电池的短暂过程中,单元也可以继续工作不中断。
根据本发明的音频无线网络传输系统,通过无线网络,使得中央控制单元可以遥控音频信号发送单元和音频信号接收单元的参数设定,同时监视网络和各个音频信号发送单元以及音频信号接收单元的工作状态,从而克服了传统线缆连接的音频设备在控制功能方面只能在本设备上调整该设备参数的缺陷。本发明允许用户使用笔记本电脑等便携设备,通过与中心控制单元相连,遥控音频信号发送单元和音频信号接收单元的参数,监视其工作状况。可以遥控设定的参数包括信号控制单元中的幻象供电开关,传声器模拟放大器增益,模数转换器采样频率等,以及音频信号接收单元中的通道名称,输出方式选择等。同时监视音频信号发送单元和音频信号接收单元中音频信号的电平大小以及网络运行状态等。
根据本发明的音频无线网络传输系统,在传输过程中音频信号保持无损。无损即为音频信号在发送之前和接收之后保持完全一致,不会在传输过程中引入失真。同时,在一个无线音频网络系统中通过轮询传输多通道音频信号,使得多个音频信号之间保持时间上的同步以及字时钟上的同步。由于系统采用时分的方式轮流传输多个音频信号发送单元的音频信号,故信号在传输过程中有先有后,通过轮询周期大小的缓存可以让所有信号在时间上对齐。同时,读取轮询周期大小的缓存中的数据额的过程中,也可以解决不同音频信号发送单元发来的数字音频信号的字时钟同步问题。
根据本发明的音频无线网络传输系统,音频信号可以同时实现双向传输。双向传输为中央控制单元既可以通过无线网络向音频信号接收单元发送音频信号,同时又可以通过无线网络接收来自音频信号发送单元的音频信号。同时,传输延时小于2毫秒。传输延时为音频信号输入到音频信号发送单元到音频信号由中心控制单元输出所需要的时间。
综上所述,本发明消除了传统无线音频传输简单的对模拟信号进行调制和解调过程中对声音质量带来的无可挽回的损伤;同时解决了传统无线传声器中传声器和无线传输部分不可分体的问题,可以连接任何传声器,便于使用;最重要的是,本发明取代了通过线缆传输音频信号的定式,使得音频系统的搭建更加省时省力,问题查找更加迅速便捷;相对于现有的网络音频设备,本发明引入的无线网络方式让音频传输彻底摆脱线缆的束缚。

Claims (13)

1.一种音频无线网络传输系统,包括:音频信号发送单元,中央控制单元;其中所述音频信号发送单元接收来自上级音频设备传来的音频信号,将模拟音频信号转换成数字音频信号,并转换为网络数据包,通过无线网络传递给中央控制单元;所述中央控制单元在收到音频数据之后,将其还原为音频信号。
2.根据权利要求1所述的音频无线网络传输系统,还包括音频信号接收单元,用于通过无线网络从所述中央控制单元接收音频信号,并将所述音频信号转换为相应的格式,输出给下级音频设备。
3.根据权利要求1或2所述的音频无线网络传输系统,其中所述音频信号发送单元包括传声器信号放大部分,模拟到数字转换部分,无线网络部分,以及控制部分;其中输入音频信号发送单元的模拟信号经过传声器信号放大部分进行放大,由模拟到数字转换部分进行数字转换,进入无线网络部分发送给中央控制单元;输入音频信号发送单元的数字信号则直接进入无线网络部分发送。
4.根据权利要求3所述的音频无线网络传输系统,其中所述音频信号发送单元的无线网络部分在向中央控制单元发送数据包的同时也接收来自中央控制部分的控制信号,并将控制信息发送给控制部分,所述控制部分会将来自中央控制部分的控制信息传递给传声器信号放大部分,模拟到数字转换部分或无线网络部分。
5.根据权利要求3所述的音频无线网络传输系统,其中所述音频信号发送单元还包括供电部分,和显示部分;所述供电部分用于给整个音频信号发送单元提供电力供应,包括电池以及无线充电模块。
6.根据权利要求1或2所述的音频无线网络传输系统,其中所述音频信号接收单元包括数字模拟转换部分,无线网络接收部分,以及控制部分;其中无线网络接收部分负责接收来自中央控制单元的音频信号和控制信号,将接收到的信号组成一个不间断的数字音频流,送给数字模拟转换部分;所述模拟数字转换部分将数字音频信号转换成模拟音频信号并输出;所述控制部分负责将无线网络接收部分接收到的来自中央控制单元的控制信号传递给数模转换装置和无线网络装置,控制音频信号接收单元的工作状态。
7.根据权利要求6所述的音频无线网络传输系统,其中所述音频信号接收单元还包括供电部分和显示部分,所述供电部分包括电池以及无线充电模块。
8.根据权利要求1或2所述的音频无线网络传输系统,其中所述中央控制单元包括无线网络收发部分和音频信号转换部分;其中所述无线网络收发部分负责同音频信号发送部分和音频信号接收部分传送控制信号和音频信号;所述音频信号转换部分负责将接收到的数据转换成音频信号,传送到音频处理设备。
9.根据权利要求8所述的音频无线网络传输系统,其中所述中央控制单元中无线网络收发部分采用轮询的方式同各个信号接收单元和信号发送单元建立连接,进行数据传输。
10.根据权利要求8所述的音频无线网络传输系统,其中所述中央控制单元中音频信号转换部分还包括字时钟模块,用于接收和发送数字音频时钟信号,以便同其他数字音频设备保持同步。
11.根据权利要求8所述的音频无线网络传输系统,还包括控制设备;所述控制设备可以实现在中央控制单元中,或者以有线或者无线的方式与中央控制单元相连接;所述控制设备将控制指令通过中央控制单元发送给音频信号发送单元和音频信号接收单元,以及通过中央控制单元接收音频信号发送单元和音频信号接收单元的反馈状态。
12.根据权利要求1或2所述的音频无线网络传输系统,所述中央控制单元还包括音频信号备份装置,将无线网络收发部分中获得的音频信号备份在存储设备中。
13.根据权利要求1或2所述的音频无线网络传输系统,所述音频信号发送单元还包括数据实时备份部分,用于将上级音频设备传来的音频信号存储在存储设备中。
CN2011100676330A 2011-03-21 2011-03-21 音频无线网络传输系统 Pending CN102694584A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100676330A CN102694584A (zh) 2011-03-21 2011-03-21 音频无线网络传输系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100676330A CN102694584A (zh) 2011-03-21 2011-03-21 音频无线网络传输系统

Publications (1)

Publication Number Publication Date
CN102694584A true CN102694584A (zh) 2012-09-26

Family

ID=46859879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100676330A Pending CN102694584A (zh) 2011-03-21 2011-03-21 音频无线网络传输系统

Country Status (1)

Country Link
CN (1) CN102694584A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078929A (zh) * 2012-12-20 2013-05-01 广州普士全能音响设备有限公司 三合一音响传输控制系统
CN103079142A (zh) * 2012-12-21 2013-05-01 国光电器股份有限公司 一种无线低音炮低音延时可调系统及方法
WO2015139351A1 (zh) * 2014-03-18 2015-09-24 王丰硕 一种5GHz无线立体声音响系统
CN105335249A (zh) * 2014-07-14 2016-02-17 北京奇虎科技有限公司 基于iOS操作系统的录音数据导入、备份方法及装置
CN105507889A (zh) * 2015-12-30 2016-04-20 中国石油天然气股份有限公司 一种用于采集油气井数据的音频通信设备和方法
CN106603855A (zh) * 2016-12-23 2017-04-26 惠州Tcl移动通信有限公司 一种移动终端的fm音乐传输的实现方法及系统
CN107734431A (zh) * 2017-11-15 2018-02-23 郭思明 一种共享录音控制系统及实现方法
CN107786284A (zh) * 2017-10-25 2018-03-09 北京奥特维科技有限公司 一种具有多级交叉备份架构的音频传输系统及方法
WO2018076140A1 (zh) * 2016-10-24 2018-05-03 王丰硕 5GHz多声道无损无线音响系统
CN112786062A (zh) * 2021-01-15 2021-05-11 深圳市东微智能科技股份有限公司 带宽自适应网络音频传输方法、设备、介质及系统
CN113423043A (zh) * 2021-06-21 2021-09-21 康佳集团股份有限公司 一种基于5g模块的音频传输系统
CN113573186A (zh) * 2021-07-15 2021-10-29 康佳集团股份有限公司 一种无线麦克风及无线传音系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554083A (zh) * 2001-09-10 2004-12-08 迪吉格雷姆公司 利用数字通信网络在主单元和从单元间传输音频数据的系统
US20050233768A1 (en) * 2004-04-16 2005-10-20 Hon Hai Precision Industry Co., Ltd. Wireless transmitter and earphone based on 802.11a/b/g standard
CN101001485A (zh) * 2006-10-23 2007-07-18 中国传媒大学 一种有限声源多通道声场系统及声场模拟方法
CN101047408A (zh) * 2006-03-31 2007-10-03 中国科学院声学研究所 一种数字化无线麦克风系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554083A (zh) * 2001-09-10 2004-12-08 迪吉格雷姆公司 利用数字通信网络在主单元和从单元间传输音频数据的系统
US20050233768A1 (en) * 2004-04-16 2005-10-20 Hon Hai Precision Industry Co., Ltd. Wireless transmitter and earphone based on 802.11a/b/g standard
CN101047408A (zh) * 2006-03-31 2007-10-03 中国科学院声学研究所 一种数字化无线麦克风系统
CN101001485A (zh) * 2006-10-23 2007-07-18 中国传媒大学 一种有限声源多通道声场系统及声场模拟方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078929A (zh) * 2012-12-20 2013-05-01 广州普士全能音响设备有限公司 三合一音响传输控制系统
CN103079142A (zh) * 2012-12-21 2013-05-01 国光电器股份有限公司 一种无线低音炮低音延时可调系统及方法
CN103079142B (zh) * 2012-12-21 2016-05-11 国光电器股份有限公司 一种无线低音炮低音延时可调系统及方法
WO2015139351A1 (zh) * 2014-03-18 2015-09-24 王丰硕 一种5GHz无线立体声音响系统
CN105335249B (zh) * 2014-07-14 2018-10-23 北京奇虎科技有限公司 基于iOS操作系统的录音数据导入、备份方法及装置
CN105335249A (zh) * 2014-07-14 2016-02-17 北京奇虎科技有限公司 基于iOS操作系统的录音数据导入、备份方法及装置
CN105507889A (zh) * 2015-12-30 2016-04-20 中国石油天然气股份有限公司 一种用于采集油气井数据的音频通信设备和方法
CN105507889B (zh) * 2015-12-30 2020-02-14 中国石油天然气股份有限公司 一种用于采集油气井数据的音频通信设备和方法
US10897671B2 (en) * 2016-10-24 2021-01-19 Fengshuo Wang 5GHz multichannel lossless wireless audio system
WO2018076140A1 (zh) * 2016-10-24 2018-05-03 王丰硕 5GHz多声道无损无线音响系统
CN106603855A (zh) * 2016-12-23 2017-04-26 惠州Tcl移动通信有限公司 一种移动终端的fm音乐传输的实现方法及系统
CN106603855B (zh) * 2016-12-23 2021-02-19 惠州Tcl移动通信有限公司 一种移动终端的fm音乐传输的实现方法及系统
CN107786284A (zh) * 2017-10-25 2018-03-09 北京奥特维科技有限公司 一种具有多级交叉备份架构的音频传输系统及方法
CN107734431A (zh) * 2017-11-15 2018-02-23 郭思明 一种共享录音控制系统及实现方法
CN112786062A (zh) * 2021-01-15 2021-05-11 深圳市东微智能科技股份有限公司 带宽自适应网络音频传输方法、设备、介质及系统
CN113423043A (zh) * 2021-06-21 2021-09-21 康佳集团股份有限公司 一种基于5g模块的音频传输系统
CN113573186A (zh) * 2021-07-15 2021-10-29 康佳集团股份有限公司 一种无线麦克风及无线传音系统
CN113573186B (zh) * 2021-07-15 2023-12-05 康佳集团股份有限公司 一种无线麦克风及无线传音系统

Similar Documents

Publication Publication Date Title
CN102694584A (zh) 音频无线网络传输系统
US9078058B2 (en) Applications for a two-way wireless speaker system
US7231233B2 (en) Combined multi-media and in ear monitoring system and method of remote monitoring and control thereof
US20050113021A1 (en) Wireless communication system for media transmission, production, recording, reinforcement and monitoring in real-time
US9001729B2 (en) IP based microphone and intercom
WO2005053326A2 (en) Apparatus, system and method for managing audio and visual data in a wireless communication system
CN1937852A (zh) 音频播放系统及音频播放控制方法
CN204669601U (zh) 一种全无线高保真音响系统
CN108513224A (zh) 基于蓝牙ble传输的无线麦克风
CN105025304A (zh) 基于ip网的数字直播调音台
CN103209269A (zh) 一种基于Zigbee技术的数字无线多通道语音会议方法及装置
US20030179889A1 (en) [Wireless Adapter for Wired Speakers]
CN218103136U (zh) 一种无线分区广播系统
CN208190894U (zh) 一种音箱设备及系统
CN103079142B (zh) 一种无线低音炮低音延时可调系统及方法
US8165315B2 (en) Multichannel wireless system
CN101166037A (zh) 无线收发数字音频信号的方法及无线数字麦克风
US9467727B2 (en) Portable broadcast system accommodating multiple remote users for digital audio/video transmission via wired or wireless IP or 3G/4G networks
CN104780012A (zh) 一种多功能采访报导传输器、传输系统及数据传输方法
RU99259U1 (ru) Интернет-радиоприемник/передатчик (варианты)
CN202617332U (zh) 一种网络数字音响传输板及音频网络系统
CN204425559U (zh) 数字化ip网络对讲广播系统
CN219164576U (zh) 一种基于ip手拉手连接的声云广播系统
CN111246346B (zh) 一种无线多音频采集互操作系统
CN213879839U (zh) 一种小区无线分区广播系统

Legal Events

Date Code Title Description
DD01 Delivery of document by public notice

Addressee: Feng Hanying

Document name: Notification of Passing Preliminary Examination of the Application for Invention

C06 Publication
PB01 Publication
DD01 Delivery of document by public notice

Addressee: Feng Hanying

Document name: Notification of Publication of the Application for Invention

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120926