CN102760969B - 一种超材料定向天线 - Google Patents

一种超材料定向天线 Download PDF

Info

Publication number
CN102760969B
CN102760969B CN201110111733.9A CN201110111733A CN102760969B CN 102760969 B CN102760969 B CN 102760969B CN 201110111733 A CN201110111733 A CN 201110111733A CN 102760969 B CN102760969 B CN 102760969B
Authority
CN
China
Prior art keywords
super material
directional antenna
reflecting plate
super
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110111733.9A
Other languages
English (en)
Other versions
CN102760969A (zh
Inventor
刘若鹏
石小红
徐冠雄
杨松涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Institute of Advanced Technology
Kuang Chi Innovative Technology Ltd
Original Assignee
Kuang Chi Institute of Advanced Technology
Kuang Chi Innovative Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Institute of Advanced Technology, Kuang Chi Innovative Technology Ltd filed Critical Kuang Chi Institute of Advanced Technology
Priority to CN201110111733.9A priority Critical patent/CN102760969B/zh
Publication of CN102760969A publication Critical patent/CN102760969A/zh
Application granted granted Critical
Publication of CN102760969B publication Critical patent/CN102760969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种超材料定向天线,包括馈源、超材料以及第一反射板。所述馈源、超材料、第一反射板依次顺序相对设置,所述馈源用于发射电磁波;所述超材料由基材以及基材上多个人造微结构组成;用于汇聚电磁波;所述第一反射板用于将汇聚的电磁波全部反射回空间。本发明的超材料定向天线体积小、简单、易于实现、成本低。

Description

一种超材料定向天线
技术领域
本发明涉及天线领域,更具体地说,涉及一种超材料定向天线。
背景技术
目前,对于电磁波的定向,利用定向天线来完成,常用透镜天线来达成。在光学中,利用透镜能使放在透镜焦点上的点光源辐射出的球面波,经过透镜折射后变为平面波。透镜天线就是利用这一原理制作而成的,它由透镜和放在透镜焦点上的辐射器组成。
天线是在无线电设备中用来发射或接收电磁波的部件。天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。
衡量天线性能的参数有很多,如,波瓣图、有效口径、增益、方向性、阻抗等等,其中方向性是天线很重要的性能指标,方向性越强,越有利于接收机的接收。
定向天线,是指在某一个或某几个特定方向上辐射,发射及接收电磁波特别强,而在其它的方向上发射及接收电磁波则为零或极小。定向天线可以增加辐射功率的有效利用率,增加保密性,采用定向接收天线的主要目的是增加抗干扰能力。
传统定向如喇叭天线,Vivaldi天线体积较大,其余增加定向性的方法有在天线后增加背腔、反射板或者使用吸波材料等,但是这些方法往往增加天线的尺寸,同时增加天线的制作难度。
现有技术制作天线的抛物面反射,一般采用铸造或者数控机床加工,加工工艺复杂;其次要获得好的定向天线,要求抛物面的精度比较高。如果可以发明出一种具有天线抛物面优势的物体,又不需要复杂的工艺加工,而且可以省去复杂笨重的支架结构,定向天线就更容易实现。
发明内容
本发明要解决的技术问题在于,针对现有技术的实现定向天线的体积大、设计不灵活以及成本高等缺陷,提供一种体积小、简单、易于实现以及成本低的超材料定向天线。
本发明解决其技术问题所采用的第一技术方案是:提供一种超材料定向天线,包括馈源、超材料以及第一反射板,所述馈源、超材料、第一反射板依次顺序相对设置,所述馈源用于发射电磁波;所述超材料由基材以及基材上多个人造微结构组成,用于汇聚电磁波;所述第一反射板用于将汇聚的电磁波全部以反射回空间。
在本发明所述的超材料定向天线中,所述馈源置于所述超材料及所述第一反射板之等效焦点处,用于使所述的第一反射板将所述的超材料汇聚的电磁波又穿透超材料后以平面波的形式全部反射回空间。
在本发明所述的超材料定向天线中,所述超材料定向天线还包括支架,用于支持所述馈源。
在本发明所述的超材料定向天线中,所述超材料定向天线还包括第二反射板,于所述馈源处设置,用于使馈源发射出的电磁波全部投射到所述的超材料上,第二反射板为光滑金属镜面。
在本发明所述的超材料定向天线中,所述超材料由多个片状基板堆叠形成,所述所有的人造微结构在空间中呈均匀性的周期阵列。
在本发明所述的超材料定向天线中,所有的人造微结构在空间中形成周期阵列。
在本发明所述的超材料定向天线中,在基材选定的情况下,通过改变人造微结构的图案、设计尺寸和/或人造微结构在空间中的排布获得想要的等效介电常数ε与等效磁导率μ从而决定所述的焦点。
在本发明所述的超材料定向天线中,所述基材由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁磁材料制得。
在本发明所述的超材料定向天线中,所述的人造微结构为一具有图案的附着在基材上的金属线。
在本发明所述的超材料定向天线中,所述金属线通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法附着在基材上。
在本发明所述的超材料定向天线中,所述金属线为铜线或银线。
在本发明所述的超材料定向天线中,所述第一反射板为光滑金属镜面。
在本发明所述的超材料定向天线中,所述金属线所述金属线呈“工”字型以及“工”字型的衍生型。
实施本发明的超材料定向天线,具有以下有益效果:
1.不需要复杂形状、结构笨重的抛物面反射面,而只需要平板反射面就可以实现高定向性天线;
2.反射面和超材料可放置在地面上,用简单支架将馈点置于合适位置即可,无需设计支架去支撑反射面;
3.由于超材料的良好性能,可以稳定地实现天线的高定向性。
附图说明
图1是现有技术定向发射电磁波示意图;
图2是本发明第一实施例一种超材料定向天线结构方框图;
图3是本发明第二实施例一种超材料定向天线结构方框图;
图4为本发明超材料的示意图。
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
“超材料″是指一些具有天然材料所不具备的超常物理性质的人工复合结构或复合材料。通过在材料的关键物理尺度上的结构有序设计,可以突破某些表观自然规律的限制,从而获得超出自然界固有的普通性质的超常材料功能。“超材料″重要的三个重要特征:
(1)“超材料″通常是具有新奇人工结构的复合材料;
(2)“超材料″具有超常的物理性质(往往是自然界的材料中所不具备的);
(3)“超材料″性质往往不主要决定于构成材料的本征性质,而决定于其中的人工结构。
请参阅图1,现有技术的定向天线,目前普遍使用在雷达中的抛物面天线就是主反射器60为抛物面,馈源10位于其焦点附近,能把馈源10辐射的球面波变为平面波的定向天线。而且由于抛物面是一个不规则面,所以需要设计和搭建支架40来安装它。
它的工作原理与光学反射镜相似,是利用抛物反射面的聚焦特性。由馈源10发出的球面波经抛物面反射后就变换成平面波,形成沿抛物面轴向辐射最强的窄波束。
抛物面天线的优点就是:在抛物反射天线的焦点处放置发射源,经过反射后的电磁波是平行波束,使天线定向传输,这是其他形状的天线难以做到的;缺点是:一般采用铸造或者数控机床加工,加工工艺复杂;其次要获得好的定向天线,要求抛物面的精度比较高。
请参阅图2及图4,在本发明实例一中,一种超材料定向天线,包括:馈源10、超材料20以及第一反射板30。馈源10、超材料20、第一反射板30依次顺序相对设置,馈源10由支架40加以支撑,为了更好的信号强度,于馈源10顶点位置处放置第二反射板50,第二反射板50为一光滑金属镜面,将馈源10发出去的背向超材料20的电磁波全部反射向超材料20,超材料20由基材1以及基材上若干人造微结构2组成,实际应用中,由馈源10辐射出的电磁波经过超材料20时,由超材料20汇聚后发射到第一反射板30上,由第一反射板30反射后又穿透超材料后向自由空间发送,增加了天线的方向性。为了更好的反射效果,第一反射板30为光滑的金属镜面。
优选地,馈源10置于超材料20及第一反射板30之等效焦点处,用于使第一反射板30将超材料20汇聚的电磁波又穿透超材料后以平面波的形式向自由空间发送。焦点位置由超材料20及第一反射板30共同决定,即由其等效介电常数ε与等效磁导率μ共同决定。一般地,馈源10处于与超材料20相对应的中部位置,故要求超材料20及第一反射板30的等效介电常数ε与等效磁导率μ之乘积中部各单元为最大值,其它两侧相邻各单元的等效介电常数ε与等效磁导率μ之乘积自大变小趋势,且该趋势自中部最大值单元渐减。由图2可以看出,由馈源10辐射出的电磁波经过超材料20时,由超材料20汇聚后发射到第一反射板30上,由第一反射板30反射后穿透超材料20后以平面波的形式向自由空间发送,增加了天线的方向性。为了更好的反射效果,第一反射板30为光滑的金属镜面。
请参阅图3及图4,本发明实施例二中,一种超材料定向天线,包括馈源10、超材料20以及第一反射板30。馈源10、超材料20、第一反射板30依次顺序相对设置,馈源10置于超材料20边缘处,由支架40加以支撑,为了更好的信号强度,将馈源10旁侧位置放置第二反射板50,第二反射板50为一光滑金属镜面,将馈源10发出去的背离超材料20的电磁波全部反射向超材料20,超材料20由基材1以及基材上若干人造微结构2组成。实际应用中,由馈源10辐射出的电磁波经过超材料20时,由超材料20汇聚后发射到第一反射板30上,由第一反射板30反射后又穿透超材料20后向自由空间发送,增加了天线的方向性。为了更好的反射效果,第一反射板30为光滑的金属镜面。
优选地,馈源10置于超材料20及第一反射板30之电磁波折射汇合处,用于使第一反射板30将超材料20汇聚的电磁波以平面波的形式全部反射回空间。该汇合处由超材料20及第一反射板30共同决定,即由其等效介电常数ε与等效磁导率μ共同决定,馈源10处于与超材料20相对应的边缘位置,故要求超材料20及第一反射板30的等效介电常数ε与等效磁导率μ之乘积中部边缘处为最大值,其它一侧相邻各单元的等效介电常数ε与等效磁导率μ之乘积自大变小趋势,且该趋势自边缘最大值单元渐减。由图3可以看出,由馈源10辐射出的电磁波经过超材料20时,由超材料20汇聚后发射到第一反射板30上,由第一反射板30反射后又穿透超材料以平面波的形式向自由空间发送,增加了天线的方向性。为了更好的反射效果,第一反射板30为光滑的金属镜面。由于馈源10置于超材料20的边缘处,故不会如实施例一中那样“挡住”反射回的平面波,使平面波的信号更强。
电磁波的折射率跟物质的介电常数ε和磁导率μ的乘积反应有关系,当一束电磁波由一种介质传播到另外一种介质时,电磁波会发生折射,而且折射率越大的位置偏折角度越大,当物质内部的折射率分布非均匀时,电磁波就会向折射率比较大的位置偏折,通过改变折射率在材料中的分布,可以改变电磁波的传播路径。
超材料可以对电场或者磁场,或者两者同时进行相应。对电场的响应取决于超材料的介电常数ε,而对磁场的响应取决于超材料的磁导率μ。通过对超材料空间中每一点的介电常数ε与磁导率μ的精确控制,我们可以实现通过超材料对电磁波的影响。
超材料的电磁参数在空间中的均匀或者非均匀的分布是超材料的重要特征之一。电磁参数在空间中的均匀分布为非均匀分布的一种特殊形式,但其具体特性,仍然是由空间中排列的各个单元结构的特性所决定。因此,通过设计空间中排列的每个结构的特性,就可以设计出整个新型超材料在空间中每一点的电磁特性。这种电磁材料系统将会具有众多奇异特性,对电磁波的传播可以起到特殊的调制作用。
由图4所示,作为本发明的实施例,为了获得更好的累加折射效果,本发明的超材料20由多个片状基板11堆叠而成,其中一个片状基板11是由一个基材1和人造微结构2组成的,换句话说,超材料20由多个“小”的超材料堆叠而成的。一个基材1可以由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁磁材料制得。作为一个实施例,选用聚四氟乙烯、FR4、F46来制成基材。聚四氟乙烯的电绝缘性非常好,因此不会对电磁波的电场产生干扰,并且具有优良的化学稳定性、耐腐蚀性、使用寿命长,作为人造微结构附着的基材是很好的选择。
本实施例中,优选地,所述的人造微结构2为金属微结构,所述的每个金属微结构为一具有图案的附着在片状基板上的金属线。
作为一个实施例,所述金属线通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法附着在片状基板上。当然,也可以是三维激光加工等其它可行的加工方法。
作为一个实施例,所述金属线为铜线或银线。铜与银的导电性能好,对电场的响应更加灵敏。
作为本发明人造微结构的实施例,金属线的结构为“工”字型以及“工”字型的衍生型;另外还有许多对磁场响应的金属微结构,如在许多文献中都被引用到的开口谐振环结构。另外金属微结构还可以有很多变形图案,本发明并不能对此一一列举。
在基材以及第一反射板选定的情况下,可以通过设计金属微结构的图案、设计尺寸和/或金属微结构在空间中的排布获得想要的焦点/汇合点及折射率。这是因为,通过设计金属微结构的图案、设计尺寸和/或金属微结构在空间中的排布,即可设计出超材料所在空间中每一单元的电磁参数ε和μ。至于怎么得到金属微结构的图案、设计尺寸和/或金属微结构在空间中的排布,这个方法是多种的,举个例子,可以通过逆向的计算机仿真模拟得到,首先我们确定需要的焦点/汇合点及折射率分布,根据此效果去设计超材料整体的电磁参数分布,再从整体出发计算出空间中每一点的电磁参数分布,根据这每一点的电磁参数来选择相应的金属微结构的图案、设计尺寸和/或金属微结构在空间中的排布(计算机中事先存放有多种金属微结构数据),对每个点的设计可以用穷举法,例如先选定一个具有特定图案的金属微结构,计算电磁参数,将得到的结果和我们想要的对比,对比再循环多次,一直到找到我们想要的电磁参数为止,若找到了,则完成了金属微结构的设计参数选择;若没找到,则换一种图案的金属微结构,重复上面的循环,一直到找到我们想要的电磁参数为止。如果还是未找到,则上述过程也不会停止。也就是说只有找到了我们需要的电磁参数的金属微结构后,程序才会停止。由于这个过程都是由计算机完成的,因此,看似复杂,其实很快就能完成。
实施本发明的超材料定向天线,具有以下有益效果:
1.不需要复杂形状、结构笨重的抛物面反射面,而只需要平板反射面就可以实现高定向性天线;
2.反射面和超材料可放置在地面上,用简单支架将馈点置于合适位置即可,无需设计支架去支撑反射面;
3.由于超材料的良好性能,可以稳定地实现天线的高定向性。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (12)

1.一种超材料定向天线,其特征在于,包括馈源、超材料以及第一反射板,所述馈源、超材料及第一反射板依次顺序相对设置,所述馈源用于发射电磁波,所述馈源置于所述超材料及所述第一反射板之等效焦点处,用于使所述的第一反射板将所述的超材料汇聚的电磁波穿透超材料后以平面波的形式全部反射回空间;所述超材料由基材以及基材上多个人造微结构组成,用于汇聚电磁波;所述第一反射板用于将汇聚的电磁波全部反射回空间。
2.根据权利要求1所述的超材料定向天线,其特征在于,所述超材料定向天线还包括支架,用于支持所述馈源。
3.根据权利要求1所述的超材料定向天线,其特征在于,所述超材料定向天线还包括第二反射板,于所述馈源处设置,用于使馈源发射出背离超材料的电磁波全部投射到所述的超材料上,所述的第二反射板为光滑的金属镜面。
4.根据权利要求1所述的超材料定向天线,其特征在于,所述超材料由多个片状基板堆叠形成,所有的人造微结构在空间中形成周期阵列。
5.根据权利要求3所述的超材料定向天线,其特征在于,所述的人造微结构在空间中呈均匀性的周期阵列。
6.根据权利要求1所述的超材料定向天线,其特征在于,在基材以及所述的第一反射板选定的情况下,通过改变人造微结构的图案、设计尺寸和/或人造微结构在空间中的排布获得内部的等效介电常数ε与等效磁导率μ的分布,从而决定所述等效焦点的位置。
7.根据权利要求1所述的超材料定向天线,其特征在于,所述基材由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁磁材料制得。
8.根据权利要求1所述的超材料定向天线,其特征在于,所述的人造微结构为一具有图案的附着在基材上的金属线。
9.根据权利要求1所述的超材料定向天线,其特征在于,所述的第一反射板为光滑的金属镜面。
10.根据权利要求8所述的超材料定向天线,其特征在于,所述金属线通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法附着在基材上。
11.根据权利要求8所述的超材料定向天线,其特征在于,所述金属线为铜线或银线。
12.根据权利要求8所述的超材料定向天线,其特征在于,所述金属线呈“工”字型或“工”字型的衍生型。
CN201110111733.9A 2011-04-29 2011-04-29 一种超材料定向天线 Active CN102760969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110111733.9A CN102760969B (zh) 2011-04-29 2011-04-29 一种超材料定向天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110111733.9A CN102760969B (zh) 2011-04-29 2011-04-29 一种超材料定向天线

Publications (2)

Publication Number Publication Date
CN102760969A CN102760969A (zh) 2012-10-31
CN102760969B true CN102760969B (zh) 2014-07-09

Family

ID=47055339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110111733.9A Active CN102760969B (zh) 2011-04-29 2011-04-29 一种超材料定向天线

Country Status (1)

Country Link
CN (1) CN102760969B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794845B (zh) * 2013-03-28 2015-09-09 深圳光启智能光子技术有限公司 网桥天线
CN103794880B (zh) * 2013-03-28 2015-03-11 深圳光启创新技术有限公司 天线

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855691B2 (en) * 2008-08-07 2010-12-21 Toyota Motor Engineering & Manufacturing North America, Inc. Automotive radar using a metamaterial lens
US8576132B2 (en) * 2009-10-22 2013-11-05 Lockheed Martin Corporation Metamaterial lens feed for multiple beam antennas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线

Also Published As

Publication number Publication date
CN102760969A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
Liang et al. Cylindrical slot FSS configuration for beam-switching applications
CN102544717B (zh) 基于超材料的透镜天线
CN203013936U (zh) 一种多波束平面贴片透镜天线
CN108110404B (zh) 一种大口径平面消色差反射阵天线
Meng et al. Automatic design of broadband gradient index metamaterial lens for gain enhancement of circularly polarized antennas
CN103050782B (zh) 多波束平面贴片透镜天线
CN105609961A (zh) 一种基于梯度超表面的透射双功能器件
CN102800992B (zh) 一种卡塞格伦超材料天线
CN102480019B (zh) 一种超材料天线
CN102760969B (zh) 一种超材料定向天线
CN102904044A (zh) 一种后馈式雷达天线
CN102480025B (zh) 一种前馈式雷达天线
CN103094705B (zh) 基于超材料的透镜天线
CN103094699B (zh) 基于超材料的透镜天线
CN102891373B (zh) 一种超材料制成的基站天线
CN102810755B (zh) 一种超材料天线
CN102790278B (zh) 定向天线
CN102904066B (zh) 一种汇聚电磁波的超材料天线
CN102891372B (zh) 一种散射式超材料定向天线
CN102800975B (zh) 一种基站天线
CN102723604B (zh) 一种喇叭天线
CN102480032A (zh) 一种偏馈式雷达天线
CN102800982B (zh) 一种超材料天线
CN103094712A (zh) 基于超材料的透镜天线
CN102480026B (zh) 一种前馈式雷达天线

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant