CN102661795A - 泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置 - Google Patents

泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置 Download PDF

Info

Publication number
CN102661795A
CN102661795A CN2012101734465A CN201210173446A CN102661795A CN 102661795 A CN102661795 A CN 102661795A CN 2012101734465 A CN2012101734465 A CN 2012101734465A CN 201210173446 A CN201210173446 A CN 201210173446A CN 102661795 A CN102661795 A CN 102661795A
Authority
CN
China
Prior art keywords
pump light
light
flashlight
pump
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101734465A
Other languages
English (en)
Other versions
CN102661795B (zh
Inventor
杨庆鑫
林珊
何兴
刘伟龙
刘玉强
张大勇
杨延强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201210173446.5A priority Critical patent/CN102661795B/zh
Publication of CN102661795A publication Critical patent/CN102661795A/zh
Application granted granted Critical
Publication of CN102661795B publication Critical patent/CN102661795B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置,属于光学领域,本发明为解决有背景探测的泵浦-探测技术当激光输出能量有低频起伏时,测量结果中存在偶然误差的问题。本发明方法为:光学斩波器的偶数孔作遮光处理;同步输入泵浦光和探测光作为泵浦-探测光谱的光源;先利用光学斩波器将延迟t时刻的泵浦光的重复频率减半;泵浦光和探测光依次入射样品,输出信号光;再利用分束器和光学斩波器将信号光分开,形成有泵浦光作用和无泵浦光作用两束信号光,两束信号光分别经光纤收集、成像单色仪分光后入射到成像CCD上下两个区域,经成像CCD单次或多次曝光后同步获取有泵浦光谱信号光谱和无泵浦光谱信号光谱。

Description

泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置
技术领域
本发明涉及泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置,属于光学领域。
背景技术
泵浦-探测技术是通过改变泵浦光与探测光脉冲之间到达样品时间的间隔,记录不同时间延迟下探测光通过样品后信号光的变化,从而研究样品中时间分辨的光诱导物性变化规律。在常规的泵浦-探测技术中,由于记录的是探测光在泵浦光作用前后的相对变化量,所以泵浦-探测技术是有背景探测,当激光输出能量有低频起伏时(比如,飞秒激光泵浦-探测技术中,当探测光为晶体产生的白光时,白光的稳定性与激光能量相关,易有起伏),也就是背景有起伏时,相邻两个信号,即有泵浦光作用和无泵浦光作用的信号就会有较大的随机起伏引起的背景差异,这会给测量结果带来较大偶然误差,即使采取多次曝光累加的方法也无法在根本上避免这种偶然误差,并且相应地实验过程则需要更长时间。
发明内容
本发明目的是为了解决有背景探测的泵浦-探测技术当激光输出能量有低频起伏时,测量结果中的偶然误差无法在根本上避免的问题,提供了一种泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置。
本发明所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法为:
光学斩波器的偶数孔作遮光处理;
同步输入泵浦光和探测光作为泵浦-探测光谱的光源;
先利用经遮光处理后的光学斩波器将延迟t时刻的泵浦光的重复频率减半;
然后,泵浦光和探测光依次入射样品,输出信号光;
再利用分束器和经遮光处理后的光学斩波器将所述信号光按奇数脉冲与偶数脉冲分开,形成有泵浦光作用和无泵浦光作用两束信号光,两束信号光分别经光纤收集、成像单色仪分光后入射到成像CCD上下两个区域,经成像CCD单次或多次曝光后同步获取有泵浦光谱信号光谱和无泵浦光谱信号光谱。
所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法的实现装置,它包括样品、经遮光处理的光学斩波器、第一泵浦光全反射镜、第二泵浦光全反射镜、第三泵浦光全反射镜、光学延迟组、二向分色镜、第一探测光全反镜、第二探测光全反镜、信号光全反镜、半反镜、第一耦合透镜、第二耦合透镜、第一光纤头、第二光纤头、尾纤合并耦合装置和CCD成像光谱仪,CCD成像光谱仪由成像单色仪和成像CCD构成,
泵浦光经第一泵浦光全反射镜反射后输出反射后泵浦光,反射后泵浦光经光学延迟组后输出延迟后泵浦光,延迟后泵浦光再经第二泵浦光全反射镜反射后入射至经遮光处理的光学斩波器,经遮光处理的光学斩波器输出重复频率减半泵浦光,重复频率减半泵浦光经第三泵浦光全反射镜和二向分色镜两次反射后共线入射至样品;
与泵浦光同时发出的探测光经第一探测光全反镜和第二探测光全反镜两次全反射后输出反射后探测光,反射后探测光透射二向分色镜后共线入射至样品;
样品输出的信号光经半反镜分成两路,输出一路反射信号光和一路透射信号光,经遮光处理的光学斩波器的奇数孔位置输出有泵浦光作用的信号光,经遮光处理的光学斩波器的偶数孔位置输出无泵浦光作用的信号光,
有泵浦光作用的信号光经第一耦合透镜入射至第一光纤头,
无泵浦光作用的信号光经第二耦合透镜入射至第二光纤头,
第一光纤头和第二光纤头输出的信号光经尾纤合并耦合装置后输出,并经过成像单色仪入射至成像CCD,成像CCD的上半部分显示有泵浦光作用信号光的光谱,成像CCD的下半部分显示无泵浦光作用信号光的光谱。
本发明的优点:本发明采用了泵浦光与信号光同步斩波、信号光分区记录的技术,利用遮光处理后的光学斩波器将泵浦光的重复频率减半,从而使相邻信号脉冲分别为有泵浦光作用输出和无泵浦光作用输出,再利用分束器和斩波器将信号光按奇数脉冲与偶数脉冲分开,形成有泵浦光作用和无泵浦光作用两束信号光,分别经光纤收集,单色仪分光,入射到成像CCD上下两个区域,经CCD单次或多次曝光后同步获取有泵浦光谱信号和无泵浦光谱信号。
本方法适用性:重复频率低于几千赫兹的脉冲激光作为泵浦光和探测光;所用脉冲激光的脉宽为纳秒、皮秒和飞秒量级;信号光为探测光经过样品形成的反射光、透射光、衍射光、或二次谐波。
本发明与常规的泵浦-探测光谱方法相比,本方法的优点是:操作简单,适用于任何成像CCD,不受CCD响应速度和曝光时间限制,有效抑制了低频激光光强起伏与环境杂散光引起的测量噪声,极大地提高了测量精度。
附图说明
图1是本发明所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱装置的结构示意图;
图2是光学斩波器遮光原理示意图,以30孔斩波片为例,A与B为奇数孔位置;C为偶数孔位置;
图3是具体实施例给出的泵浦光、探测光曲线图;
图4是采用常规泵浦-探测方法测量光谱的曲线图;
图5是采用本发明泵浦-探测方法测量光谱的曲线图。
具体实施方式
具体实施方式一:下面结合图1和图2说明本实施方式,本实施方式所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法,为:
光学斩波器的偶数孔作遮光处理;
同步输入泵浦光和探测光作为泵浦-探测光谱的光源;
先利用经遮光处理后的光学斩波器将延迟t时刻的泵浦光的重复频率减半;
然后,泵浦光和探测光依次入射样品,输出信号光;
再利用分束器和经遮光处理后的光学斩波器将所述信号光按奇数脉冲与偶数脉冲分开,形成有泵浦光作用和无泵浦光作用两束信号光,两束信号光分别经光纤收集、成像单色仪分光后入射到成像CCD上下两个区域,经成像CCD单次或多次曝光后同步获取有泵浦光谱信号光谱和无泵浦光谱信号光谱。
泵浦-探测光谱包括有泵浦光谱信号光谱和无泵浦光谱信号光谱。
具体实施方式二:本实施方式对实施方式一作进一步说明,同步输入的泵浦光和探测光来源于同一脉冲激光器,或两个同步输出脉冲激光器。
具体实施方式三:本实施方式对实施方式一或二作进一步说明,所述脉冲激光器输出的激光脉宽为飞秒量级、皮秒量级或纳秒量级。
具体实施方式四:本实施方式对实施方式一、二或三作进一步说明,以遮光处理后的光学斩波器输出TTL信号作为脉冲激光器的触发源,使脉冲激光器输出的重复频率与遮光处理后的光学斩波器工作频率相同、相位同步;
具体实施方式五:本实施方式对实施方式一、二、三或四作进一步说明,以脉冲激光器输出TTL信号为遮光处理后的光学斩波器的触发源,使遮光处理后的光学斩波器的工作频率与脉冲激光器输出的重复频率相同、相位同步。
具体实施方式六:本实施方式对实施方式一、二、三、四或五作进一步说明,该装置的工作频率以脉冲激光器的工作频率和光学斩波器的重复频率较低者为上限。
具体实施方式七:下面结合图1至图5说明本实施方式,实现实施方式一所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法的装置,它包括样品1、经遮光处理的光学斩波器2、第一泵浦光全反射镜3、第二泵浦光全反射镜4、第三泵浦光全反射镜5、光学延迟组6、二向分色镜7、第一探测光全反镜8、第二探测光全反镜9、信号光全反镜10、半反镜11、第一耦合透镜12、第二耦合透镜13、第一光纤头14、第二光纤头15、尾纤合并耦合装置16和CCD成像光谱仪17,CCD成像光谱仪17由成像单色仪17-1和成像CCD17-2构成,
泵浦光经第一泵浦光全反射镜3反射后输出反射后泵浦光,反射后泵浦光经光学延迟组6后输出延迟后泵浦光,延迟后泵浦光再经第二泵浦光全反射镜4反射后入射至经遮光处理的光学斩波器2,经遮光处理的光学斩波器2输出重复频率减半泵浦光,重复频率减半泵浦光经第三泵浦光全反射镜5和二向分色镜7两次反射后共线入射至样品1;
与泵浦光同时发出的探测光经第一探测光全反镜8和第二探测光全反镜9两次全反射后输出反射后探测光,反射后探测光透射二向分色镜7后共线入射至样品1;
样品1输出的信号光经半反镜11分成两路,输出一路反射信号光和一路透射信号光,经遮光处理的光学斩波器2的奇数孔位置输出有泵浦光作用的信号光,经遮光处理的光学斩波器2的偶数孔位置输出无泵浦光作用的信号光,
有泵浦光作用的信号光经第一耦合透镜12入射至第一光纤头14,
无泵浦光作用的信号光经第二耦合透镜13入射至第二光纤头15,
第一光纤头14和第二光纤头15输出的信号光经尾纤合并耦合装置16后输出,并经过成像单色仪17-1入射至成像CCD17-2,成像CCD17-2的上半部分显示有泵浦光作用信号光的光谱,成像CCD17-2的下半部分显示无泵浦光作用信号光的光谱。
下面给出一个具体实施例:使用光源为脉冲宽度120fs,重复频率1KHz的飞秒激光系统。激光输出经分束镜后分为两束,一束经宝石晶体后产生白光作为探测光,波长范围为可见光,另一束经倍频晶体后产生倍频光作为泵浦光,波长400nm。测量信号为泵浦-探测瞬态吸收光谱。实验光路设计如图1所示,产生的泵浦光和探测光如图3所示。
首先,光学斩波器作遮光处理。光学斩波器工作频率400Hz~3.7KHz,斩波片为30孔。实验设定斩波器工作频率为1KHz,并将偶数孔(第2,4,6...孔)用轻质不透明材料遮住,或者特殊加工类似结构的单片斩波片,如图2所示。让光学斩波器的同步输出电信号作为外触发源,利用DG535同步触发激光器和CCD成像光谱仪17。此时,A和B为奇数孔位置,而C为偶数孔位置。
其次,如图1设计光路。令泵浦光经光学延迟组6后通过经遮光处理的光学斩波器2的A位置,则通过经遮光处理的光学斩波器2的泵浦光实际频率为500Hz,相应地泵浦光脉冲为奇数脉冲。泵浦光经二向分色镜7反射后近共线地入射样品1,二向分色镜7功能是:全反射泵浦光,高透过探测光,在样品1中与探测光在时间和空间上重合。这就使得探测光经过样品后,其中的奇数脉冲为有泵浦光作用的信号光,而偶数脉冲为无泵浦光作用的信号光。
把信号光用半反镜11分成强度相等的两部分,分别通过经遮光处理的光学斩波器2的B位置和C位置,则通过B位置的为奇数脉冲,是有泵浦光作用信号光,而通过C位置的为偶数脉冲,是无泵浦光作用信号光。如图1所示,相邻4个探测光脉冲中,实心正方形代表泵浦光,实心圆代表有泵浦光作用时的信号光,空心圆代表无泵浦光作用时的信号光。
有泵浦光作用时的信号光经第一耦合透镜12和第一光纤头14进入尾纤合并耦合装置16,无泵浦光作用时的信号光经第二耦合透镜13和第二光纤头15进入尾纤合并耦合装置16,以上下两部分在空间上分开的方式耦合进成像光谱仪17,色散后的信号光相应地成像在感光区上下两部分。这样,经单次或多次曝光后,即可同步记录有泵浦光作用时的光谱信号和无泵浦光作用时的光谱信号。
最后,令光学延迟组6在数据采集程序控制下改变泵浦-探测延迟时间,记录一系列泵浦-探测瞬态吸收光谱图5所示的为某一泵浦-探测延迟时间下、采用本实施方式所述方法探测到的光谱。
理论模拟:
为了更好说明本实施方式所述方法的意义,理论模拟如下:设某一波长附近,探测光单脉冲在无泵浦光作用时的信号光强度为100,相对标准偏差为1.6%;有泵浦光作用时的信号光强度为90,信号光相对变化量的理论值为0.1;在10秒测量时间内共有10000个探测光脉冲输出,如图3所示。
用常规泵浦-探测方法测量,打开泵浦光,在0.1秒内连续取100个有泵浦光作用时的信号光脉冲累加,取其平均值记录一个数据点;再挡住泵浦光,在0.1秒内连续取100个无泵浦光作用的信号光脉冲累加,取其平均值记录一个数据点。则在10秒测量时间内共有50个有泵浦光作用数据和50个无泵浦光作用数据,共50组100个数据,计算得信号光相对变化量测量值(50个数据)的相对标准偏差为10%,如图4所示。
利用本发明原理,在0.2秒内取100个奇数脉冲(有泵浦光作用),同步取100个偶数脉冲(无泵浦光作用),同时记录两个数据点,则在10秒测量时间内共有50个有泵浦光作用数据和50个无泵浦光作用数据,共50组100个数据,计算得信号光相对变化量测量值(50个数据)的相对标准偏差为0.09%,精度比常规方法提高了两个数量级,如图5所示。
注意,在上述理论模拟中,都只考虑CCD曝光时间,而没有考虑CCD读取、转换与传输数据的时间,但这在原则上不影响模拟结果。
具体实施方式八,本实施方式对实施方式七作进一步说明,光学延迟组6由4个个全反镜构成。泵浦-探测延迟时间通过改变泵浦-探测光谱的光源(同步输入的泵浦光和探测光)到达样品1的光程来实现。

Claims (8)

1.泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法,其特征在于,该方法为:
光学斩波器的偶数孔作遮光处理;
同步输入泵浦光和探测光作为泵浦-探测光谱的光源;
先利用经遮光处理后的光学斩波器将延迟t时刻的泵浦光的重复频率减半;
然后,泵浦光和探测光依次入射样品,输出信号光;
再利用分束器和经遮光处理后的光学斩波器将所述信号光按奇数脉冲与偶数脉冲分开,形成有泵浦光作用和无泵浦光作用两束信号光,两束信号光分别经光纤收集、成像单色仪分光后入射到成像CCD上下两个区域,经成像CCD单次或多次曝光后同步获取有泵浦光谱信号光谱和无泵浦光谱信号光谱。
2.根据权利要求1所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法,其特征在于,同步输入的泵浦光和探测光来源于同一脉冲激光器,或两个同步输出脉冲激光器。
3.根据权利要求2所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法,其特征在于,所述脉冲激光器输出的激光脉宽为飞秒量级、皮秒量级或纳秒量级。
4.根据权利要求3所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法,其特征在于,以遮光处理后的光学斩波器输出TTL信号作为脉冲激光器的触发源,使脉冲激光器输出的重复频率与遮光处理后的光学斩波器工作频率相同、相位同步。
5.根据权利要求3所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法,其特征在于,以脉冲激光器输出TTL信号为遮光处理后的光学斩波器的触发源,使遮光处理后的光学斩波器的工作频率与脉冲激光器输出的重复频率相同、相位同步。
6.根据权利要求4或5所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法,其特征在于,该装置的工作频率以脉冲激光器的工作频率和光学斩波器的重复频率较低者为上限。
7.实现权利要求1所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法的装置,其特征在于,它包括样品(1)、经遮光处理的光学斩波器(2)、第一泵浦光全反射镜(3)、第二泵浦光全反射镜(4)、第三泵浦光全反射镜(5)、光学延迟组(6)、二向分色镜(7)、第一探测光全反镜(8)、第二探测光全反镜(9)、信号光全反镜(10)、半反镜(11)、第一耦合透镜(12)、第二耦合透镜(13)、第一光纤头(14)、第二光纤头(15)、尾纤合并耦合装置(16)和CCD成像光谱仪(17),CCD成像光谱仪(17)由成像单色仪(17-1)和成像CCD(17-2)构成,
泵浦光经第一泵浦光全反射镜(3)反射后输出反射后泵浦光,反射后泵浦光经光学延迟组(6)后输出延迟后泵浦光,延迟后泵浦光再经第二泵浦光全反射镜(4)反射后入射至经遮光处理的光学斩波器(2),经遮光处理的光学斩波器(2)输出重复频率减半泵浦光,重复频率减半泵浦光经第三泵浦光全反射镜(5)和二向分色镜(7)两次反射后共线入射至样品(1);
与泵浦光同时发出的探测光经第一探测光全反镜(8)和第二探测光全反镜(9)两次全反射后输出反射后探测光,反射后探测光透射二向分色镜(7)后共线入射至样品(1);
样品(1)输出的信号光经半反镜(11)分成两路,输出一路反射信号光和一路透射信号光,经遮光处理的光学斩波器(2)的奇数孔位置输出有泵浦光作用的信号光,经遮光处理的光学斩波器(2)的偶数孔位置输出无泵浦光作用的信号光,
有泵浦光作用的信号光经第一耦合透镜(12)入射至第一光纤头(14),
无泵浦光作用的信号光经第二耦合透镜(13)入射至第二光纤头(15),
第一光纤头(14)和第二光纤头(15)输出的信号光经尾纤合并耦合装置(16)后输出,并经过成像单色仪(17-1)入射至成像CCD(17-2),成像CCD(17-2)的上半部分显示有泵浦光作用信号光的光谱,成像CCD(17-2)的下半部分显示无泵浦光作用信号光的光谱。
8.根据权利要求7所述泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法的实现装置,其特征在于,光学延迟组(6)由4个全反镜构成。
CN201210173446.5A 2012-05-30 2012-05-30 泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置 Expired - Fee Related CN102661795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210173446.5A CN102661795B (zh) 2012-05-30 2012-05-30 泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210173446.5A CN102661795B (zh) 2012-05-30 2012-05-30 泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置

Publications (2)

Publication Number Publication Date
CN102661795A true CN102661795A (zh) 2012-09-12
CN102661795B CN102661795B (zh) 2014-01-15

Family

ID=46771328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210173446.5A Expired - Fee Related CN102661795B (zh) 2012-05-30 2012-05-30 泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置

Country Status (1)

Country Link
CN (1) CN102661795B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181110A (zh) * 2014-08-15 2014-12-03 中国科学院上海技术物理研究所 一种基于显微镜的激光双调制反射光谱检测系统
CN105527265A (zh) * 2016-01-22 2016-04-27 复旦大学 激光泵浦时间分辨上转换发光活体成像系统
CN108333479A (zh) * 2017-12-11 2018-07-27 华北电力大学(保定) 一种基于日盲型光感触发的高压放电同步采集系统
CN110031102A (zh) * 2019-05-17 2019-07-19 南京大学 一种高速光谱仪
CN113189566A (zh) * 2021-04-29 2021-07-30 深圳市京湾量子遥感科技有限公司 一种基于量子光场的量子激光雷达系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271025A (zh) * 2007-03-20 2008-09-24 北京大学 一种对种子光信号进行超快时间分辨测量的方法及装置
US20090206263A1 (en) * 2007-09-27 2009-08-20 Anis Rahman Terahertz time domain and frequency domain spectroscopy
US7760364B1 (en) * 2008-10-22 2010-07-20 Kla-Tencor Corporation Systems and methods for near-field heterodyne spectroscopy
CN102262070A (zh) * 2011-04-27 2011-11-30 中国科学院物理研究所 亚脉冲宽度的2飞秒精度超快时间分辨系统
CN102331403A (zh) * 2011-09-02 2012-01-25 东南大学 近场太赫兹THz时域光谱表征方法及其测试装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271025A (zh) * 2007-03-20 2008-09-24 北京大学 一种对种子光信号进行超快时间分辨测量的方法及装置
US20090206263A1 (en) * 2007-09-27 2009-08-20 Anis Rahman Terahertz time domain and frequency domain spectroscopy
US7760364B1 (en) * 2008-10-22 2010-07-20 Kla-Tencor Corporation Systems and methods for near-field heterodyne spectroscopy
CN102262070A (zh) * 2011-04-27 2011-11-30 中国科学院物理研究所 亚脉冲宽度的2飞秒精度超快时间分辨系统
CN102331403A (zh) * 2011-09-02 2012-01-25 东南大学 近场太赫兹THz时域光谱表征方法及其测试装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181110A (zh) * 2014-08-15 2014-12-03 中国科学院上海技术物理研究所 一种基于显微镜的激光双调制反射光谱检测系统
CN105527265A (zh) * 2016-01-22 2016-04-27 复旦大学 激光泵浦时间分辨上转换发光活体成像系统
CN105527265B (zh) * 2016-01-22 2023-07-04 复旦大学 激光泵浦时间分辨上转换发光活体成像系统
CN108333479A (zh) * 2017-12-11 2018-07-27 华北电力大学(保定) 一种基于日盲型光感触发的高压放电同步采集系统
CN110031102A (zh) * 2019-05-17 2019-07-19 南京大学 一种高速光谱仪
CN113189566A (zh) * 2021-04-29 2021-07-30 深圳市京湾量子遥感科技有限公司 一种基于量子光场的量子激光雷达系统及其控制方法
CN113189566B (zh) * 2021-04-29 2024-05-24 毕思文 一种基于量子光场的量子激光雷达系统及其控制方法

Also Published As

Publication number Publication date
CN102661795B (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
CN106772438B (zh) 一种全天时准确测量大气温度和气溶胶参数的激光雷达系统
CN102661795B (zh) 泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置
CN104458646B (zh) 一种高速多幅太赫兹时域光谱成像仪
CN104122562B (zh) 多波段拉曼‑荧光激光雷达系统
CN104501954B (zh) 基于脉冲同步测量技术的光谱特性测试仪
CN105911559A (zh) 基于可见光-近红外-短波红外波段的激光雷达系统
CN104865576B (zh) 一种紧凑的超短脉冲激光远程测距系统及其测距方法
CN100593712C (zh) 时间分辨的激光诱导原子发射光谱探测系统及方法
CN102564590A (zh) 地物模拟光谱辐射定标源装置
CN105928688B (zh) 基于单次曝光模式的光栅衍射效率光谱的测量装置和方法
CN202522516U (zh) 一种光学透过率测试装置
CN104833650A (zh) 单光导天线的脉冲太赫兹时域光谱系统及探测方法
CN106646429A (zh) 一种用于激光雷达的自标定几何因子的装置及方法
CN107727250A (zh) 光栅波前倾斜色散补偿装置
CN102798868A (zh) 基于飞行光谱的三维成像雷达系统
CN103076092A (zh) 一种提高光谱分辨率的干涉成像光谱装置及方法
CN103592277B (zh) 一种高精度荧光寿命测量装置
GB2364840A (en) Analysis of optical systems using lidar
CN110118762A (zh) 火焰ch基和no分子同步或选择性激发测量装置及方法
CN102944313A (zh) 多功能飞秒激光脉冲测量装置
CN105203223A (zh) 一种基于cars光谱测量一维扫描火焰温度的装置
CN107632402A (zh) 一种用于实时观测微纳瞬变现象的连续/突发/相差三模超快显微成像方法
CN102426306B (zh) 超快电子器件测试系统及方法
CN104111243A (zh) 一种荧光比率测量系统及方法
CN202305181U (zh) 大口径取样光栅取样率的测试装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140115

Termination date: 20210530