CN102681817A - 一种Tbps码率全光真随机数发生器 - Google Patents

一种Tbps码率全光真随机数发生器 Download PDF

Info

Publication number
CN102681817A
CN102681817A CN2012101808967A CN201210180896A CN102681817A CN 102681817 A CN102681817 A CN 102681817A CN 2012101808967 A CN2012101808967 A CN 2012101808967A CN 201210180896 A CN201210180896 A CN 201210180896A CN 102681817 A CN102681817 A CN 102681817A
Authority
CN
China
Prior art keywords
random number
full light
optical
true random
tbps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101808967A
Other languages
English (en)
Other versions
CN102681817B (zh
Inventor
李璞
王云才
王安帮
王文杰
梁丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201210180896.7A priority Critical patent/CN102681817B/zh
Publication of CN102681817A publication Critical patent/CN102681817A/zh
Application granted granted Critical
Publication of CN102681817B publication Critical patent/CN102681817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

一种Tbps码率全光真随机数发生器,包括全光真随机数熵源和全光量化器;所述全光真随机数熵源是有理数谐波锁模掺铒光纤环形激光器,是由铌酸锂电光调制器、光带通滤波器I、掺铒光纤放大器、光隔离器和光耦合器构成环形腔,环形腔内各器件通过光纤依次连接;所述全光量化器是量子点四分之一波长相移型分布反馈式半导体激光器。本发明解决了现有技术码率过低和码率不可调谐的问题,将现有真随机数发生器的码率提高到了Tbps量级,能与光网络直接兼容,满足了现代高速保密通信的安全需要。

Description

一种Tbps码率全光真随机数发生器
技术领域
本发明与一种全光真随机数发生器有关,尤其是一种超高速、码率可调谐的全光真随机数发生器,适用于保密通信及密码学领域。
背景技术
随着计算机技术、通信技术的迅猛发展,信息已成为当今社会的一种十分重要的财富。信息化社会的不断发展使得人们的生活都与信息的产生、接收、存储、处理和传递有着密切的联系。商业、金融业与互联网的结合以及现代通讯传输速率的大规模提高更是对密码学和信息安全提出了巨大的挑战。
随机数在现代保密通信和密码学领域有着非常重要的应用,是硬件加密系统的核心器件。随机数发生器主要分为两种:伪随机数发生器和真随机数发生器。伪随机数发生器是利用确定性算法来获得随机序列的,其最主要的缺点是具有完全的确定性和周期性,如果攻击者具有足够的计算能力,则完全可以复制甚至预测伪随机数。而真随机数发生器是利用自然界中的随机现象作为物理熵源产生出无法预测、完全随机的真随机数,能够保证信息传输的绝对安全,适用于对信息安全要求较高的硬件实体中。
根据物理熵源的不同,真随机数发生器可分为两类:基于连续时间随机系统的真随机数发生器和基于离散时间随机系统的随机数发生器。
传统的真随机数发生器均属于第一类真随机数发生器,所选用的物理熵源均属于连续时间随机系统——所发出的信号是连续模拟信号,如电阻或其他电子元件的热噪声、自发辐射噪声、核辐射衰变、振荡器的相位噪声、混沌电路、混沌激光等。为了产生真随机数,它们必须完成以下步骤:一是利用外部触发时钟采样并量化连续变化的熵源信号,产生二进制序列;二是对二进制随机数序列进行后续处理,如异或逻辑运算及高阶差分处理,从而获得真随机数。因此,传统的真随机数发生器通常由物理熵源、外部触发时钟、采样系统、量化装置、后续处理系统等五部分构成。但其不足之处在于:一是结构复杂:在模拟信号(即熵源信号)向离散信号(即真随机数)转换的过程中,需要采样和量化两个过程,由于外部触发时钟孔径抖动的存在,会严重劣化模数转换的精确度,降低系统的信噪比。二是这些随机数发生器需要后续处理,而后续处理系统的存在则会进一步增加系统的复杂度和不稳定性。三是其信号处理过程均在电域中完成,其随机数发生速率面临“电子瓶颈”的限制,速率提升空间有限。目前响应带宽最高的电ADC当属日本富士通公司的 CHAIS ADC,其带宽可达 15 GHz,已几乎接近硬件带宽理论极限。
在先技术1 [Optics Express, Vol. 18, Issue 19, pp. 20360-20369 (2010)]提出了“一种新型的全光真随机数发生器”,整个系统包含物理熵源、全光触发时钟、全光采样器、全光量化器以及全光后续处理系统(全光异或门)。其信号处理均在光域中进行,可突破“电子瓶颈”的限制,产生了速率达10 Gbps的高速全光真随机数。这个方案部分地克服了传统随机数发生器的第三个缺陷,然而前两个技术缺陷却依然存在。其根本原因是所用物理熵源是混沌激光,仍属于基于连续时间随机系统的真随机数发生器,要产生随机数序列,不可避免地需要采用外部触发时钟对其进行采样以及量化。另外,需要特别指出的是,该方案并未发挥全光信号处理(即全光量化)的技术优势——THz量级的超快响应速率,所产生的随机数码率仅为10 Gbps,这是所选用物理熵源的有限带宽导致的——混沌激光信号的带宽一般不超高20 GHz。
在先技术2 [Optics Express, Vol. 20, Issue 4, pp. 4297- 4308 (2012)]首次提出并论证了基于离散时间随机系统的全光真随机数发生器实现方案, 信号处理过程完全在光域中进行,利用被动锁模光纤激光器发射的离散混沌脉冲信号作为物理熵源,无需采样过程及外部触发时钟,便可直接产生真随机数序列。整套装置仅由物理熵源和全光量化器两部分构成,结构简单,完全克服了传统真随机数发生器的技术缺陷。但是,仍存在一个极明显的问题亟待解决:该基于离散时间随机系统的全光真随机数发生器的码率完全由被动锁模激光器的光纤环长确定,理论上速率仅能达到Mbps量级,完全无法适应现代高速通信的安全需要。实现大容量高速光通信的绝对安全要求实时地产生不低于通信速率的高速真随机数。
发明人在先申请的申请号为CN2012的“一种高速全光真随机数发生器”,该发明是一种基于离散时间随机系统的全光真随机数的技术方案,利用外光注入双区半导体激光器产生的离散混沌脉冲信号作为物理熵源来产生高速的的真随机数序列,在一定程度上改善了在先技术2产生全光真随机数方案的码率过低的问题,所产生的随机数码率最快可达10 Gbps,但仍不理想。其码率最终受到双区半导体激光器内载流子寿命的限制,很难得到更进一步的提高。
目前的现代高速通信发展到了密集波分复用阶段,密集波分复用系统的信号传输速率已达1Tbps。因此,迫切需要发展与之相匹配的码率处于Tbps量级的真随机数发生器来确保信息传输的绝对安全。现有的真随机数发生器,包括基于连续时间随机系统的真随机数发生器和基于离散时间随机系统的真随机数发生器,均无法实现这个目的。
发明内容
本发明提供一种Tbps码率全光真随机数发生器,以解决现有技术中存在的码率过低和码率不可调谐的问题,将真随机数发生器的码率提高到了Tbps量级,能够完全满足现代高速保密通信的安全需要。
本发明所提供的一种Tbps码率全光真随机数发生器,包括全光真随机数熵源和全光量化器;全光真随机数熵源输出的随机脉冲信号经50:50光耦合器等分成两路,分别作为set和reset信号经上、下两条光纤链路注入全光量化器的左右两侧,与此同时连续光激光器作为全光量化器的保持光信号亦通过下光纤链路注入全光量化器的左侧,经全光量化器量化后产生的全光真随机数序列由光带通滤波器II滤出;
    其所述全光真随机数熵源是有理数谐波锁模掺铒光纤环形激光器,是由铌酸锂电光调制器、光带通滤波器Ⅰ、掺铒光纤放大器、光隔离器和光耦合器构成环形腔,环形腔内各器件通过光纤依次连接;
    其所述全光量化器是量子点四分之一波长相移型分布反馈式半导体激光器。      
在上述技术方案所附加的技术特征在于:所述光带通滤波器Ⅰ的中心波长是1530 nm或1565 nm;所述光耦合器的耦合比是5:95或1:99。
本发明上述所提供的一种Tbps码率全光真随机数发生器,与在先真随机数发生器相比,其优点与积极效果在于:
一是本发明的真随机数发生器首次采用有理数谐波锁模掺铒光纤环形激光器作为物理熵源产生高速真随机数,其速率可达Tbps量级,比现有技术的速率提高了三个数量级,满足了现代高速保密通信的安全需要。
二是所提供的真随机数发生器不仅码率高,而且可以改变调制信号的频率,能够方便地实现码率的调谐,调谐范围可从2.5 Gbps延展至1 Tbps,可根据需要灵活控制。 
三是所提供的真随机数发生器仅由物理熵源和全光量化器两部分构成,结构简单,克服了现有技术因采样过程导致的信号失真带来的附加结构问题,极大地降低了系统的复杂程度及成本。
四是所提供的真随机数发生器的信号处理均在光域中进行,突破了“电子瓶颈”的限制。
五是所提供的真随机数发生器可与光网络直接兼容,无需任何外部调制器,克服了现有随机数发生器应用于光网络时的技术局限。
附图说明
图1是本发明一种Tbps码率全光真随机数发生器的结构示意图。
图2是本发明全光真随机数熵源产生的重复频率2.5 GHz的随机脉冲序列。
图3是本发明全光真随机数熵源产生的重复频率1 THz的随机脉冲序列。
图4是本发明产生的1 Tbps的全光真随机数信号。
图中:1:铌酸锂电光调制器;2:光带通滤波器I;3:掺铒光纤放大器;4:光隔离器;5:光耦合器;6:射频信号发生器;7:50:50光耦合器; 8:光放大器I;9:光放大器II;10:光衰减器I;11:可调谐光延迟线;12:光衰减器II;13:连续激光器;14:WDM光耦合器;15:光环行器;16:量子点四分之一波长相移型分布反馈式半导体激光器;17:光带通滤波器II。
具体实施方式
下面对本发明的具体实施方式作出进一步的说明。
实施本发明一种Tbps码率全光真随机数发生器,是在现有技术的基础上,利用有理数谐波锁模掺铒光纤激光器产生的高重复频率强度随机起伏的脉冲信号,统称为随机脉冲序列,取代被动锁模光纤激光器发射的混沌脉冲信号作为全光真随机数熵源,进而利用量子点四分之一波长相移型分布反馈式半导体激光器等构建全光量化器对其进行量化编码,产生出全光真随机数序列。
传统意义或者常规方式上,相关领域的技术人员都将有理数谐波锁模掺铒光纤激光器作为超短脉冲光源来使用,主要应用于光通信领域,进行信号的传输。然而,由于超模噪声和幅度噪声的存在,有理数谐波锁模掺铒光纤激光器输出的脉冲序列在幅度上存在无规则的随机起伏,这是在信息传输系统中所不希望存在的。因此,相关研究人员完全致力于对有理数谐波锁模掺铒光纤激光器性能的改善,力图消除上述不利因素的影响,产生出幅度均匀的超短脉冲序列。本发明课题组一直关注着随机数发生器研究领域的研究进展及前沿技术,截至目前,尚未发现有任何相关研究人员考虑到将有理数谐波锁模掺铒光纤激光器应用于随机数的产生。
本发明利用本领域研究人员力图消除的有理数谐波锁模掺铒光纤激光器输出脉冲序列的幅度不均衡特性,作为随机数发生器的物理熵源,获得了超高速Tbps的真随机数序列,将现有随机数发生器的码率提高了三个数量级,未能预料到有如此显著的效果,完全能够满足现代高速保密通信的安全需要,可极大拓宽了随机数发生器的应用范围。
具体地,本发明一种Tbps码率的全光真随机数发生器,由全光真随机数熵源及全光量化器构成。
全光真随机数熵源是有理数谐波锁模掺铒光纤环形激光器;其所述有理数谐波锁模掺铒光纤环形激光器是由铌酸锂电光调制器1、光带通滤波器I 2、掺铒光纤放大器3、光隔离器4、光耦合器5构成的环形腔,腔内各器件通过光纤依次连接;掺饵光纤放大器3提供腔内增益,光带通滤波器I 2用于调节激光的中心波长,光隔离器8则用来确保有理数谐波锁模掺铒光纤环形激光器处于单向运转,铌酸锂电光调制器1主要起主动锁模的作用,在射频信号发生器6发出的高频正弦电压信号的调制下发生周期性的损耗或者相位变化, 这种周期性的变化与腔内循环的脉冲相互作用会导致幅度随机起伏的锁模脉冲序列的产生,由光耦合器5输出。所述光带通滤波器I 2的中心波长是1530 nm或1565 nm;所述光耦合器5的耦合比是5:95或1:99。
全光真随机数熵源输出的随机脉冲序列经50:50光耦合器7等分成两路,分别作为set和reset信号经上、下两条光纤链路注入全光量化器的左右两侧,与此同时连续光激光器13作为全光量化器的保持光信号亦通过下光纤链路注入全光量化器的左侧,量化后产生的全光真随机数序列由光带通滤波器II 17滤出;所述全光量化器是量子点四分之一波长相移型分布反馈式半导体激光器16;所述上光纤链路是由光放大器I 8、光衰减器I 10和可调谐光延迟线11构成,各器件通过光纤依次连接;所述下光纤链路由光放大器II 9、光衰减器II 12、WDM光耦合器14和光环行器15构成,各器件通过光纤依次连接。 
下面将结合附图1~图4对本发明的具体实施方式作出进一步的说明。
一、利用全光真随机数熵源产生超高速随机脉冲序列
调节全光真随机数熵源中的射频信号发生器6产生射频周期性正弦调制信号,控制其频率f m ,使之偏离光纤环形腔的谐振基频f b ,存在频率失谐,即f = (m±1/n) f b ,其中m和n均为正整数。则腔内脉冲每循环一次将与上一次脉冲的时间位置存在f b /n的时间偏差, 经过n次循环后完成一个完整的损耗调制, 最终可形成重复频率f p = n×f m 的锁模脉冲序列的输出。
由于环形腔内超模噪声和幅度噪声的存在以及各个脉冲在环形腔内所经历的损耗不同,有理数谐波锁模掺铒光纤环形激光器输出的脉冲序列幅度不均衡,呈现无规则地随机起伏。本发明正是利用这种客观存在的随机现象作为物理熵源,用以超高速的真随机数序列的。所选用的光带通滤波器I 2的中心波长是1530 nm或1565 nm,使环形腔内的工作波长处于掺铒光纤放大器3增益谱的不平坦边沿,可进一步加强这种脉冲序列的幅度不均衡。另外,光耦合器5是有理数谐波锁模掺铒光纤环形激光器的输出端口,耦合比设定为5:95或1:99,这样的话,输出能量只占总能量的5%或1%,可保证激光器的长时间正常工作。
这里,应用于连接各器件的光纤总长90 m,整个环形腔的谐振基频f b 等于1.5 MHz,射频信号发生器6产生的射频周期性正弦调制信号的频率f m 为2.5 GHz(该频率等于基频f b 的整数倍),因此可获得2.5 GHz超高速随机脉冲序列(见附图2)。进一步,微调射频信号发生器1产生的射频周期性正弦调制信号的频率f m ,当f m = 2.5 GHz ± f b /n (n取1、2、3、……)时,可得到重复速率为2.5 GHz、5 GHz直至1 THz的超高速随机脉冲序列。图3是本发明获得的2 THz超高速随机脉冲序列。
需要指出的是,本发明的全光真随机数发生器所产生的真随机码序列的码率由全光随机数熵源产生的随机脉冲序列的重复速率直接决定,并与之保持一致。因此,根据以上研究结果,通过实时调节射频信号源的调制频率,该全光真随机数熵源至少可实现在2.5 GHz ~ 1THz范围内的调谐。
二、利用全光量化器对熵源信号(即随机脉冲序列)进行量化,产生真随机码序列
全光真随机数熵源产生的超高速随机脉冲序列由光耦合器5输出后,经被50:50光耦合器7分为两束,分别作为set和reset信号注入量子点四分之一波长相移型分布反馈式半导体激光器16的两侧,控制四分之一波长相移型分布反馈式半导体激光器16的输出状态。这里,set和reset信号之间有着一定的时间延迟,由可调谐光延迟线11控制,它们的功率分别被光放大器I 8、光放大器II 9、光衰减器I 10、光衰减器II 12联合调控。与此同时,连续光激光器13输出的连续光经WDM光耦合器14亦注入量子点四分之一波长相移型分布反馈式半导体激光器16,起到“保持光”的作用。这样,量子点四分之一波长相移型分布反馈式半导体激光器16将发挥全光触发器的作用,当随机脉冲信号的功率大于触发阈值时,量子点四分之一波长相移型分布反馈式半导体激光器16激射关闭,不发光;反之,当随机脉冲信号功率小于触发阈值时,量子点四分之一波长相移型分布反馈式半导体激光器16正常激射,发光;这样便可实现了对随机脉冲信号的触发量化,产生出高速全光真随机数序列,经光环行器15,由光带通滤波器II 17输出。这里的全光量化器之所以选用量子点四分之一波长相移型分布反馈式半导体激光器16,是因为其其带宽可达到THz,而普通的双异质结四分之一波长相移型分布反馈式半导体激光器的响应带宽一般处于30 GHz附近。
图4是本发明产生的1 Tbps的全光真随机数信号。有脉冲时,编码为1;反之,编码为0。所产生真随机数的码率完全由全光真随机数熵源产生的随机起伏脉冲信号的重复速率决定。这里,全光量化器的量化对象是上述全光随机数熵源重复频率1THz的超高速随机脉冲序列,因此,获得的全光真随机数的速率为1 Tbps。
这里指出,当前面所述的全光真随机数熵源发出的超高速随机脉冲序列处于其他重复速率时,如2.5 GHz、5 GHz直至1 THz,实验中也产生了相应码率的随机数序列,这里不再赘述。
三、随机性检验
为了检验本发明所产生的全光真随机数的质量,我们采用美国国家标准和技术研究所(NIST)提供的 Special Publication 800—22 随机数测试标准对所生成的随机数序列进行了测试。NIST随机数测试标准是国际通用标准,共包含15 项测试,每项测试结果用 P值表示。若P值大于显著水平值α= 0.01时,则表明所测随机数序列通过了相应的测试。进一步,计算了每项测试的通过率来进一步验证序列随机特性的有效性及正确性。当每项测试的通过率大于                                                
Figure 173607DEST_PATH_IMAGE001
时,认为所测随机数具有良好的随机性。这里,p= 1- α
对于不同速率下的全光真随机数发生器,我们分别采集了1000 组容量为1 Mbit 的真随机数序列进行 NIST测试。 这时,要求每项测试的通过率大于0. 9806。我们的测试结果表明本发明所产生的各种速率下的全光真随机数均具有高质量的随机特性,皆能成功通过NIST随机数测试标准。附表1给出了对本发明所产生真随机数进行NIST测试的一个最差的测试结果,但是各项测试P值依然均大于0.01,各项测试通过率均大于0.9806,达到了随机数测试标准,证明本发明产生的全光随机数随机性良好。
由以上论述可以看到,本发明的全光真随机数发生器在整个信号处理中,并不需要“采样”及“后续处理”过程的参与,从而有效避免了由采样过程所导致的信号失真问题,降低了系统的复杂度。而且,本发明的信号处理过程均在光域中完成,不涉及电子器件,克服了电子瓶颈的限制,可产生速率达1Tbps的真随机数序列,将现有技术的码率提高了三个数量级;所产生的真随机数本身就是光信号,因而能与光网络直接兼容,不需要任何外部调制器。
另外,需要特别指出的是,本发明所产生的真随机数的码率完全由全光真随机数熵源产生的随机脉冲序列的重复频率决定,并与之保持一致。随机脉冲序列的重复频率又由射频信号发生器的调制频率直接决定,因此,通过控制这个参量可以方便地对真随机数码率进行实时的2.5 Gbps~1 Tbps的大范围调谐,这也是现有技术所无法做到的。
表1是本发明全光随机数发生器的NIST测试结果:各项测试P值大于显著性水平0.01,通过比例大于0.9806时,表明随机性良好,满足随机数测试标准。 

Claims (3)

1.一种Tbps码率全光真随机数发生器,包括全光真随机数熵源和全光量化器;全光真随机数熵源输出的随机脉冲信号经50 50光耦合器(7)分成两路,分别作为set和reset信号经上、下两条光纤链路注入全光量化器的左右两侧,与此同时连续光激光器(13)作为全光量化器的保持光信号亦通过下光纤链路注入全光量化器的左侧,经全光量化器量化后产生的全光真随机数序列由光带通滤波器II(17)滤出;
    其所述全光真随机数熵源是有理数谐波锁模掺铒光纤环形激光器,是由铌酸锂电光调制器(1)、光带通滤波器I(2)、掺铒光纤放大器(3)、光隔离器(4)和光耦合器(5)构成环形腔,环形腔内各器件通过光纤依次连接;
    其所述全光量化器是量子点四分之一波长相移型分布反馈式半导体激光器(16)。
2.如权利要求1所述一种Tbps码率全光真随机数发生器,其所述光带通滤波器I(2)的中心波长是1530 nm或1565 nm。
3.如权利要求1所述一种Tbps码率全光真随机数发生器,其所述光耦合器(5)的耦合比是5:95或1:99。
CN201210180896.7A 2012-06-05 2012-06-05 一种Tbps码率全光真随机数发生器 Active CN102681817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210180896.7A CN102681817B (zh) 2012-06-05 2012-06-05 一种Tbps码率全光真随机数发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210180896.7A CN102681817B (zh) 2012-06-05 2012-06-05 一种Tbps码率全光真随机数发生器

Publications (2)

Publication Number Publication Date
CN102681817A true CN102681817A (zh) 2012-09-19
CN102681817B CN102681817B (zh) 2015-03-04

Family

ID=46813805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210180896.7A Active CN102681817B (zh) 2012-06-05 2012-06-05 一种Tbps码率全光真随机数发生器

Country Status (1)

Country Link
CN (1) CN102681817B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067116A (zh) * 2013-01-18 2013-04-24 北京交通大学 一种多路反馈全光异或逻辑高速超长伪随机码发生器
CN103840937A (zh) * 2012-11-23 2014-06-04 许丰 虚拟量子加密系统
CN104461456A (zh) * 2014-12-29 2015-03-25 太原理工大学 具有超强可扩放性的Tbps全光并行真随机数产生方法
CN104516715A (zh) * 2014-12-29 2015-04-15 太原理工大学 具有超强可扩放性的Tbps全光并行真随机数发生器
CN104516713A (zh) * 2014-12-29 2015-04-15 太原理工大学 一种超快全光真随机数产生装置
CN104516714A (zh) * 2014-12-29 2015-04-15 太原理工大学 具有超强可扩放性的高速并行真随机数发生器
CN105117198A (zh) * 2015-05-20 2015-12-02 安徽问天量子科技股份有限公司 量子随机数发生器及量子随机数发生方法
CN105959094A (zh) * 2016-04-27 2016-09-21 太原理工大学 一种下采样多位真随机密码光学产生装置
CN107066236A (zh) * 2015-11-10 2017-08-18 Id量子技术公司 基于光学的量子随机数生成的方法和装置
CN107203366A (zh) * 2017-07-25 2017-09-26 太原理工大学 一种基于混沌激光产生全光高速随机数的装置与方法
CN108037907A (zh) * 2017-12-29 2018-05-15 太原理工大学 一种基于真空并行的量子随机数产生方法
CN108352677A (zh) * 2015-10-27 2018-07-31 光子科学研究所基金会 多模激光腔中的量子随机数生成的方法
CN109783059A (zh) * 2018-12-28 2019-05-21 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 一种量子随机数产生方法及装置
CN110806852A (zh) * 2019-10-31 2020-02-18 太原理工大学 一种基于反馈干涉原理的全光真随机数发生器
CN111344916A (zh) * 2017-11-06 2020-06-26 光子科学研究所基金会 垂直空腔表面发射激光器中随机数生成的过程
CN111367498A (zh) * 2018-12-25 2020-07-03 西安电子科技大学 一种基于半导体激光器的三方同步随机数产生方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621287A (zh) * 2009-08-10 2010-01-06 太原理工大学 基于混沌激光的真随机码发生装置及其发生方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621287A (zh) * 2009-08-10 2010-01-06 太原理工大学 基于混沌激光的真随机码发生装置及其发生方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PU LI等: "Direct generation of all-optical random numbers from optical pulse amplitude chaos", 《OPTICS EXPRESS》 *
岳丛建: "主动锁模光纤激光器", 《山西师范大学学报(自然科学版)》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840937A (zh) * 2012-11-23 2014-06-04 许丰 虚拟量子加密系统
CN103067116A (zh) * 2013-01-18 2013-04-24 北京交通大学 一种多路反馈全光异或逻辑高速超长伪随机码发生器
CN104461456B (zh) * 2014-12-29 2017-10-13 太原理工大学 具有可扩放性的Tbps全光并行真随机数产生方法
CN104461456A (zh) * 2014-12-29 2015-03-25 太原理工大学 具有超强可扩放性的Tbps全光并行真随机数产生方法
CN104516713A (zh) * 2014-12-29 2015-04-15 太原理工大学 一种超快全光真随机数产生装置
CN104516714A (zh) * 2014-12-29 2015-04-15 太原理工大学 具有超强可扩放性的高速并行真随机数发生器
CN104516715A (zh) * 2014-12-29 2015-04-15 太原理工大学 具有超强可扩放性的Tbps全光并行真随机数发生器
CN105117198A (zh) * 2015-05-20 2015-12-02 安徽问天量子科技股份有限公司 量子随机数发生器及量子随机数发生方法
CN108352677A (zh) * 2015-10-27 2018-07-31 光子科学研究所基金会 多模激光腔中的量子随机数生成的方法
CN107066236A (zh) * 2015-11-10 2017-08-18 Id量子技术公司 基于光学的量子随机数生成的方法和装置
CN107066236B (zh) * 2015-11-10 2021-08-10 Id量子技术公司 基于光学的量子随机数生成的方法和装置
CN105959094A (zh) * 2016-04-27 2016-09-21 太原理工大学 一种下采样多位真随机密码光学产生装置
CN105959094B (zh) * 2016-04-27 2019-03-19 太原理工大学 一种下采样多位真随机密码光学产生装置
CN107203366A (zh) * 2017-07-25 2017-09-26 太原理工大学 一种基于混沌激光产生全光高速随机数的装置与方法
CN107203366B (zh) * 2017-07-25 2020-05-15 太原理工大学 一种基于混沌激光产生全光高速随机数的装置与方法
CN111344916A (zh) * 2017-11-06 2020-06-26 光子科学研究所基金会 垂直空腔表面发射激光器中随机数生成的过程
CN108037907A (zh) * 2017-12-29 2018-05-15 太原理工大学 一种基于真空并行的量子随机数产生方法
CN108037907B (zh) * 2017-12-29 2021-03-02 太原理工大学 一种基于真空并行的量子随机数产生方法
CN111367498A (zh) * 2018-12-25 2020-07-03 西安电子科技大学 一种基于半导体激光器的三方同步随机数产生方法
CN109783059A (zh) * 2018-12-28 2019-05-21 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 一种量子随机数产生方法及装置
CN110806852B (zh) * 2019-10-31 2020-05-26 太原理工大学 一种基于反馈干涉原理的全光真随机数发生器
CN110806852A (zh) * 2019-10-31 2020-02-18 太原理工大学 一种基于反馈干涉原理的全光真随机数发生器

Also Published As

Publication number Publication date
CN102681817B (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
CN102681817B (zh) 一种Tbps码率全光真随机数发生器
CN102681816B (zh) 一种全光真随机数发生器
CN108628590B (zh) 一种基于激光混沌熵源的物理随机数发生器及发生方法
CN103368653B (zh) 一种类似白噪声的宽带混沌信号的产生方法及装置
CN105955707B (zh) 一种过采样高速实时光学真随机数发生器
CN107368284B (zh) 利用四波混频效应实现全光量子随机数产生方法及装置
CN106301754B (zh) 一种基于垂直腔面发射激光器的真随机密码发生装置
CN104461455B (zh) 一种全光真随机数产生方法
CN106933532A (zh) 一种基于激光相位噪声的小型化随机数发生器
CN107203366A (zh) 一种基于混沌激光产生全光高速随机数的装置与方法
Wang et al. Breach and recurrence of dissipative soliton resonance during period-doubling evolution in a fiber laser
CN104516715B (zh) 有可扩放性的Tbps全光并行真随机数发生器
CN104516713A (zh) 一种超快全光真随机数产生装置
Krapick et al. Bright integrated photon-pair source for practical passive decoy-state quantum key distribution
CN209313852U (zh) 基于自发辐射光源的量子密钥分发光源
Li et al. Fast and tunable all-optical physical random number generator based on direct quantization of chaotic self-pulsations in two-section semiconductor lasers
CN106293612B (zh) 一种基于超连续谱的实时光学真随机码发生器
CN105930131B (zh) 一种超快实时光学真随机码型发生器
Liu et al. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability
CN106293614B (zh) 基于超连续谱随机起伏的自适应实时真随机数产生装置
CN108923251B (zh) 一种真随机码光子集成芯片
CN102624365A (zh) 一种基于非线性光电延迟振荡器的高速二进制真随机码产生装置
CN104461456B (zh) 具有可扩放性的Tbps全光并行真随机数产生方法
Zhu et al. Harmonically mode-locked twin-pulse dissipative solitons Yb-doped fiber laser
Anyi et al. Nanosecond pulse fibre laser based on nonlinear polarisation rotation effect

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant