CN102683892A - 一种超材料电磁透镜天线 - Google Patents

一种超材料电磁透镜天线 Download PDF

Info

Publication number
CN102683892A
CN102683892A CN2011100618119A CN201110061811A CN102683892A CN 102683892 A CN102683892 A CN 102683892A CN 2011100618119 A CN2011100618119 A CN 2011100618119A CN 201110061811 A CN201110061811 A CN 201110061811A CN 102683892 A CN102683892 A CN 102683892A
Authority
CN
China
Prior art keywords
ultra material
electromagnetic lens
lens antenna
artificial micro
plate shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100618119A
Other languages
English (en)
Other versions
CN102683892B (zh
Inventor
刘若鹏
石小红
徐冠雄
张洋洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Institute of Advanced Technology
Kuang Chi Innovative Technology Ltd
Original Assignee
Kuang Chi Institute of Advanced Technology
Kuang Chi Innovative Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Institute of Advanced Technology, Kuang Chi Innovative Technology Ltd filed Critical Kuang Chi Institute of Advanced Technology
Priority to CN201110061811.9A priority Critical patent/CN102683892B/zh
Publication of CN102683892A publication Critical patent/CN102683892A/zh
Application granted granted Critical
Publication of CN102683892B publication Critical patent/CN102683892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种超材料电磁透镜天线,包括馈源以及超材料,所述馈源与所述超材料相对设置,所述超材料存在一区段,所述区段的中部各单元的等效介电常数ε与等效磁导率μ之乘积为最高值,其它各单元的等效介电常数ε与等效磁导率μ乘积值从小到大呈渐变趋势,且,其所述渐变趋势向所述最高值所在的单元趋近。本发明的超材料电磁透镜天线体积小、简单、易于实现、成本低。

Description

一种超材料电磁透镜天线
技术领域
本发明涉及天线领域,更具体地说,涉及一种超材料电磁透镜天线。
背景技术
目前,对于电磁波的汇聚,利用聚焦天线来完成,常用透镜天线来达成。在光学中,利用透镜能使放在透镜焦点上的点光源辐射出的球面波,经过透镜折射后变为平面波。透镜天线就是利用这一原理制作而成的,它由透镜和放在透镜焦点上的馈源组成。
透镜天线有介质减速透镜天线和金属加速透镜天线两种,其中,介质减速透镜天线的透镜是用低损耗高频介质制成,中间厚,四周薄。从辐射源发出的球面波经过介质透镜时受到减速。所以球面波在透镜中间部分受到减速的路径长,在四周部分受到减速的路径短。因此,球面波经过透镜后就变成平面波,也就是说,辐射变成定向的。
金属加速透镜天线的透镜由许多块长度不同的金属板平行放置而成。金属板垂直于地面,愈靠近中间的金属板愈短。电波在平行金属板中传播时受到加速。从辐射源发出的球面波经过金属透镜时,愈靠近透镜边缘,受到加速的路径愈长,而在中间则受到加速的路径就短。因此,经过金属透镜后的球面波就变成平面波。
当前的透镜天线虽然制造方便,但其制造透镜的工艺复杂,精度不高,对于形状有很大的依赖性,很难进行灵活的设计、损耗很大、介质容易老化、成本较高、不利于小型化的使用。
发明内容
本发明要解决的技术问题在于,针对现有技术的实现电磁波的汇聚的透镜天线的体积大、设计不灵活以及成本高等缺陷,提供一种体积小、简单、易于实现以及成本低的超材料电磁透镜天线。
本发明解决其技术问题所采用的第一技术方案是:一种超材料电磁透镜天线,包括馈源以及超材料,所述馈源与所述超材料相对设置,所述超材料存在一区段,所述区段的中部各单元的等效介电常数ε与等效磁导率μ之乘积为最高值,其它各单元的等效介电常数ε与等效磁导率μ乘积值从小到大呈渐变趋势,且,其所述渐变趋势向所述最高值所在的单元趋近。
在本发明所述的超材料电磁透镜天线中,所述超材料由片状基板组成,每个片状基板上均附着有多个人造微结构,所有的人造微结构在空间中形成周期阵列。
在本发明所述的超材料电磁透镜天线中,所述超材料由多个片状基板堆叠形成,所述所有的人造微结构在空间中呈均匀性的周期阵列。
在本发明所述的超材料电磁透镜天线中,在基材选定的情况下,通过改变人造微结构的图案、设计尺寸和/或人造微结构在空间中的排布获得想要的等效介电常数ε与等效磁导率μ。
在本发明所述的超材料电磁透镜天线中,所述片状基板由陶瓷材料、环氧树脂或聚四氟乙烯制得。
在本发明所述的超材料电磁透镜天线中,所述的每个人造微结构为一具有图案的附着在片状基板上的金属线,所述的图案为“工”字型或“工”字型的衍生型。
在本发明所述的超材料电磁透镜天线中,所述金属线通过蚀刻、电镀、钻刻、光刻、电子刻或粒子刻的方法附着在片状基板上。
在本发明所述的超材料电磁透镜天线中,所述金属线为铜线或银线。
实施本发明的超材料电磁透镜天线,具有以下有益效果:
1.体积小,不占用过多的空间;
2.简单、易于实现、低成本,通过超材料对电磁波加以汇聚,不依赖电磁波汇聚设备的种类及形状。
附图说明
图1是本发明第一实施例一种超材料电磁透镜天线结构方框图;
图2是本发明第一实施例中一种电磁波汇聚超材料结构示意图;
图中各标号对应的名称为:
1基材,2人造微结构,10馈源,11片状基板,20超材料。
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
“超材料″是指一些具有天然材料所不具备的超常物理性质的人工复合结构或复合材料。通过在材料的关键物理尺度上的结构有序设计,可以突破某些表观自然规律的限制,从而获得超出自然界固有的普通性质的超常材料功能。“超材料″重要的三个重要特征:
(1)“超材料″通常是具有新奇人工结构的复合材料;
(2)“超材料″具有超常的物理性质(往往是自然界的材料中所不具备的);
(3)“超材料″性质往往不主要决定于构成材料的本征性质,而决定于其中的人工结构。
请参阅图1,在本发明实例一中,一种超材料电磁透镜天线,包括:馈源10以及超材料20,馈源10以及超材料20相对设置,实际做产品可以将其封装,由图1可以看出,由馈源10辐射出的电磁波经过超材料20时,由超材料20汇聚成一点,该点为焦点。
由公知常识可知,电磁波的折射率跟物质的介电常数ε和磁导率μ的乘积反应有关系,当一束电磁波由一种介质传播到另外一种介质时,电磁波会发生折射,而且折射率越大的位置偏折角度越大,当物质内部的折射率分布非均匀时,电磁波就会向折射率比较大的位置偏折,通过改变折射率在材料中的分布,可以改变电磁波的传播路径。
超材料可以对电场或者磁场,或者两者同时进行相应。对电场的响应取决于超材料的介电常数ε,而对磁场的响应取决于超材料的磁导率μ。通过对超材料空间中每一点的介电常数ε与磁导率μ的精确控制,我们可以实现通过超材料对电磁波的汇聚。
超材料的电磁参数在空间中的均匀或者非均匀的分布是超材料的重要特征之一。电磁参数在空间中的均匀分布为非均匀分布的一种特殊形式,但其具体特性,仍然是由空间中排列的各个单元结构的特性所决定。因此,通过设计空间中排列的每个结构的特性,就可以设计出整个新型超材料在空间中每一点的电磁特性。这种电磁材料系统将会具有众多奇异特性,对电磁波的传播可以起到特殊的引导作用。
请参阅图2,作为本发明的一个实施例,超材料20由基材1以及附着于基材1的若干人造金属微结构2组成的片状基板11制成,图2中,多个片状基板11堆叠形成超材料20,每个片状基板11上均附着有多个人造微结构2,所有的人造微结构2在空间中形成周期阵列。优选地,所有的人造微结构2在空间中呈均匀性的周期阵列,且人造微结构2为人造金属微结构,以便更有效率地电磁场进行响应。
图2中,所述超材料20实际上是由多个片状基板11沿底面垂直的方向堆叠。因此,图2中只能看到其一侧。图3为图2的另一视角图,我们可以清楚的看到超材料20是由多个片状基板11堆叠形成有一定厚度的方形物体。实际做产品的时候,还可以对其进行封装,使得从外部看不到人造微结构。
我们可以将整个超材料20分为多个单元,可与“晶格”面积大小相同,每个单元都具有一个人造微结构,整个超材料20就是由多个单元组成,每一个单元都会对通过其的电磁波产生响应,从而影响在其中传播的平面电磁波的折射率,而经过一特定时间t后,电磁波的折射受到累加效应,从而使得所述电磁波经过t时间后离开超材料时与原来传播的方向相比,渐渐向中部靠拢,实现了电磁波的汇聚成一点的效果。
要实现电磁波汇聚的效果,则超材料20需存在一区段,该区段沿电磁波传播方向有一处各单元折射率为最高值,其它相邻各处的折射率从小到大呈渐渐增大趋势,并向最高值所在的区位靠近,优选地,超材料20与馈源10相对的区位中部各单元的等效介电常数ε与等效磁导率μ之乘积为最高值,其它各处的等效介电常数ε与等效磁导率μ乘积值从小到大呈渐变趋势,且,其所述渐变趋势向所述最高值所在的各单元区位趋近,基于此,电磁波波束通过上述的超材料20时,向所述最高值所在的区位折射,渐渐向最高值所在的区位汇聚。
超材料20是一种以人造微结构2为基本单元并以特定方式进行空间排布、具有特殊电磁响应的新型材料,包括由具有一定图案形状的金属丝构成的人造微结构2和人造微结构所附着的基材1。这两种材料的叠加会在空间中产生一个等效介电常数与磁导率,这两个物理参数分别对应了材料整体的电场响应与磁场响应。超材料20对电磁响应的特征是由人造微结构2的特征所决定,而金属结构单元的电磁响应很大程度上取决于其金属丝的图案所具有的拓扑特征和“晶格”尺寸。
“晶格”的概念来自固体物理,这里的“晶格”是指在超材料20中每个金属结构单元所占用的尺寸。“晶格”尺寸取决于金属结构单元需要响应的电磁波频率,通常金属结构单元的尺寸为所需响应的电磁波波长的十分之一,否则空间中由金属结构单元所组成的排列在空间中不能被视为连续。
若干人工人造微结构2通过可由人工仿真技术实现,即可由人工对具有特定电磁特性的人造微结构进行设计,人造微结构2与所占据的“晶格”中的基材的等效介电常数ε与等效磁导率μ的选择方法为:
第一步,通过计算机仿真和实验测试,对若干不同几何参数的单元结构(包括人造微结构以及介质基板)在一定范围内的电磁特性进行测量,存储测量得到的电磁响应曲线,确定各种不同的单元结构之介电常数以及磁导率并存在于一个数据库中;
第二步,根据需要的偏转折射率确定相应的介电常数以及磁导率,要求:介电常数以及磁导率的乘积存在一个最高值,其它的介电常数以及磁导率的乘积呈从小到大的变化趋势,趋近于最高值;
第三步,根据上述的介电常数以及磁导率从数据库中选择超材料相应点的单元结构。
本发明中,对人造微结构2的具体图案没有要求,因为只要其符合我们最终的调制效果,即可行。一般情况下,人造微结构在空间中呈周期阵列,优选地,所有的人造微结构在空间中呈均匀性的周期阵列。人造微结构2可为“工”字型,“王”字型等,鉴于此,人造微结构2在超材料空间调制器上的组合是无限的。可以是人造微结构的图案相同,但是其设计尺寸不同;也可以是图案和设计尺寸均不相同。这个根据具体需要会有所不同,都是计算机仿真后的结果,也就是说整个超材料空间调制器中人造微结构的图案、设计尺寸及空间排布都是通过计算机逆向得到的,因为整个超材料空间调制器中人造微结构的数量庞大,因此如果正向设计,是根本无法实现的。
本领域的技术人员应该想到,上述的方法是用软件程序的方法实现的,该软件程序可以存在于硬盘、软盘、U盘以及光盘中。
本发明的所述基材1可以由陶瓷材料、环氧树脂或聚四氟乙烯制得。作为一个实施例,选用聚四氟乙烯来制成基材1,聚四氟乙烯的电绝缘性非常好,因此不会对电磁波的电场产生干扰,并且具有优良的化学稳定性、耐腐蚀性、使用寿命长,作为人造微结构2附着的基材是很好的选择,作为一个实施例,所述金属线为铜线或银线,铜与银的导电性能好,对电场的响应更加灵敏,金属线通过蚀刻、电镀、钻刻、光刻、电子刻或粒子刻的方法附着在片状基板上。
本发明利用超材料来替代传统透镜天线中的透镜,具有以下有益技术效果:
1.体积小,不占用过多的空间;
2.简单、易于实现、低成本,通过超材料对电磁波加以汇聚,不依赖电磁波汇聚设备的种类及形状。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (8)

1.一种超材料电磁透镜天线,其特征在于,包括馈源以及超材料,所述馈源与所述超材料相对设置,所述超材料存在一区段,所述区段的中部各单元的等效介电常数ε与等效磁导率μ之乘积为最高值,其它各单元的等效介电常数ε与等效磁导率μ乘积值从小到大呈渐变趋势,且,其所述渐变趋势向所述最高值所在的单元趋近。
2.根据权利要求1所述的超材料电磁透镜天线,其特征在于,所述超材料由片状基板组成,每个片状基板上均附着有多个人造微结构,所有的人造微结构在空间中形成周期阵列。
3.根据权利要求1所述的超材料电磁透镜天线,其特征在于,所述超材料由多个片状基板堆叠形成,所述所有的人造微结构在空间中呈均匀性的周期阵列。
4.根据权利要求2或3所述的超材料电磁透镜天线,其特征在于,在基材选定的情况下,通过改变人造微结构的图案、设计尺寸和/或人造微结构在空间中的排布获得想要的等效介电常数ε与等效磁导率μ。
5.根据权利要求2或3所述的超材料电磁透镜天线,其特征在于,所述片状基板由陶瓷材料、环氧树脂或聚四氟乙烯制得。
6.根据权利要求4所述的超材料电磁透镜天线,其特征在于,所述的每个人造微结构为一具有图案的附着在片状基板上的金属线,所述的图案为“工”字型或“工”字型的衍生型。
7.根据权利要求6所述的超材料电磁透镜天线,其特征在于,所述金属线通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法附着在片状基板上。
8.根据权利要求6所述的超材料电磁透镜天线,其特征在于,所述金属线为铜线或银线。
CN201110061811.9A 2011-03-15 2011-03-15 一种超材料电磁透镜天线 Active CN102683892B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110061811.9A CN102683892B (zh) 2011-03-15 2011-03-15 一种超材料电磁透镜天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110061811.9A CN102683892B (zh) 2011-03-15 2011-03-15 一种超材料电磁透镜天线

Publications (2)

Publication Number Publication Date
CN102683892A true CN102683892A (zh) 2012-09-19
CN102683892B CN102683892B (zh) 2014-10-22

Family

ID=46815482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110061811.9A Active CN102683892B (zh) 2011-03-15 2011-03-15 一种超材料电磁透镜天线

Country Status (1)

Country Link
CN (1) CN102683892B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698408A (zh) * 2018-12-28 2019-04-30 浙江大学 二维扫描变容管有源超表面电磁透镜天线
CN109728446A (zh) * 2018-12-28 2019-05-07 浙江大学 二维扫描变容管有源超表面带孔介质透镜天线
CN109994813A (zh) * 2019-04-03 2019-07-09 浙江大学 圆极化变容管有源超表面带孔介质透镜天线
WO2020135276A1 (zh) * 2018-12-24 2020-07-02 华为技术有限公司 一种电磁透镜、天线及cpe
WO2021088572A1 (zh) * 2019-11-05 2021-05-14 Oppo广东移动通信有限公司 天线阵列及电子设备
CN116914438A (zh) * 2023-05-24 2023-10-20 广东福顺天际通信有限公司 一种可变形透镜及波束方向可偏转的天线
CN116914438B (zh) * 2023-05-24 2024-05-31 广东福顺天际通信有限公司 一种可变形透镜及波束方向可偏转的天线

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020135276A1 (zh) * 2018-12-24 2020-07-02 华为技术有限公司 一种电磁透镜、天线及cpe
CN109698408A (zh) * 2018-12-28 2019-04-30 浙江大学 二维扫描变容管有源超表面电磁透镜天线
CN109728446A (zh) * 2018-12-28 2019-05-07 浙江大学 二维扫描变容管有源超表面带孔介质透镜天线
CN109994813A (zh) * 2019-04-03 2019-07-09 浙江大学 圆极化变容管有源超表面带孔介质透镜天线
WO2021088572A1 (zh) * 2019-11-05 2021-05-14 Oppo广东移动通信有限公司 天线阵列及电子设备
CN116914438A (zh) * 2023-05-24 2023-10-20 广东福顺天际通信有限公司 一种可变形透镜及波束方向可偏转的天线
CN116914438B (zh) * 2023-05-24 2024-05-31 广东福顺天际通信有限公司 一种可变形透镜及波束方向可偏转的天线

Also Published As

Publication number Publication date
CN102683892B (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
Zhang et al. 3D‐printed planar graded index lenses
CN102683892B (zh) 一种超材料电磁透镜天线
CN102769198B (zh) 一种人工电磁材料、天线罩及天线系统
CN102770009B (zh) 一种吸波超材料
CN103036067B (zh) 一种雷达天线
CN102800987B (zh) 一种超材料反射镜
CN102683893B (zh) 一种天线
Liu et al. Wideband circular patch antenna with I‐shaped structure for horizontal omnidirectional gain enhancement
CN102694232B (zh) 一种阵列式超材料天线
CN103094705B (zh) 基于超材料的透镜天线
CN102790275B (zh) 电磁波分束器
CN102891373B (zh) 一种超材料制成的基站天线
Liu et al. 2D flat Luneburg lens antenna for multibeam scanning application
CN102683891B (zh) 一种高定向超材料天线
CN102694268B (zh) 一种非均匀超材料
CN103036035B (zh) 室外天线装置
CN102683867B (zh) 一种汇聚电磁波的超材料
CN102904066B (zh) 一种汇聚电磁波的超材料天线
CN102683868B (zh) 一种超材料成像系统
CN102810766B (zh) 一种喇叭天线装置
CN102760969B (zh) 一种超材料定向天线
CN102800975B (zh) 一种基站天线
Wang et al. High‐efficiency electromagnetic wave controlling with all‐dielectric Huygens’ metasurfaces
CN102683870B (zh) 一种发散电磁波的超材料
CN102544704A (zh) 一种wlan网桥天线

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant