CN102650632A - Method for evaluating shelf life of cooling pork at fluctuating temperature - Google Patents
Method for evaluating shelf life of cooling pork at fluctuating temperature Download PDFInfo
- Publication number
- CN102650632A CN102650632A CN2012101637516A CN201210163751A CN102650632A CN 102650632 A CN102650632 A CN 102650632A CN 2012101637516 A CN2012101637516 A CN 2012101637516A CN 201210163751 A CN201210163751 A CN 201210163751A CN 102650632 A CN102650632 A CN 102650632A
- Authority
- CN
- China
- Prior art keywords
- pork
- shelf life
- under
- model
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000015277 pork Nutrition 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000001816 cooling Methods 0.000 title description 2
- 241001148470 aerobic bacillus Species 0.000 claims abstract description 18
- 238000003860 storage Methods 0.000 claims abstract description 16
- 244000005700 microbiome Species 0.000 claims abstract description 14
- 238000004458 analytical method Methods 0.000 claims abstract description 8
- 241000894006 Bacteria Species 0.000 claims description 14
- 239000001967 plate count agar Substances 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 238000013210 evaluation model Methods 0.000 claims 1
- 230000001953 sensory effect Effects 0.000 abstract description 30
- 230000000813 microbial effect Effects 0.000 abstract description 27
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 235000013305 food Nutrition 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 235000013372 meat Nutrition 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 235000013622 meat product Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002906 microbiologic effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000252233 Cyprinus carpio Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及一种应用于波动温度下评价冷却猪肉货架期的方法,包括以下步骤:(1)样品微生物及感官分析;(2)微生物生长预测模型;(3)波动温度下预测模型的应用及验证。本发明优点在于:本发明应用预测微生物学的方法,通过分析不同温度条件下不同时间点冷却猪肉中的好氧菌的增长情况,建立不同贮藏温度下冷却猪肉的微生物预测模型,以此来评价冷却猪肉的食用安全性,所建立的预测微生物动力学模型能有效地预测4~15℃条件下冷却猪肉的货架期,为实时监测和跟踪温度变动的环境条件下的冷却猪肉的货架期提供了强有力的技术支撑。
The invention relates to a method for evaluating the shelf life of chilled pork under fluctuating temperatures, comprising the following steps: (1) sample microorganism and sensory analysis; (2) microbial growth prediction model; (3) application of the prediction model under fluctuating temperatures and verify. The advantages of the present invention are: the present invention uses the method of predicting microbiology, by analyzing the growth of aerobic bacteria in the cooled pork at different time points under different temperature conditions, and establishing a microbial prediction model for the cooled pork under different storage temperatures, so as to evaluate The edible safety of chilled pork, the established predictive microbial kinetic model can effectively predict the shelf life of chilled pork under the condition of 4~15 ℃, which provides a basis for real-time monitoring and tracking of the shelf life of chilled pork under the environmental conditions of temperature changes. Strong technical support.
Description
技术领域 technical field
本发明涉及肉制品贮藏领域,具体地说,是一种应用于波动温度下评价冷却猪肉货架期的方法。 The invention relates to the field of meat product storage, in particular to a method for evaluating the shelf life of cooled pork under fluctuating temperatures.
背景技术 Background technique
冷却猪肉因其良好的口感和安全性受到广大消费者的欢迎,作为中国消费者的主要肉类消费食品,猪肉产品的安全性受到了广泛的重视和关注。所以,开发能快速、有效地评价冷却猪肉货架期与安全性的技术方法,不仅对于食品消费者,对于零售商和肉品行业都是至关重要的。 Chilled pork is welcomed by consumers because of its good taste and safety. As the main meat consumption food of Chinese consumers, the safety of pork products has received extensive attention and attention. Therefore, the development of technical methods that can quickly and effectively evaluate the shelf life and safety of chilled pork is of vital importance not only for food consumers, but also for retailers and the meat industry.
在温度控制得当的情况下,冷却猪肉始终处于0~4℃的低温中,使得肉品中微生物的生长受到了一定的抑制。然而,如果冷链系统不够完善,在贮藏、运输和销售等过程中出现控制不当,导致温控系统的变化或失败使温度升高,微生物会迅速增殖,加速鲜肉变质,从而会对公众健康构成潜在的威胁。所以,掌握肉品中微生物在不同温度条件下的生长规律,从而对其变化规律进行预测,能够达到评价肉品货架期的目的。传统的产品检测是对肉品进行抽样检查,不但费时费力,并且结果需要在24或48小时之后才能判断,具有一定的滞后性,起不到预知的作用,使用数学模型预测可以克服这些限制而有利于采取有效的预防措施。 In the case of proper temperature control, the chilled pork is always at a low temperature of 0-4°C, which inhibits the growth of microorganisms in the meat to a certain extent. However, if the cold chain system is not perfect, improper control occurs in the process of storage, transportation, and sales, resulting in changes or failures in the temperature control system to increase the temperature, microorganisms will proliferate rapidly, and accelerate the deterioration of fresh meat, which will affect public health. constitute a potential threat. Therefore, mastering the growth law of microorganisms in meat products under different temperature conditions, so as to predict their changing laws, can achieve the purpose of evaluating the shelf life of meat products. Traditional product testing is to conduct sampling inspections on meat products, which is time-consuming and labor-intensive, and the results need to be judged after 24 or 48 hours, which has a certain hysteresis and cannot play a predictive role. Using mathematical model predictions can overcome these limitations. Facilitate the adoption of effective preventive measures.
在实际的肉品产业链的生产、运输、贮藏、消费阶段,常出现冷却猪肉产品所处的环境温度发生波动的情况,而所处的环境温度越高,冷却猪肉中微生物的增殖速度会越快,可能使得冷却猪肉的安全性降低,货架期缩短,给消费者带来食品安全隐患,给生产经营者带来经济损失。 In the production, transportation, storage, and consumption stages of the actual meat industry chain, the ambient temperature of chilled pork products often fluctuates, and the higher the ambient temperature, the faster the proliferation of microorganisms in chilled pork. Fast, may reduce the safety of chilled pork, shorten the shelf life, bring food safety hazards to consumers, and bring economic losses to producers and operators.
食品预测微生物学是近年发展起来的一门新技术,其特点在于可在不进行微生物分析的前提下,若食品所经历的温度过程已知,则可运用微生物预测模型计算出此食品中微生物的数量,并以此为指标来估计食品的货架期和安全性。虽然,微生物预测模型方便、实用,但初期建立过程需要大量的基础工作,需要进行大量的微生物分析来建立数学模型,但模型建立并且验证其可行之后,便可为食品的质量监控提供强有力的技术支撑。 Food predictive microbiology is a new technology developed in recent years. Its characteristic is that without microbial analysis, if the temperature process experienced by the food is known, the microbial prediction model can be used to calculate the microbial concentration in the food. Quantity, and use this as an indicator to estimate the shelf life and safety of food. Although the microbial prediction model is convenient and practical, the initial establishment process requires a lot of basic work and a large number of microbial analyzes to establish a mathematical model. However, after the model is established and verified to be feasible, it can provide a powerful tool for food quality monitoring. Technical Support.
中国专利文献CN101576553A公开了一种冷却猪肉的货架期预测模型,从感官和理化方面对贮藏在0℃、5℃、10℃和20℃下的猪肉进行了实验研究,通过相应的品质能级函数分析,确立挥发性盐基氮反应级数为1级,基于其与感观值的良好对应关系,设立为猪肉的鲜度指标,并根据该指标建立冷却肉货架期预测模型。中国专利文献CN101949870A公开了一种冷藏鲤鱼鲜度品质预测方法,通过对冷藏养殖鲤鱼感官、化学和微生物学品质的研究,确定产品货架期,采用指数相对腐败速率方程模型描述温度与鱼品鲜度的关系。但是关于一种应用于波动温度下评价冷却猪肉货架期的微生物预测模型目前还未见报道。 Chinese patent document CN101576553A discloses a shelf life prediction model for chilled pork. Experimental studies have been carried out on pork stored at 0°C, 5°C, 10°C and 20°C from the sensory and physical and chemical aspects. Based on the analysis, the reaction order of volatile base nitrogen was established as level 1. Based on its good correspondence with sensory value, it was set as the freshness index of pork, and a prediction model for the shelf life of chilled meat was established based on this index. Chinese patent document CN101949870A discloses a method for predicting the freshness and quality of refrigerated carp. Through the research on the sensory, chemical and microbiological qualities of refrigerated carp, the shelf life of the product is determined, and the exponential relative spoilage rate equation model is used to describe the relationship between temperature and fish freshness. Relationship. However, there is no report on a microbial prediction model applied to evaluate the shelf life of chilled pork under fluctuating temperatures.
发明内容 Contents of the invention
本发明的目的是针对现有技术中的不足,提供一种应用于波动温度下评价冷却猪肉货架期的方法。 The purpose of the present invention is to provide a method for evaluating the shelf life of chilled pork under fluctuating temperatures aimed at the deficiencies in the prior art.
为实现上述目的,本发明采取的技术方案是:一种应用于波动温度下评价冷却猪肉货架期的方法,包括以下步骤: In order to achieve the above object, the technical solution adopted by the present invention is: a method for evaluating the shelf life of cooled pork under fluctuating temperatures, comprising the following steps:
(1)样品微生物及感官分析:将冷却猪肉于4℃、7℃、10℃、15℃及两个波动温度,即4℃/12h~7℃/12h和4℃/12h~10℃/6h~15℃/6h下贮藏,经过适当的时间间隔,分别进行微生物数量测定及感官评定; (1) Microbiological and sensory analysis of samples: put the cooled pork at 4°C, 7°C, 10°C, 15°C and two fluctuating temperatures, namely 4°C/12h~7°C/12h and 4°C/12h~10°C/6h Store at ~15°C/6h, and conduct microbial count and sensory evaluation after appropriate time intervals;
(2)微生物生长预测模型:①一级模型,采用三阶段线性模型来描述不同贮藏温度下的冷却猪肉中好氧菌的数量随时间的变化;②二级模型,分别选用线性方程来描述μmax随温度的变化以及A随温度的变化,选用乘幂方程来描述λ随温度的变化; (2) Microbial growth prediction model: ① first-level model, using a three-stage linear model to describe the changes in the number of aerobic bacteria in chilled pork at different storage temperatures over time; ② second-level model, using linear equations to describe μ The change of max with temperature and the change of A with temperature, the power equation is used to describe the change of λ with temperature;
(3)波动温度下预测模型的应用及验证:将所建立的一级模型与二级模型相结合,来预测两组波动温度下冷却猪肉中的好氧菌数,并与实际测量值进行比较,以评价模型的准确性。 (3) Application and verification of the prediction model under fluctuating temperatures: Combine the first-level model and the second-level model to predict the number of aerobic bacteria in chilled pork under two groups of fluctuating temperatures, and compare with the actual measured values , to evaluate the accuracy of the model.
所述的步骤(1)中微生物数量测定的方法是将贮藏在不同温度下的样品,分别取样,采用平板计数琼脂测定好氧菌总数。 The method for measuring the number of microorganisms in the step (1) is to take samples from samples stored at different temperatures, and use plate count agar to measure the total number of aerobic bacteria.
所述的步骤(2)中的三阶段线性模型为: The three-stage linear model in the step (2) is:
其中,t为时间(h),y为t时的菌数(log10CFU/g),A为最大菌数(log10CFU/g),μmax为最大比生长速率(h-1),λ即为微生物生长的延滞期(h)。 Among them, t is the time (h), y is the number of bacteria at t (log 10 CFU/g), A is the maximum number of bacteria (log 10 CFU/g), μ max is the maximum specific growth rate (h -1 ), λ is the lag period (h) of microbial growth.
所述的步骤(2)中的二级模型为: The secondary model in the step (2) is:
其中,t为时间(h),y为t时的菌数(log10CFU/g),A为最大菌数(log10CFU/g),μmax为最大比生长速率(h-1),λ即为微生物生长的延滞期(h)。 Among them, t is the time (h), y is the number of bacteria at t (log 10 CFU/g), A is the maximum number of bacteria (log 10 CFU/g), μ max is the maximum specific growth rate (h -1 ), λ is the lag period (h) of microbial growth.
本发明优点在于: The present invention has the advantage that:
本发明应用预测微生物学的方法,通过分析不同温度条件下不同时间点冷却猪肉中的好氧菌的增长情况,建立不同贮藏温度下冷却猪肉的微生物预测模型,以此来评价冷却猪肉的食用安全性,所建立的预测微生物动力学模型能有效地预测4~15℃条件下冷却猪肉的货架期,为实时监测和跟踪温度变动的环境条件下的冷却猪肉的货架期提供了强有力的技术支撑。 The invention applies the method of predicting microbiology, by analyzing the growth of aerobic bacteria in cooled pork at different time points under different temperature conditions, and establishing a microbial prediction model for cooled pork at different storage temperatures, so as to evaluate the eating safety of cooled pork The established predictive microbial kinetics model can effectively predict the shelf life of chilled pork at 4-15°C, providing strong technical support for real-time monitoring and tracking of the shelf life of chilled pork under environmental conditions of temperature fluctuations .
附图说明 Description of drawings
附图1是不同贮藏温度下冷却猪肉中好氧菌数随时间的变化。 Accompanying drawing 1 is the change of the number of aerobic bacteria in chilled pork with time under different storage temperatures.
具体实施方式 Detailed ways
下面结合附图对本发明提供的具体实施方式作详细说明。 The specific embodiments provided by the present invention will be described in detail below in conjunction with the accompanying drawings.
本发明的目的在于,应用预测微生物学的方法,通过分析不同温度条件下不同时间点冷却猪肉中的好氧菌的增长情况,建立不同贮藏温度下冷却猪肉的微生物预测模型,以此来评价冷却猪肉的食用安全性。 The purpose of the present invention is to apply the method of predictive microbiology, by analyzing the growth of aerobic bacteria in cooled pork at different time points under different temperature conditions, and establish a microbial prediction model for cooled pork under different storage temperatures, so as to evaluate the cooling effect of pork. The food safety of pork.
实施例 Example
1 材料与方法 1 Materials and methods
1.1 试验材料 1.1 Test material
冷却猪肉:某品牌宰后12h冷却猪肉(大腿肉)。购买后置于装有冰袋的隔热泡沫盒内于2h内运回实验室。 Chilled pork: Chilled pork (thigh meat) of a certain brand 12 hours after slaughter. After purchase, put them in an insulating foam box with ice packs and transport them back to the laboratory within 2 hours.
1.2 试验方法 1.2 Test method
1.2.1 样品预处理 1.2.1 Sample pretreatment
微生物及感官分析:无菌操作将买来的冷却猪肉去腱去脂肪后,分割成25g,厚约2~3cm的组织块,保鲜膜托盘包装后放入高精度低温培养箱,于4℃、7℃、10℃、15℃及两个波动温度(4℃/12h~7℃/12h,4℃/12h~10℃/6h~15℃/6h)下贮藏,经过适当的时间间隔,分别进行微生物数量测定及感官评定。 Microbiological and sensory analysis: Aseptically cut the purchased cooled pork into 25g tissue blocks with a thickness of about 2-3cm after removing tendon and fat, packed in plastic wrap trays, put them in a high-precision low-temperature incubator, and placed them in a high-precision low-temperature incubator. Store at 7°C, 10°C, 15°C and two fluctuating temperatures (4°C/12h~7°C/12h, 4°C/12h~10°C/6h~15°C/6h), after an appropriate time interval, respectively Determination of microbial count and sensory evaluation.
1.2.2 好氧菌总数测定 1.2.2 Determination of the total number of aerobic bacteria
将贮藏在不同温度下的样品,分别于0、1、2、3、4、5、6 d取样(15℃贮藏实验中,每0.5天取样),根据GB/T 4789.2—2003操作,采用平板计数琼脂测定冷却猪肉中的好氧菌总数。 Samples stored at different temperatures were taken at 0, 1, 2, 3, 4, 5, and 6 days (in the 15°C storage experiment, samples were taken every 0.5 days), operated according to GB/T 4789.2-2003, using a flat plate Counting agar to determine the total number of aerobic bacteria in chilled pork.
1.2.3 感官评定 1.2.3 Sensory evaluation
按GB 2707-2005标准,成立六人感官评定小组,事先对其进行简单培训。对于每一样品,小组成员都要对生肉和熟肉的颜色、气味、组织状态、表面状态、风味、柔软度、组织汁液、肉汤颜色进行评分,每项得分为感官小组成员所评分数的平均值。感官评定的评价标准见表1。若综合评分在6以下(包括6),则表明冷却猪肉已到达感官拒绝点。 According to the GB 2707-2005 standard, a six-person sensory evaluation team was established, and simple training was given to them in advance. For each sample, the panelists scored the color, smell, texture, surface state, flavor, softness, tissue juices, and broth color of raw and cooked meat, each of which was the sum of the scores scored by the sensory panelists. average value. The evaluation criteria for sensory evaluation are listed in Table 1. If the comprehensive score is below 6 (including 6), it indicates that the chilled pork has reached the point of sensory rejection.
表1 冷却猪肉感官评定表 Table 1 Sensory evaluation table of chilled pork
1.3 微生物生长预测模型 1.3 Microbial growth prediction model
1.3.1 一级模型 1.3.1 Level 1 Model
采用经典的三阶段线性模型来模拟不同贮藏温度下的冷却猪肉中好氧菌数随时间的变化,三阶段线性模型如下: The classic three-stage linear model was used to simulate the change of the number of aerobic bacteria in chilled pork at different storage temperatures over time. The three-stage linear model is as follows:
其中,t为时间(h),y为t时的菌数(log10CFU/g),A为最大菌数(log10CFU/g),μmax为最大比生长速率(h-1),λ即为微生物生长的延滞期(h)。 Among them, t is the time (h), y is the number of bacteria at t (log 10 CFU/g), A is the maximum number of bacteria (log 10 CFU/g), μ max is the maximum specific growth rate (h -1 ), λ is the lag period (h) of microbial growth.
1.3.2 二级模型 1.3.2 Secondary Model
为了评价温度与生长参数之间关系,μmax,λ和A之间的关系,分别选用线性方程来描述μmax随温度的变化以及A随温度的变化,选用乘幂方程来描述λ随温度的变化。 In order to evaluate the relationship between temperature and growth parameters, the relationship between μ max , λ and A, linear equations are used to describe the variation of μ max with temperature and the variation of A with temperature, and power equations are used to describe the variation of λ with temperature Variety.
1.3.3 波动温度下预测模型的应用及验证 1.3.3 Application and verification of prediction model under fluctuating temperature
本发明将所建立的一级模型与二级模型相结合,来预测两组波动温度下冷却猪肉中的好氧菌数,并与实际测量值进行比较,以评价模型的准确性。以上数据处理均应用软件Microsoft Excel 2003及Origin7.5完成。 The invention combines the established first-level model with the second-level model to predict the number of aerobic bacteria in the cooled pork under two groups of fluctuating temperatures, and compares it with the actual measured value to evaluate the accuracy of the model. The above data processing was completed by using the software Microsoft Excel 2003 and Origin 7.5.
2 结果分析 2 Result Analysis
2.1 恒定及波动温度下冷却猪肉的感官货架期 2.1 Sensory shelf life of chilled pork at constant and fluctuating temperatures
根据不同贮藏温度下冷却猪肉的感官评分随时间的变化,进行线性回归,结果如下表,当感官评分为6时,冷却猪肉达到感官终点。 According to the change of the sensory score of chilled pork over time at different storage temperatures, linear regression is performed, and the results are shown in the table below. When the sensory score is 6, the chilled pork reaches the sensory end point.
表2 恒温及波动温度下冷却猪肉的感官货架期 Table 2 Sensory shelf life of chilled pork under constant temperature and fluctuating temperature
2.2 应用预测模型预测恒定及波动温度下冷却猪肉的货架期 2.2 Application of prediction model to predict shelf life of chilled pork under constant and fluctuating temperature
通过微生物分析,可以得知4,7,10,15℃贮藏条件下不同时间点冷却猪肉的好氧菌总数。在微生物计数的同时对冷却猪肉进行感官评定。当感官评分达到6时,为感官拒绝点,即冷却猪肉达到感官货架期终点。将此时间分别带入所建立的预测微生物一级模型,即可得在感官货架期终点时,冷却猪肉中总好氧菌的最小腐败水平:当好氧菌数约为107CFU/g(106.89CFU/g)时,冷却猪肉达到感官终点,所以,本发明设定冷却猪肉货架期终点的微生物指标为log107CFU/g。 Through microbial analysis, the total number of aerobic bacteria in chilled pork at different time points under storage conditions of 4, 7, 10, and 15°C can be known. Sensory evaluation of chilled pork was performed concurrently with microbial enumeration. When the sensory score reaches 6, it is the sensory rejection point, that is, the cooled pork reaches the end of the sensory shelf life. Taking this time into the established first-level predictive microbial model, the minimum spoilage level of total aerobic bacteria in chilled pork can be obtained at the end of the sensory shelf life: when the number of aerobic bacteria is about 10 7 CFU/g (10 6.89 CFU/g), the cooled pork reaches the sensory end point, so the present invention sets the microbial index at the end of the shelf life of the cooled pork as log 10 7CFU/g.
2.2.1 微生物的一级模型及二级模型 2.2.1 Primary and secondary models of microorganisms
由恒温条件下的贮藏实验结果表明,所建立的微生物动力学方程可以很好地描述在4~15℃范围内温度对冷却猪肉中总好氧菌生长的影响。为了评价所建立模型的可靠性,需要将其应用于预测4~15℃波动温度条件下冷却猪肉的货架期。并通过统计学分析来评价模型的预测效果(图1)。 The results of storage experiments under constant temperature conditions showed that the established microbial kinetic equation could well describe the effect of temperature on the growth of total aerobic bacteria in chilled pork in the range of 4-15 °C. In order to evaluate the reliability of the established model, it needs to be applied to predict the shelf life of chilled pork under fluctuating temperature conditions of 4-15°C. And through statistical analysis to evaluate the prediction effect of the model (Figure 1).
表3 二级模型 Table 3 Secondary model
波动温度条件下的模型的验证方法如下:初始微生物数量是通过平板计数试验所得到的实测值,而最大生长速率,延滞期及最大菌数则是通过所建立的二级模型所得。如果温度变化发生在微生物的延滞期内,菌数计算应用三阶段线性模型的第一阶段方程,若温度变化发生在微生物的对数生长期内,菌数计算应用三阶段线性模型的第二阶段方程,当微生物数量增长到达最大菌数时,则达到稳定期,菌数以三阶段线性模型的第三阶段方程来计算。结合所建立的一级模型与二级模型预测四组恒定温度及两组波动温度下冷却猪肉的货架期,并与感官货架期进行比较,对模型的预测效果进行评价,结果如下: The verification method of the model under fluctuating temperature conditions is as follows: the initial microbial count is the measured value obtained through the plate count test, and the maximum growth rate, lag period and maximum bacterial count are obtained through the established secondary model. If the temperature change occurs within the lag period of microorganisms, the calculation of the number of bacteria applies the first-stage equation of the three-stage linear model; if the temperature change occurs within the logarithmic growth period of microorganisms, the calculation of the number of bacteria applies the second stage of the three-stage linear model Equation, when the number of microorganisms grows to reach the maximum number of bacteria, the stable period is reached, and the number of bacteria is calculated by the third-stage equation of the three-stage linear model. Combining the first-level model and the second-level model established to predict the shelf life of chilled pork under four groups of constant temperatures and two groups of fluctuating temperatures, and compared with the sensory shelf life, the prediction effect of the model was evaluated. The results are as follows:
表4 恒定及波动温度下冷却猪肉的感官货架期与模型预测货架期的比较 Table 4 Comparison of sensory shelf life and model predicted shelf life of pork chilled at constant and fluctuating temperatures
表5 冷却猪肉的感官货架期与模型预测货架期的比较的方差分析 Table 5 Analysis of variance for comparison of sensory shelf life and model predicted shelf life of chilled pork
结果显示,两种评价冷却猪肉货架期的方法在0.05水平无显著性差异。 The results showed that there was no significant difference between the two methods for evaluating the shelf life of chilled pork at the 0.05 level.
3 结论 3 Conclusion
本发明所建立的预测微生物动力学模型能有效地预测4~15℃条件下冷却猪肉的货架期,为实时监测和跟踪温度变动的环境条件下的冷却猪肉的货架期提供了强有力的技术支撑。 The predictive microbial kinetics model established by the present invention can effectively predict the shelf life of chilled pork at 4-15°C, and provides strong technical support for real-time monitoring and tracking of the shelf life of chilled pork under environmental conditions of temperature fluctuations .
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。 The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the method of the present invention, some improvements and supplements can also be made, and these improvements and supplements should also be considered Be the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210163751.6A CN102650632B (en) | 2012-05-24 | 2012-05-24 | Method for evaluating shelf life of cooling pork at fluctuating temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210163751.6A CN102650632B (en) | 2012-05-24 | 2012-05-24 | Method for evaluating shelf life of cooling pork at fluctuating temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102650632A true CN102650632A (en) | 2012-08-29 |
CN102650632B CN102650632B (en) | 2014-06-25 |
Family
ID=46692679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210163751.6A Expired - Fee Related CN102650632B (en) | 2012-05-24 | 2012-05-24 | Method for evaluating shelf life of cooling pork at fluctuating temperature |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102650632B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103712704A (en) * | 2013-12-23 | 2014-04-09 | 朱宇尘 | Recorder for storage temperature change times |
CN103995965A (en) * | 2014-05-14 | 2014-08-20 | 东南大学 | Shelf life early-warning system and method based on microorganism predication model |
CN104330539A (en) * | 2014-10-28 | 2015-02-04 | 浙江大学 | Chilled fresh pork shelf life span forecasting method based on internet of things architecture |
CN108254513A (en) * | 2017-12-22 | 2018-07-06 | 北京农业信息技术研究中心 | A kind of judgment method and device of fish shelf life |
CN108344841A (en) * | 2018-02-08 | 2018-07-31 | 杭州汇健科技有限公司 | A method of prediction refrigeration pasteurize fresh milk shelf life |
CN109738600A (en) * | 2018-12-22 | 2019-05-10 | 河南农业大学 | A method for constructing a microbial intermittent dynamic prediction model of cold chain meat products |
CN111027784A (en) * | 2019-12-26 | 2020-04-17 | 上海市农业科学院 | Method for predicting shelf life of cold fresh chicken |
CN111159635A (en) * | 2020-01-13 | 2020-05-15 | 青岛蔚蓝生物股份有限公司 | Establishment and application method of shelf life prediction model of liquid probiotic |
CN111257234A (en) * | 2020-03-25 | 2020-06-09 | 杭州御佳金属材料有限公司 | Microorganism concentration measuring method |
CN112342265A (en) * | 2020-11-10 | 2021-02-09 | 南京工业大学 | Method for using growth model based on salmonella in beef under variable temperature condition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101349685A (en) * | 2008-09-05 | 2009-01-21 | 上海海洋大学 | A method to predict the quality change of chilled meat |
CN101349686A (en) * | 2008-09-05 | 2009-01-21 | 上海海洋大学 | A method for predicting the quality change of fresh hairtail |
CN101576553A (en) * | 2009-04-24 | 2009-11-11 | 上海海洋大学 | Chilled pork shelf life prediction model |
-
2012
- 2012-05-24 CN CN201210163751.6A patent/CN102650632B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101349685A (en) * | 2008-09-05 | 2009-01-21 | 上海海洋大学 | A method to predict the quality change of chilled meat |
CN101349686A (en) * | 2008-09-05 | 2009-01-21 | 上海海洋大学 | A method for predicting the quality change of fresh hairtail |
CN101576553A (en) * | 2009-04-24 | 2009-11-11 | 上海海洋大学 | Chilled pork shelf life prediction model |
Non-Patent Citations (4)
Title |
---|
唐晓阳: "冷却猪肉中假单胞菌生长预测模型的建立与验证", 《湖南农业科学》 * |
毛海华: "定温流通条件下温度波动对冷藏米饭安全性的影响研究", 《食品科学》 * |
许钟: "波动温度下罗非鱼特定腐败菌生长动力学模型和货架期预测", 《微生物学报》 * |
顾赛麒: "电子鼻检测不同贮藏温度下猪肉新鲜度变化", 《食品科学》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103712704A (en) * | 2013-12-23 | 2014-04-09 | 朱宇尘 | Recorder for storage temperature change times |
CN103712704B (en) * | 2013-12-23 | 2015-12-09 | 朱宇尘 | A kind of storing temperature change frequency register |
CN103995965A (en) * | 2014-05-14 | 2014-08-20 | 东南大学 | Shelf life early-warning system and method based on microorganism predication model |
CN103995965B (en) * | 2014-05-14 | 2017-02-22 | 东南大学 | Shelf life early-warning system and method based on microorganism predication model |
CN104330539A (en) * | 2014-10-28 | 2015-02-04 | 浙江大学 | Chilled fresh pork shelf life span forecasting method based on internet of things architecture |
CN108254513A (en) * | 2017-12-22 | 2018-07-06 | 北京农业信息技术研究中心 | A kind of judgment method and device of fish shelf life |
CN108344841A (en) * | 2018-02-08 | 2018-07-31 | 杭州汇健科技有限公司 | A method of prediction refrigeration pasteurize fresh milk shelf life |
CN109738600A (en) * | 2018-12-22 | 2019-05-10 | 河南农业大学 | A method for constructing a microbial intermittent dynamic prediction model of cold chain meat products |
CN111027784A (en) * | 2019-12-26 | 2020-04-17 | 上海市农业科学院 | Method for predicting shelf life of cold fresh chicken |
CN111027784B (en) * | 2019-12-26 | 2023-04-18 | 上海市农业科学院 | Method for predicting shelf life of cold fresh chicken |
CN111159635A (en) * | 2020-01-13 | 2020-05-15 | 青岛蔚蓝生物股份有限公司 | Establishment and application method of shelf life prediction model of liquid probiotic |
CN111159635B (en) * | 2020-01-13 | 2023-08-29 | 青岛蔚蓝生物股份有限公司 | Method for establishing and applying liquid probiotic shelf life prediction model |
CN111257234A (en) * | 2020-03-25 | 2020-06-09 | 杭州御佳金属材料有限公司 | Microorganism concentration measuring method |
CN112342265A (en) * | 2020-11-10 | 2021-02-09 | 南京工业大学 | Method for using growth model based on salmonella in beef under variable temperature condition |
Also Published As
Publication number | Publication date |
---|---|
CN102650632B (en) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102650632B (en) | Method for evaluating shelf life of cooling pork at fluctuating temperature | |
McMeekin et al. | Predictive microbiology: towards the interface and beyond | |
Vaikousi et al. | Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat | |
Tang et al. | Predicting shelf-life of chilled pork sold in China | |
Bruckner et al. | Characterization and comparison of spoilage processes in fresh pork and poultry | |
CN104298868B (en) | The frozen meat shelf life Forecasting Methodology and system of a kind of Cold Chain Logistics | |
Ghollasi-Mood et al. | Microbial and chemical spoilage of chicken meat during storage at isothermal and fluctuation temperature under aerobic conditions | |
CN109738600A (en) | A method for constructing a microbial intermittent dynamic prediction model of cold chain meat products | |
CN110210680A (en) | A kind of fish body Noninvasive Measuring Method of Freshness and device based on temperature change | |
CN101349685B (en) | Method for forecasting cooling meat quality variation | |
Ghollasi‐Mood et al. | Quality changes of air‐packaged chicken meat stored under different temperature conditions and mathematical modelling for predicting the microbial growth and shelf life | |
Shackelford et al. | Chilling rate effects on pork loin tenderness in commercial processing plants | |
Li et al. | Analysis of mathematical models of Pseudomonas spp. growth in pallet-package pork stored at different temperatures | |
CN104792950A (en) | Model for predicting shelf life of tuna | |
CN104483458A (en) | Method for predicting shelf life of cold chain pork and system thereof | |
Kilgannon et al. | The effect of different temperature-time combinations when ageing beef: Sensory quality traits and microbial loads | |
CN104200068A (en) | Method for establishing river carp shelf life prediction model by using TBA | |
Liu et al. | Correlations between growth parameters of spoilage micro-organisms and shelf-life of pork stored under air and modified atmosphere at− 2, 4 and 10 C | |
CN108344841A (en) | A method of prediction refrigeration pasteurize fresh milk shelf life | |
Vankerschaver et al. | The influence of temperature and gas mixtures on the growth of the intrinsic micro-organisms on cut endive: predictive versus actual growth | |
CN111027784B (en) | Method for predicting shelf life of cold fresh chicken | |
Huang et al. | Modelling the growth of Staphylococcus aureus with different levels of resistance to low temperatures in glutinous rice dough | |
CN101949870B (en) | Method for predicting refrigerated carp freshness quality | |
Ndraha et al. | Predictive models for the growth of Salmonella spp., Listeria spp., and Escherichia coli in lettuce harvested on Taiwanese farms | |
CN104330443A (en) | Method and system for predicting the number of microorganisms in cold-chain meat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140625 Termination date: 20150524 |
|
EXPY | Termination of patent right or utility model |