CN102679969B - 包括多个谐振结构的装置和带有正交抑制的显微加工的陀螺仪 - Google Patents
包括多个谐振结构的装置和带有正交抑制的显微加工的陀螺仪 Download PDFInfo
- Publication number
- CN102679969B CN102679969B CN201210111352.5A CN201210111352A CN102679969B CN 102679969 B CN102679969 B CN 102679969B CN 201210111352 A CN201210111352 A CN 201210111352A CN 102679969 B CN102679969 B CN 102679969B
- Authority
- CN
- China
- Prior art keywords
- resonator masses
- suppression electrode
- micro
- gyroscope
- quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Gyroscopes (AREA)
Abstract
本发明涉及包括多个谐振结构的装置和带有正交抑制的显微加工的传感器。此传感器包括正交抑制电极和邻近正交抑制电极定位的、能与正交抑制电极基本平行移动的谐振器质量,该谐振器质量包括槽口,此槽口邻近正交抑制电极的一部分而形成,使得直接邻近正交抑制电极的谐振器质量的长度随着谐振器质量相对于正交抑制电极移动而变化,其中该正交抑制电极能对谐振器质量产生横向力,该横向力根据直接邻近正交抑制电极的谐振器质量的长度而变化。上述谐振结构包括通过第一挠性件连接的第一对质量和通过第二挠性件连接的第二对质量,每个质量均由悬挂挠性件悬挂,第一和第二挠性件允许所述质量在其谐振时稍稍转动,以减小悬挂挠性件中的纵向应力。
Description
分案申请
本申请是申请号为03803436.0的中国专利申请的分案申请,上述申请的申请日为2003年2月6日,发明名称为“显微加工的陀螺仪”。
技术领域
本发明涉及显微加工的陀螺仪,特别是涉及用科氏(Coriolis)加速度检测旋转运动的显微加工的陀螺仪。
发明内容
根据本发明的一个方面,提供了一种带有正交抑制的显微加工的陀螺仪,包括:正交抑制电极;和邻近所述正交抑制电极定位的谐振器质量;所述谐振器质量包括槽口,所述槽口邻近所述正交抑制电极的一部分而形成,使得直接邻近所述正交抑制电极的所述谐振器质量的长度随着所述谐振器质量相对于所述正交抑制电极移动而变化,其中,所述正交抑制电极能够对所述谐振器质量产生横向力,所述横向力通过根据谐振器质量的位置改变靠近正交抑制电极的谐振器质量的量而改变。
根据本发明的另一方面,提供了一种带有正交抑制的显微加工的陀螺仪,包括:多个正交抑制电极;和多个谐振器质量,每个谐振器质量均邻近所述多个正交抑制电极中的相应一个正交抑制电极定位,每个谐振器质量均包括槽口,所述槽口邻近所述谐振器质量的相应正交抑制电极的一部分而形成,使得直接邻近所述正交抑制电极的所述谐振器质量的长度随着所述谐振器质量相对于所述正交抑制电极移动而变化,其中,每个正交抑制电极均能够对邻近的所述谐振器质量产生横向力,所述横向力通过根据谐振器质量的位置改变靠近正交抑制电极的谐振器质量的量而改变。
根据本发明的再一方面,提供了一种带有正交抑制的显微加工的陀螺仪,包括:基片;框架,第一多个悬挂挠性件沿着所述框架的外周布置,所述第一多个悬挂挠性件固定于所述基片并形成为基本防止所述框架在所述框架的平面内相对于所述基片的平移运动,但允许所述框架围绕与所述基片及所述基片平行的轴线的旋转运动;多个正交抑制电极;以及多个谐振结构,所述多个谐振结构布置在所述框架的内周中,所述谐振结构基本在所述框架的平面内运转,所述谐振结构包括多个谐振器质量,每个谐振器质量均邻近所述多个正交抑制电极中的相应一个正交抑制电极定位,每个谐振器质量均包括槽口,所述槽口邻近所述谐振器质量的相应正交抑制电极的一部分而形成,使得直接邻近所述正交抑制电极的所述谐振器质量的长度随着所述谐振器质量相对于所述正交抑制电极移动而变化,其中,每个正交抑制电极均能够对邻近的所述谐振器质量产生横向力,所述横向力通过根据谐振器质量的位置改变靠近正交抑制电极的谐振器质量的量而改变。
根据本发明的又一方面,提供了一种显微加工的、包括多个谐振结构的装置,所述谐振结构包括通过悬挂挠性件悬挂的一对分开的质量,其中,每个分开的质量包括利用一个挠性件互连的两个分支部分,所述一个挠性件允许所述分支部分在所述质量谐振时稍稍转动,以减小所述悬挂挠性件中的纵向应力。
根据本发明的又一方面,提供了一种显微加工的、包括多个谐振结构的装置,所述谐振结构包括通过第一挠性件连接的第一对质量和通过第二挠性件连接的第二对质量,其中,每个质量均通过悬挂挠性件悬挂,其中,所述第一挠性件和所述第二挠性件允许所述质量在所述质量谐振时稍稍转动,以减小所述悬挂挠性件中的纵向应力。
根据本发明的一方面,谐振结构的机械连接基于“双叉”结构,其具有用于将共线的耦合运动转变成平行耦合运动的杠杆。该杠杆具有形成在连接点的支点,以确保连接点不相对于该杠杆平移。
根据本发明的另一方面,该陀螺仪框架适于检测旋转运动而不是直线运动。科氏检测指状物设置在该框架所所有的边上。
根据本发明的另一方面,利用包括驱动机构的谐振器质量本身,减小谐振器质量挠性件(flexure)上的纵向张力,该驱动机构作为应力减小杆。两对质量分别用作相位质量和反相位质量。每对质量通过短挠性件连接。这使得该质量能够绕该挠性件稍稍转动,使得对角线相对的角能够同时调节该主谐振器挠性件和连接杆伸出长度的缩短。
根据本发明的另一方面,驱动或传感指状物包含在该连接杆中。
根据本发明的另一方面,利用沿谐振质量边缘形成的槽口(notch)而不是用交叉的指状物实现电正交抑制。
根据本发明的另一方面,用于固定的驱动指状物的成对反相位阵列的固定器设置成在横向共线,该固定器在远离基片的远端相互连接的成对设置,以便该顶端抵制在该基片端的个别的扭转,并且该指状物母线(busbar)由柔性的折叠指状物连接于该顶端。
附图说明
在附图中:
图1示出根据本发明实施例的示例性显微加工的陀螺仪结构;
图2标记出根据本发明实施例的显微加工的陀螺仪结构的各种元件;
图3是重点示出根据本发明实施例的显微加工的陀螺仪结构的框架的视图;
图4是重点示出根据本发明实施例的显微加工的陀螺仪结构的可运动质量的视图;
图5是重点示出根据本发明实施例的显微加工的陀螺仪结构杠杆的视图;
图6是示出根据本发明实施例的加速计悬挂挠性件的详细视图;
图7是示出根据本发明实施例的可运动质量和其相关的挠性件以及支点挠性件的详细视图;
图8是示出根据本发明实施例的两个杠杆和叉状件及其相关支点挠性件以及静电驱动器的详细视图;
图9是示出根据本发明实施例的显微加工的陀螺仪结构各种谐振结构运动的表示;
图10是示出根据本发明实施例的用于双重差动结构的科氏检测器换位机构(switchover);
图11是示出根据本发明实施例的可运动质量静电驱动器的详细视图;
图12是示出根据本发明实施例的正交抑制结构的详细视图;
图13是示出根据本发明实施例的另一种框架悬挂结构的视图;
图14是示出根据本发明实施例的安装在连接杆中的驱动或传感指状物的结构,其中,该指状物以变化的角度向后倾斜以调节该连接杆的弧形运动。
具体实施方式
显微加工的陀螺仪包括制造成以一定速度振动的谐振器和用于测量正交的科氏加速度的加速计装置,科氏加速度是由该速度上的旋转效应引起的。
将这些结构相互连接并连接于在下面的基片的常见装置是利用通常称之为“系绳”或“挠性件”的显微加工的材料的细丝(filament)。
因此,显微加工的陀螺仪利用科氏加速度检测并测量绕垂直于基片表面的轴线的旋转速率。特别是,各种谐振结构悬挂在框架内。该谐振结构包括通过杠杆、支点挠性件和叉状件机械地连接的相位质量和反相位质量,以便产生用于整个谐振系统的单一谐振频率。该机械系统确保谐振器的运动被严格地限制成一线性轴线没有纯粹的转动。显微加工的陀螺仪绕该平面的旋转在该框架上产生旋转力。该框架以这样的方式悬挂,使得除了旋转方向的运动之外它的所有运动均被限制。在该框架所有的边上的传感器检测该框架的转动偏转,用于测量方向的改变。
业已认识到,在显微加工的陀螺仪的现有技术中,平衡(或对称)结构具有明显的更好的性能并且机械连接的谐振器对是非常希望的。见,例如,美国专利5,392,650和5,635,638。机械地连接该谐振结构具有许多优点,包括增加谐振结构的运动,增加由该谐振结构产生的科氏加速度(信号)的量,避免混乱的运动,防止框架与谐振器在相同的方向运动,提供较好的相位清晰度(definition),提供较好的外部加速度的衰减,并且由于角动量被局部地消除而改进品质因素Q。
业已证明,如果一对谐振器仅仅用电方式连接能够制造令人满意的陀螺仪。一个例子描述在“Single-ChipSurfaceMicromachinedIntegratedGyroscope”(IEEEJSSCvol.37No.12Dec′02)和美国专利6,122,961。制造公差使得两个机械地分开的谐振器不能被制造成具有同样的频率,但是如果对于该对谐振器的“Q”因数足够低,它们的谐振曲线充分地重叠,该成对谐振器可作为单个电震荡器稳定地起作用。
如果每个硅晶片能够制造较多的这种器件(device)。那么,每个的成本就很少,所以制造较小的结构具有优点。为了从较小的结构中获得低噪声和足够的信号,需要设计它们的谐振具有高“Q”因数。那么谐振曲线可以不再充分重叠,振荡幅度较低,并且在频率上不充分地被形成。在极端的情况下,运动变成很混乱,对低频噪声具有有害的效果(即,短期输出的不稳定性,妨碍精确地导航,这是陀螺仪的主要用途之一)。
本发明的一些实施例,通过提供基于美国专利5,635,640中所描述的“双叉”的非常有效的机械连接,能够采用较小的结构。共线谐振器对不能以这种方式直接连接,所以一组杠杆被用于将共线的耦合运动转变成平行的耦合运动。该杠杆具有形成在连接于加速计框架和谐振器质量的连接点的支点。每个支点由至少两个正交的挠性件的轴线的交点形成。这确保该连接点不能相对于该杠杆平移,而只能转动。移动的顺从性将损害对下面描述的不想要运动的抑制。Netzer的美国专利5,763,781的图8至11示出了类似的构思。但是,这些结构没有一个将在该公开中所描述的类型的实际显微加工的陀螺仪中行得通,因为,第一,由单个挠性件形成的支点允许不能接受的正交运动,第二,结构的同样缺点在连接的质量的同相运动中具有太多的顺从性,以及,第三,它们不允许应力刚性消除,这些措施如下面描述的,是很主要的。
还知道,抑制所谓的“正交”信号是有利的,这种正交信号来自不完全正交的谐振器和加速计的轴线。抑制的方式可以是如Howe等人的美国专利6,067,858和6,250,856中所描述的电的方式,或在Geen的美国专利6,122,961中所描述的机械方式。后者使用于杠杆和挠性件系统一起的单独的谐振器框架和加速计框架,以防止不想要的运动并且在实际中是非常有效的。但是,这种结构与谐振器的直接的机械连接在拓扑学上是不相容的。首先,将失去在谐振器之间的一半加速计指状物,大大地减小了信号。第二,来自谐振器对的线性科氏力将在连接于它们两者的加速计框架中消失。
本发明的一些实施例允许谐振器的机械连接而不失去来自单独的正交抑制框架的加速计信号。这是通过识别连接的反相位谐振器质量产生的与它们的质量中心分开程度成比例的科氏力矩实现的,即便科氏力消失。因此,围绕的加速计框架适于检测转动而不是线性运动。那么,机械正交抑制成为防止共线的谐振器对的任何纯粹的转动和防止加速计的线性运动的主要要素(matter)。而且,当矩形加速计框架转动时,它所有的四个边移动,以便所有的边可与指状物排成直线以检测这种运动,从而将总的灵敏度恢复到两个线性加速计的灵敏度,但是与美国专利6,122,961的现有技术相比,为总面积的一半。
遇到的另一个问题是对于大的科氏信号谐振器应当具有大的移动行程(travel)。谐振器的主要挠性件在这种环境下将“应力硬化”。即,当偏转时它们必须进一步达到行程并且结果导致的伸长在挠性件引起纵向张力并且伴随横向刚度的明显增加。众所周知,刚度的相对增加随横向偏转对该系绳的宽度的比例的平方而变化。因此,通常1.7微米宽的系绳偏转10微米将变硬36倍(factorof36),这将产生不能接受的非线性性,需要更大的驱动力并使谐振频率不能足够地形成大的倍数。这种纵向应力能够用如美国专利5,392,650中的简单的反向挠性件来消除,但是这使整个谐振器在系绳的纵向运动并防止机械正交抑制。
在本发明的一些实施例中,提供消除系绳纵向应力的装置而不占用在美国专利6,122,961的现有技术中使用的额外杠杆的空间。这是利用谐振器质量本身实现的,该谐振质量包括作为应力减少杠杆的驱动机构。额外系绳悬挂杠杆的消除不仅节省面积,而且还增强陀螺仪整个平面外的刚性。这使得该装置更坚固并更适合用于经受大量冲击和振动的车辆定位,例如在汽车的发动机室中。
在本发明的一些实施例中,通过将其分开并用非常短的挠性件重新连接而修改谐振器质量以消除张力。这使该质量能够绕该挠性件稍稍转动,以便对角线相对的角能够同时调节主谐振器挠性件和连接杆两者伸出长度的缩短。从支点到挠性件和杠杆的距离必须具有正确的比例,以便有效地消除两者,所以短挠性件的定位是关键性的,但是这在几何计算上并不困难。
在本发明的一个示例性的实施例中,该显微加工的陀螺仪包括通过杠杆、支点挠性件和叉状件机械连接的两个相位质量和两个反相位质量。理想地,这提供单一的谐振频率。该单一的谐振频率提供较高的Q因数,并且因此提供更多的信号。该连接结构减少作用在框架上的外力(例如由谐振结构的不平衡运动产生的平移和转动力),这种外力可能被误认为是科氏加速度。
本发明的一些实施例为了节省面积将驱动或传感指状物包含在连接杆中。谐振质量从其速度产生科氏力矩的效率与其到中心线的距离成比例。因此,希望用于实现机电振荡器目的的谐振器驱动装置或速度传感装置应当尽可能设置成靠近中心线。这最有效地利用可得到的面积。因此从该质量到连接杆的可拆卸部分是特别有利的。
由于该杠杆成弧形运动,设置在其上的交叉的指状物根据到该杆到支点的半径沿其长度以不同的角度啮合。因此,为了防止移动的指状物相对固定的交指形的梳状物过度地横向运动,该指状物可以以由该杆的几何形状限定的变化的角度向后倾斜。这示于图14。
类似的问题存在于加速计框架和围绕其周边设置的传感指状物中,由于加速计是适于旋转的。因此,传感指状物能够同样地以变化的角度向后倾斜。但是,加速计框架的转动与该杠杆的转动相比通常相当小(也许,1/100,000th),所以这种倾斜通常不用于传感指状物。
本发明的一些实施例使正交信号最终能够被调整成接近于零。尽管通过悬挂挠性件和杠杆正交的抑制,由于悬挂在其上的谐振器的反作用力,存在来自加速计框架的扭转的剩余的正交成分。希望该框架尽可能地轻,以便节省空间又使其对科氏力的响应最大。遗憾的是,轻框架变形较大,所以在设计中存在折中允许有一定的剩余正交。这利用Clark在美国专利5,992,233中描述的一般原理调整为接近于零,其利用在不同电压下设置成三个一组的指状物阵列以便提供横向力,该横向力随指状物的啮合变化。本发明的实施例不使用从谐振器质量边缘切割的槽。与指状物阵列相比,这具有占用较小空间的优点,并使其适用于另外的无用的区域。
驱动指利用交指形的梳状物纵向地工作,一些移动,而一些连接于基片。其原理是由Tang和Howe在美国专利5,025,346中所描述的。将纵向静电梳状物用于陀螺仪的最麻烦副作用之一是指状物之间的间隙的微小的不平衡导致横向运动以及想要的纵向分量。这种运动具有分量,该分量具有与科氏信号同相的不适宜的性质,所以,不像相当大的正交信号,它不能被相位传感矫正器(rectifier)排除。这种同相信号的任何不稳定性直接成为陀螺仪误差。陀螺仪间隙成为不平衡最有效的方式之一是利用固定指状物的基片固定点和移动结构的相对运动。另一个副作用来自外部加速度的移动结构位移。幸运的是,大多数这些可以通过仔细地关注结构和驱动装置的对称来消除。但是,基片的表面剪切变形很难用这种方法调节。表面剪切变形很容易由使用期间导致的部件应力变化所引起,并产生固定指状物阵列的相对移动和单个指状物固定器的转动。
在本发明的一些实施例中,固定的驱动指状物的反相位阵列对的固定器在横向设置成共线。以这种方式,基片的任何表面剪切将不使它们产生相对于相互之间的横向运动。而且,固定器通常在远离基片的顶端相互结合成对地安装,以便顶端抵制在基片端部的单个的扭转。还有,指状物母线通常由柔性的折叠指状物连接于顶端。这些使母线与固定器对所传递的变形和显微加工的材料中的收缩应力所产生的移动相隔离。它们还用作驱动器,因而使来自隔离措施的驱动的损失最小。指状物的连接装置在陀螺仪性能方面提供约一个数量级的改进。
图1示出示根据本发明实施例的例性的显微加工的陀螺仪结构100。显微加工的陀螺仪结构100是来自单个硅晶片的许多显微加工结构中的典型的一个。显微加工的陀螺仪结构100通常安装在基片上。显微加工的陀螺仪结构100基本上沿X轴线顶对底对称以及沿Y轴线边对边对称。
图2标记出显微加工的陀螺仪结构100的各种元件。其中,显微加工的陀螺仪结构100包括大体正方形的框架210,该框架210在其四个角悬挂加速计悬挂挠性件202、204、206和208。图3重点示出框架210。在框架210的四个边之外是指状物212、213、214、215、216、217、218和219。各种谐振结构悬挂在框架210内。这些谐振结构包括四个可移动质量220、222、224和226,四个杠杆228、230、232和234,以及两个叉状件236和238。图4重点示出质量220。应当注意,质量222、224和226与质量220具有基本同样的形状、尺寸和质量,并且沿X和/或Y轴与质量220取向成镜面成像。图5重点示出杠杆228。应当注意,杠杆230、232和234与杠杆228具有基本同样的形状、尺寸和质量,并且沿X和/或Y轴与杠杆228取向成镜面成像。四个可移动质量220、222、224和226分别由挠性件240、242、244和246悬挂于框架210。利用静电驱动器248、250、252、254、256、258、260和262静电地控制四个可移动质量220、222、224和226的运动。下面更详细地描述显微加工的陀螺仪结构100的这些和其他特征。
四个加速计悬挂挠性件202、204、206和208帮助控制框架210相对于基片的运动。四个加速计悬挂挠性件202、204、206和208基本限制框架210沿X轴线和沿Y轴线运动(即平移运动),但是允许框架210在两个方向的任何一个方向较自由地转动(即旋转运动)。框架210的这种旋转运动主要是由因框架相对于谐振结构的运动所导致的科氏效应所产生的。
图6详细地示出加速计悬挂挠性件202。加速计悬挂挠性件202在位置630和640固定于基片。加速计悬挂挠性件202基本上限制框架210的平移运动,但是允许框架210的旋转运动。结构650和660是蚀刻补偿器,用于确保其他挠性结构的精确形成。其原理公开在美国专利6,282,960中。应当注意,加速计悬挂挠性件204、206和208与加速计悬挂挠性件202基本是同样的。
指状物212、213、214、215、216、217、218和219从框架210的四个边伸出。设置在指状物212、213、214、215、216、217、218和219之间的是两组科氏检测器。
图6示出指状物212和两个科氏检测器610和620之间的关系。
两组科氏检测器610和620机械地连接于基片并且不相对于该基片运动。框架210的运动正如下面所述,引起指状物212、213、214、215、216、217、218和219相对于科氏检测器的运动。指状物212、213、214、215、216、217、218和219相对于科氏检测器的运动产生电容的变化,该变化可以用电路(未示出)测量。这种测量可以用各种方式进行。
两组科氏检测器610和620通过四个换位机构1010、1020、1030和1040连接成双重差动形式,如图10所示。换位机构1010、1020、1030和1040基本上消除了来自周围电路引起的电信号和框架210的平移运动产生的信号,但是明显放大了框架210的旋转运动所产生的信号。具体说,当存在框架210的平移运动时,科氏检测器的大约一半产生信号,而另一半产生基本相等的相反信号,其结果净信号为零。因此,框架210的平移运动基本被电子地消除。然而,当存在框架210的旋转运动时,所有的科氏检测器产生互补的信号,当其组合并放大时,该信号表示旋转运动的量值。通过将指状物和科氏检测器设置在框架210的所有边上,与指状物和科氏检测器只设置在框架210的两个边上相比,产生较大的信号。
包括质量220、222、224和226、挠性件240、242、244和246、杠杆228、230、232和234以及叉状件236和238的谐振结构机械地连接。再参考图2,质量220和222经支点挠性件264机械地连接,而质量224和226经支点挠性件266机械地连接。质量220和224经杠杆228和230以及叉状件236机械地连接,而质量222和226经杠杆232和234以及叉状件238机械地连接。支点挠性件264和266,杠杆228、230、232和234,以及叉状件236和238使得质量220、222、224和226一起运动。
质量220由挠性件240悬挂于框架210,由支点挠性件264悬挂于质量222,并由支点挠性件268悬挂于杠杆228。质量222由挠性件242悬挂于框架210,由支点挠性件264悬挂于质量220,并由支点挠性件272悬挂于杠杆232。质量224由挠性件244悬挂于框架210,由支点挠性件266悬挂于质量226,并由支点挠性件276悬挂于杠杆230。质量226由挠性件246悬挂于框架210,由支点挠性件266悬挂于质量224,并由支点挠性件280悬挂于杠杆234。
杠杆228由支点挠性件270悬挂于框架210,由支点挠性件268悬挂于质量220,并由叉状件236悬挂于杠杆230。杠杆230由支点挠性件278悬挂于框架210,由支点挠性件276悬挂于质量224,并由叉状件236悬挂于杠杆228。杠杆232由支点挠性件274悬挂于框架210,由支点挠性件272悬挂于质量222,并由叉状件238悬挂于杠杆234。杠杆234由支点挠性件282悬挂于框架210,由支点挠性件280悬挂于质量226,并由叉状件238悬挂于杠杆232。
图7详细地示出质量220和相关元件。质量220由挠性件240悬挂于框架210,由支点挠性件264悬挂于质量222,并由支点挠性件268悬挂于杠杆228。挠性件240优选由三个平行的蚀刻(etches)构成,其中,中心蚀刻是未断开的,而外面的两个蚀刻在两处断开。外外面的蚀刻是蚀刻补偿器,用于确保中心蚀刻精确地形成。应当注意,质量222、224和226以及它们相关的元件与质量220和其相关的元件基本是同样的。
图8详细地示出杠杆228和230以及它们相关的元件。杠杆228由支点挠性件270悬挂于框架210,由支点挠性件268悬挂于质量220,并且由支点挠性件820悬挂于叉状件236。杠杆230由支点挠性件278悬挂于框架210,由支点挠性件276悬挂于质量224,并且由支点挠性件830悬挂于叉状件236。叉状件236由支点挠性件820悬挂于杠杆228,并由支点挠性件830悬挂于杠杆230。应当注意,杠杆232和234以及它们相应的元件与杠杆228和230以及它们相应的元件基本是同样的。
挠性件240、242、244和246分别地基本限制质量220、222、224和226沿Y轴的移动,但是分别允许质量220、222、224和226沿X轴的移动。挠性件240、242、244和246也分别允许质量220、222、224和226在其移动时稍稍地转动。
支点挠性件264将质量220和222基本锁定在一起,以便它们一起运动。同样,支点挠性件266将质量224和226基本锁定在一起,以便它们一起运动(不过与质量220和222相反)。
杠杆228和230,叉状件236以及支点挠性件268、270、820、830、276和278将质量220和224基本锁定在一起,以便它们能够进行基本相等但方向相反的运动。杠杆232和234,叉状件238,以及支点挠性件272、274、280和282,以及将杠杆232和234连接于叉状件238(未示出)的支点挠性件将质量222和226基本锁定在一起,以便它们能够进行基本相等但方向相反的运动。
杠杆228和230将质量220和224的基本相等但相反的从一侧到另一侧的运动转换成叉状件236沿Y轴的基本直线运动。具体说,质量220的从一侧到另一侧的运动通过支点挠性件268被传递给杠杆228,同时,质量224的从一侧到另一侧的运动通过支点挠性件276被传递给杠杆230。杠杆228和230分别在支点挠性件270和278转动,并分别在支点挠性件820和830转动,以使叉状件236沿Y轴直线运动。这些传递使质量220和224当它们从一侧到另一侧移动时稍稍转动。具体说,当向左移动时质量220稍稍朝着质量222转动,当向右移动时稍稍转动离开质量222,同时,当向右移动时质量224稍稍朝着质量226转动,当向左移动时稍稍转动离开质量226。
同样,杠杆232和234将质量222和226的基本相等但相反的从一侧到另一侧的运动转换成叉状件238沿Y轴的直线运动。具体说,质量222的从一侧到另一侧的运动通过支点挠性件272被传递给杠杆232,同时,质量226的从一侧到另一侧的运动通过支点挠性件280被传递给杠杆234。杠杆232和234分别在支点挠性件274和282,并分别在将杠杆232和234连接于叉状件238(未示出)支点挠性件转动,以使叉状件238沿Y轴直线运动。这些传递使质量222和226当它们从一侧到另一侧移动时稍稍转动。具体说,当向左移动时质量222稍稍朝着质量220转动,当向右移动时稍稍朝着离开质量220转动,同时当向右移动时质量226稍稍朝着质量224转动,当向左移动时稍稍转动离开质量224。
应当注意,谐振器的对称性和精确的反相运动一起引起来自枢转运动的角动量,以消除并且不引起加速计框架的转动。
图9示出质量220、222、224和226相对于叉状件236和238的相对运动。应当注意,实际上,这些和其他谐振器结构移动非常小的距离,并且箭头夸张地示出质量220、222、224和226从一侧到另一侧的运动和转动。
如上所述,用静电驱动器移动并控制质量。图11示出静电驱动器的详图。具体说,用于质量220的电驱动器250。该静电驱动器250是显微加工的,以便在质量220内形成包括两组指状物1110和1120和两组电极指状物1130和1140的空腔,该两组指状物1110和1120与质量220是一体的,两组电极指状物1130和140设置在空腔内并与基片连接。电极指状物1140围绕驱动指状物1110并安装在其之间,而电极指状物1130围绕驱动指状物1120并安装在其之间。当对电极指状物1140施加电压时,驱动指状物1110被拉向电极指状物1140,在质量220上产生一个向右的力。当对电极指状物1130施加电压时,驱动指状物1120被拉向电极指状物1130,在质量220上产生一个向左的力。对电极指状物1130和1140交替地施加电压引起质量来回运动。两组电极指状物1130和1140优选直线地固定于基片,以便减小由基片的表面剪切所产生的力矩。这种表面剪切能够在质量220上产生力矩。应当注意,静电驱动器248、252、254、256、258、260和262与静电驱动器250基本是同样的。
应当注意,静电驱动器248、252、254、256、258、260和262设置在靠近显微加工的陀螺仪结构100的中间,以便大多数质量远离中心。这增加显微加工的陀螺仪结构100对科氏加速度的灵敏度。
还有用于杠杆228、230、232和234的静电驱动器。图8示出用于杠杆228、230、232和234的部分静电驱动器810。静电驱动器810被显微加工以便在每个杠杆上形成驱动指状物和一组连接于基片的电极指状物。电极指状物围绕驱动指物并安装在驱动指物之间。当对电极指状物施加电压时,驱动指状物被拉向电极指状物,在每个杠杆上产生一个向着电极指状物的力。静电驱动器810用于增强谐振结构的运动。对于这些交替利用以感测谐振器的速度。这种速度信号用于关闭激励谐振的机电振荡回路。
应当注意,谐振结构优选以其固有谐振频率或其固有谐振频率附近被驱动以便增强谐振结构的运动范围。这反过来又增强了陀螺仪的灵敏度。
应当注意,在理论上,各种陀螺仪结构被精确地平衡,以便它们以基本同样的频率和相位移动。但是,实际上,各种陀螺仪结构不是被精确地平衡。例如,质量220、222、224和226理论上是同样的(虽然在X和/或Y轴镜面成像),但是至少部分地由于材料和用于形成质量的工艺的变化,通常不是同样的。类似的不平衡在其他陀螺仪结构中能够发生,例如各种杠杆,枢轴和挠性件。这些不平衡能够表現为质量运动的不同相(以下称之为“正交”),并且每个器件和每个器件之间都会不同。结构的机械刚度大大地地抑制这些运动,但是会有一定剩余正交。
因此,电正交抑制结构通常用于减小正交的量。其一般原理公开自在Clark的美国专利第5,992,233号中。在本发明的实施例中,正交抑制结构通常包括至少一个沿着质量运动方向位于该质量部分附近的电极。当对电极施加电压时,结果得到的静电力产生横向力,该横向力将该质量吸向该电极。单个的电极通常与每个质量相关,虽然不是所有的电极都被激活,而是特定器件的正交行为通常成为确定那个(如果有的话)电极将被激活以减少正交的特征。
由于正交量随质量的运动而变化,所以优选由电极施加的横向力同样也随着该质量的运动而变化。
改变由电极施加在该质量上的横向力的方法之一是根据该质量的位置改变施加在该电极上的电压。具体说,当该质量向外朝框架移动时增加电压,当该质量向内移动离开框架时减少电压。这种解决方案在实际应用中非常困难。
改变由电极施加在该质量上的横向力的另一种方法是根据该质量的位置改变靠近电极的该质量的量。图12示出了根据本发明实施例的正交抑制结构1200的详细视图。两个电极1210和1220设置在两个邻近的质量220和222之间,具体设置在形成于该两个质量220和222中的空腔内并在该两个质量的旁边。电极1210邻近质量220,并且能够沿向下的方向对质量220施加横向力。电极1220邻近质量222,并且能够沿向上的方向对质量222施加横向力。为了改变电极施加的横向力的大小,每个质量上形成槽口,该槽口形成在邻近电极部分朝着该电极靠近框架的端部。当质量向外朝着框架移动时,直接邻近电极的质量的长度增加,导致施加在该质量上的较大的横向力。当质量向内移动离开框架时,直接邻近电极的质量的长度减小,导致施加在该质量上的较小的横向力。
在本发明的典型实施例中,电压施加在一个电极而不是两个电极1210和1220上。对其施加电压的电极通常利用特性化的正交和确定最能减小正交的该电极(如果有)来选择。
应当注意,类似的正交抑制结构形成在质量224和226之间。为了减小静电力通常激活质量220和222之间的一个电极和质量224和226之间的一个电极。
应当注意,正交抑制电极的位置不限于两个质量之间交界处的空腔。电极可以设置在其他位置。各种电极的位置应当平衡。电极通常对质量产生一定量的力矩,并且该力矩量通常至少在一定程度上取决于该电极的位置。小力矩量一般不是问题。
在本发明的典型实施例中,对电极施加恒定的电压。这通常得到较好的结果。可选地,施加于电极的电压可以变化。当做法适当时这能够导致改善正交抑制,但是以增加复杂性为代价。
虽然在图1和图2示出加速计悬挂挠性件202、204、206和208设置在框架的四个角,应当注意,本发明不限于加速计悬挂挠性件的这种设置。而是,加速计悬挂挠性件可以沿框架设置在各种不同的点。加速计悬挂挠性件优选限制框架的平移运动,同时允许框架绕质量中心的旋转运动。这可以通过设置加速计悬挂挠性件实现,使每对相对的加速计悬挂挠性件之间的线性轴线通过该陀螺仪的质量有效中心。
在临时申请的附页A1至A9中详细描述了本发明的各个方面,其结合在上面所述中作为参考。
在本发明的可选实施例中,加速计悬挂挠性件设置在框架四边的中间而不是框架的四个角。图13示出根据本发明实施例的另一种框架悬挂结构。在这个实施例中,四个加速计悬挂挠性件1304、1306、1308和1310设置在该框架1302的四边的中间。加速计悬挂挠性件的这种设置带来一些制造优点。具体说,一些蚀刻设备根据直线栅格产生蚀刻,所以,与以一定角度设置的栅格的特征相比(角设置的挠性件)很容易产生与该栅格对齐的特征(边设置的挠性件)。角设置的挠性件不能特别有效的产生空间效率。
通常通过下述步骤制造陀螺仪:在基片(约600um厚)顶部沉积氧化物层(约2um厚);用光刻(photolithography)在氧化物层上在所希望的位置(特别是在该显微加工的陀螺仪与该基片连接的位置)形成孔;在形成薄膜的整个氧化物层上沉淀多晶硅层(约4um厚),该薄膜通过氧化物层的孔连接于基片;用光刻在多晶硅层上形成复杂的显微加工的陀螺仪结构100;以及用氢氟酸除去氧化层。这样,得到的显微加工的陀螺仪结构100悬挂在约2um厚的基片之上。应当注意,显微加工的陀螺仪结构100具有大量的孔,特别是在质量220、222、224和226,杠杆228、230、232和234,以及框架210上。这些孔形成在显微加工的陀螺仪结构100上,以便使氢氟酸能够充分地流过并流到氧化物层。如果这种显微加工的陀螺仪结构100被放置在真空中,显微加工的陀螺仪结构100通常特别容易损坏并通常具有瞬变(ring)趋向的高谐振频率。通过在空气中运行显微加工的陀螺仪结构100,空气减震该显微加工的陀螺仪结构100,并减少瞬变。
应当注意,本发明的显微加工的陀螺仪通常在空气中而不是在真空中运行。在空气中运行具有许多优点和缺点。一方面,空气由于粘滞阻尼趋于阻止移动元件的运动,导致小输出信号,这往往会造成破坏同步校正的相位偏移,并且由于空气分子的撞击(布朗运动)往往会引起噪声,导致减小信噪比。但是,另一方面,在空气中运行,能够使显微加工的陀螺仪成为薄膜结构,提供一种空气垫,使薄膜结构坚固,并消除陀螺仪单元对气密密封件的需要,从而使最终产品的总的成本降低。
本发明可以以其他的具体方式实施而不脱离本发明的实际范围。所描述的实施例在各个方面认为是说明性的而不是限制性的。
因此,尤其是,本发明决不限于框架的形状、尺寸,谐振结构(包括质量、杠杆、叉状件、挠性件和支点挠性件)的形状、尺寸,可运动质量的数量,谐振结构的机械连接方式,用于检测科氏加速度的指状物的数量,谐振结构被驱动的方式,以及制造陀螺仪的材料和方式。
Claims (18)
1.一种带有正交抑制的显微加工的陀螺仪,包括:
正交抑制电极;和
邻近所述正交抑制电极定位的谐振器质量;
所述谐振器质量包括槽口,所述槽口邻近所述正交抑制电极的一部分而形成,使得直接邻近所述正交抑制电极的所述谐振器质量的长度随着所述谐振器质量相对于所述正交抑制电极移动而变化,其中,所述正交抑制电极能够对所述谐振器质量产生横向力,所述横向力通过根据谐振器质量的位置改变靠近正交抑制电极的谐振器质量的量而改变。
2.根据权利要求1所述的显微加工的陀螺仪,其中,所述横向力是静电力。
3.根据权利要求1所述的显微加工的陀螺仪,还包括被施加于所述正交抑制电极的恒定电压,其中,所述横向力与直接邻近所述正交抑制电极的所述谐振器质量的长度成比例。
4.根据权利要求1所述的显微加工的陀螺仪,还包括被施加于所述正交抑制电极的可变电压,其中,所述横向力作为直接邻近所述正交抑制电极的所述谐振器质量的长度和所述可变电压的函数而变化。
5.根据权利要求1所述的显微加工的陀螺仪,还包括:至少一个驱动电极,所述至少一个驱动电极用于使所述谐振器质量朝外朝着框架移动,直接邻近所述正交抑制电极的谐振器质量的长度增加,并且当谐振器质量向内移动离开框架使,直接邻近所述正交抑制电极的谐振器质量的长度减小。
6.一种带有正交抑制的显微加工的陀螺仪,包括:
多个正交抑制电极;和
多个谐振器质量,每个谐振器质量均邻近所述多个正交抑制电极中的相应一个正交抑制电极定位,每个谐振器质量均包括槽口,所述槽口邻近所述谐振器质量的相应正交抑制电极的一部分而形成,使得直接邻近所述正交抑制电极的所述谐振器质量的长度随着所述谐振器质量相对于所述正交抑制电极移动而变化,其中,每个正交抑制电极均能够对邻近的谐振器质量产生横向力,所述横向力通过根据谐振器质量的位置改变靠近正交抑制电极的谐振器质量的量而改变。
7.根据权利要求6所述的显微加工的陀螺仪,还包括被施加于所述多个正交抑制电极中的、确定用于减少所述谐振器质量的正交的至少一个正交抑制电极的电压。
8.根据权利要求6所述的显微加工的陀螺仪,其中,所述多个谐振器质量通过多个杠杆、支点挠性件和叉状件机械地连接,以产生用于所述多个谐振器质量的基本单一的谐振频率。
9.根据权利要求8所述的显微加工的陀螺仪,其中,所述多个谐振器质量包括:通过挠性件机械地连接的第一对质量;以及通过挠性件机械地连接的第二对质量,其中,所述第一对质量和所述第二对质量彼此反相位地谐振。
10.一种带有正交抑制的显微加工的陀螺仪,包括:
基片;
框架,第一多个悬挂挠性件沿着所述框架的外周布置,所述第一多个悬挂挠性件固定于所述基片并形成为基本防止所述框架在所述框架的平面内相对于所述基片的平移运动,但允许所述框架围绕与所述框架及所述基片平行的轴线的旋转运动;
多个正交抑制电极;以及
多个谐振结构,所述多个谐振结构布置在所述框架的内周中,所述谐振结构基本在所述框架的平面内运行,所述谐振结构包括多个谐振器质量,每个谐振器质量均邻近所述多个正交抑制电极中的相应一个正交抑制电极定位,每个谐振器质量均包括槽口,所述槽口邻近所述谐振器质量的相应正交抑制电极的一部分而形成,使得直接邻近所述正交抑制电极的所述谐振器质量的长度随着所述谐振器质量相对于所述正交抑制电极移动而变化,其中,每个正交抑制电极均能够对邻近的谐振器质量产生横向力,所述横向力通过根据谐振器质量的位置改变靠近正交抑制电极的谐振器质量的量而改变。
11.根据权利要求10所述的显微加工的陀螺仪,其中,所述多个谐振结构仅悬挂于所述框架的内周。
12.根据权利要求10所述的显微加工的陀螺仪,其中,所述多个谐振器质量通过多个杠杆、支点挠性件和叉状件机械地连接,以产生用于所述多个谐振器质量的基本单一的谐振频率。
13.根据权利要求12所述的显微加工的陀螺仪,其中,所述多个谐振器质量包括:
通过挠性件机械地连接的第一对质量;以及
通过挠性件机械地连接的第二对质量,其中,所述第一对质量和所述第二对质量彼此反相位地谐振。
14.根据权利要求12所述的显微加工的陀螺仪,其中,所述多个杠杆中的每一个均包括与固定到所述基片的、相应的固定的指状物交叉的多个杠杆指状物。
15.根据权利要求10所述的显微加工的陀螺仪,还包括:沿着所述框架的外周布置的多个框架指状物,所述框架指状物与固定到所述基片的、相应的传感指状物交叉,用于感测所述框架的所述旋转运动。
16.根据权利要求10所述的显微加工的陀螺仪,其中,每个谐振器质量均包括:第一多个驱动指状物,所述第一多个驱动指状物与固定到所述基片的、第一相应阵列的固定的驱动指状物交叉;以及第二多个驱动指状物,所述第二多个驱动指状物与固定到所述基片的、第二相应阵列的固定的驱动指状物交叉,其中,所述第一相应阵列和所述第二相应阵列的固定的驱动指状物彼此反相位地运行。
17.根据权利要求16所述的显微加工的陀螺仪,其中,每一阵列的固定的驱动指状物均利用多个固定器固定到所述基片,并且其中,用于所述第一相应阵列和所述第二相应阵列的固定的驱动指状物的固定器设置成在相对于所述谐振器质量的运动而言的横向上共线。
18.根据权利要求10所述的显微加工的陀螺仪,其中,所述框架的外周是大致正方形的并且包括沿着所述框架的每一侧布置的多个框架指状物,所述框架指状物与固定到所述基片的、相应的传感指状物交叉,用于感测当所述谐振结构发生谐振且所述陀螺仪围绕所述轴线旋转时由科氏加速度引起的、所述框架的所述旋转运动。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35461002P | 2002-02-06 | 2002-02-06 | |
US60/354,610 | 2002-02-06 | ||
US36422202P | 2002-03-14 | 2002-03-14 | |
US60/364,222 | 2002-03-14 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN03803436.0A Division CN1628238B (zh) | 2002-02-06 | 2003-02-06 | 显微加工的陀螺仪 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102679969A CN102679969A (zh) | 2012-09-19 |
CN102679969B true CN102679969B (zh) | 2016-07-06 |
Family
ID=46812256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210111352.5A Expired - Lifetime CN102679969B (zh) | 2002-02-06 | 2003-02-06 | 包括多个谐振结构的装置和带有正交抑制的显微加工的陀螺仪 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102679969B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3546954B1 (en) | 2016-01-07 | 2022-12-14 | Analog Devices, Inc. | 3-axis angular accelerometer |
US10732198B2 (en) * | 2017-08-09 | 2020-08-04 | Analog Devices, Inc. | Integrated linear and angular MEMS accelerometers |
CN109975577B (zh) * | 2019-04-22 | 2024-01-26 | 东南大学 | 基于弱耦合谐振器的微机械毛发流速传感器及其运行方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5635640A (en) * | 1995-06-06 | 1997-06-03 | Analog Devices, Inc. | Micromachined device with rotationally vibrated masses |
US5763781A (en) * | 1995-02-23 | 1998-06-09 | Netzer; Yishay | Coupled resonator vibratory rate sensor |
CN1206460A (zh) * | 1996-10-29 | 1999-01-27 | 三井化学株式会社 | 振动陀螺仪 |
CN2397473Y (zh) * | 1999-09-29 | 2000-09-20 | 中国科学院上海冶金研究所 | 栅型结构电容式微机械谐振陀螺 |
-
2003
- 2003-02-06 CN CN201210111352.5A patent/CN102679969B/zh not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5763781A (en) * | 1995-02-23 | 1998-06-09 | Netzer; Yishay | Coupled resonator vibratory rate sensor |
US5635640A (en) * | 1995-06-06 | 1997-06-03 | Analog Devices, Inc. | Micromachined device with rotationally vibrated masses |
US5869760A (en) * | 1995-06-06 | 1999-02-09 | Analog Devices, Inc. | Micromachined device with rotationally vibrated masses |
CN1206460A (zh) * | 1996-10-29 | 1999-01-27 | 三井化学株式会社 | 振动陀螺仪 |
CN2397473Y (zh) * | 1999-09-29 | 2000-09-20 | 中国科学院上海冶金研究所 | 栅型结构电容式微机械谐振陀螺 |
Also Published As
Publication number | Publication date |
---|---|
CN102679969A (zh) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1628238B (zh) | 显微加工的陀螺仪 | |
JP5615967B2 (ja) | 水平に向けられた駆動電極を有するmemsジャイロスコープ | |
JP4368116B2 (ja) | 回転型デカップルドmemsジャイロスコープ | |
US7707886B2 (en) | Micro-machined gyrometric sensor for differential measurement of the movement of vibrating masses | |
US20050050954A1 (en) | Micromachined double tuning-fork gyrometer with detection in the plane of the machined wafer | |
US6070463A (en) | Angular velocity sensor | |
US8997568B2 (en) | Micromachined gyroscope with detection in the plane of the machined wafer | |
JP2006053152A (ja) | 振動数検出を用いたマイクロジャイロメーター | |
US5537872A (en) | Angular rate sensor | |
CA2700565C (en) | Vibrating micromechanical sensor of angular velocity | |
US7089792B2 (en) | Micromachined apparatus utilizing box suspensions | |
CN102679969B (zh) | 包括多个谐振结构的装置和带有正交抑制的显微加工的陀螺仪 | |
US20050097956A1 (en) | Micromachined double tuning-fork gyrometer with detection in the plane of the machined wafer | |
US20230085473A1 (en) | Mems gyroscope | |
US20230400303A1 (en) | Inertial navigation sensor with reduced footprint | |
WO2009119470A1 (ja) | 角速度センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20160706 |
|
CX01 | Expiry of patent term |