CN102645490A - Frequency-adjustable longitudinal modal magnetostriction sensor - Google Patents
Frequency-adjustable longitudinal modal magnetostriction sensor Download PDFInfo
- Publication number
- CN102645490A CN102645490A CN2012101153541A CN201210115354A CN102645490A CN 102645490 A CN102645490 A CN 102645490A CN 2012101153541 A CN2012101153541 A CN 2012101153541A CN 201210115354 A CN201210115354 A CN 201210115354A CN 102645490 A CN102645490 A CN 102645490A
- Authority
- CN
- China
- Prior art keywords
- induction coil
- flexible
- coil
- ferromagnetic material
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006698 induction Effects 0.000 claims abstract description 35
- 239000003302 ferromagnetic material Substances 0.000 claims abstract description 27
- 230000005291 magnetic effect Effects 0.000 claims abstract description 26
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 18
- 230000005284 excitation Effects 0.000 claims abstract description 18
- 239000010959 steel Substances 0.000 claims abstract description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 230000004323 axial length Effects 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 9
- 230000005415 magnetization Effects 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 2
- 230000003068 static effect Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
一种频率可调的纵向模态磁致伸缩传感器,该传感器包括永磁体磁路,柔性印刷励磁线圈、柔性印刷感应线圈和连接器等部分,可在圆柱型铁磁性材料波导中激励出纵向模态超声导波,用于对缺陷的检测。柔性印刷励磁线圈可在永磁体磁路提供的偏置磁场基础上,调节总体偏置磁场强度的大小,使波导材料达到最佳磁化状态;柔性印刷感应线圈可卷曲成圆柱状,通过连接器连接和缩紧后安装于钢杆或钢索表面,在其中激励和接收纵向模态超声导波;通过改变柔性印刷感应线圈中的各段线圈端头的连接方式,可改变传感器的频率特征参数,实现中心频率的调节,由此扩展单体纵向模态磁致伸缩传感器的工作频带范围。
A frequency-tunable longitudinal mode magnetostrictive sensor, which includes a permanent magnet magnetic circuit, a flexible printed excitation coil, a flexible printed induction coil, and a connector, can excite a longitudinal mode in a cylindrical ferromagnetic material waveguide. State-of-the-art ultrasonic guided waves are used to detect defects. The flexible printed excitation coil can adjust the overall bias magnetic field strength on the basis of the bias magnetic field provided by the permanent magnet magnetic circuit, so that the waveguide material can reach the best magnetization state; the flexible printed induction coil can be rolled into a cylindrical shape and connected by a connector After tightening and tightening, it is installed on the surface of a steel rod or a steel cable, in which it excites and receives longitudinal mode ultrasonic guided waves; by changing the connection mode of each coil end in the flexible printing induction coil, the frequency characteristic parameters of the sensor can be changed, The adjustment of the center frequency is realized, thereby expanding the working frequency band range of the single longitudinal mode magnetostrictive sensor.
Description
技术领域 technical field
本发明为中心频率可调节的纵向模态磁致伸缩传感器,属于电磁声学传感器技术领域,适合安装于钢杆、钢索等圆柱型铁磁性材料波导上。The invention is a longitudinal mode magnetostrictive sensor with an adjustable central frequency, which belongs to the technical field of electromagnetic acoustic sensors, and is suitable for being installed on cylindrical ferromagnetic material waveguides such as steel rods and steel cables.
背景技术 Background technique
磁致伸缩传感器在对钢杆、钢索等波导进行缺陷检测时,需要根据实际检测条件选择使用不同频率的传感器:要求检测距离远时,一般选择低频传感器;要求检测精度高时,一般选择高频传感器。当单一传感器只具备单一中心频率时,若需要使用不同频带对同一波导进行检测时,需要制作多个具有不同中心频率的传感器,并在检测时需多次进行更换。此外,传感器使用固定的永磁体磁路时,若被测波导材料和尺寸发生变化,材料难以保持最佳磁化状态。因此,需要发展中心频率可调、静态偏置磁场可调的的单体传感器,适应实际检测的要求。When the magnetostrictive sensor detects defects in waveguides such as steel rods and steel cables, it is necessary to select sensors with different frequencies according to the actual detection conditions: when a long detection distance is required, a low-frequency sensor is generally selected; when a high detection accuracy is required, a high frequency sensor is generally selected. frequency sensor. When a single sensor has only a single center frequency, if it is necessary to use different frequency bands to detect the same waveguide, it is necessary to manufacture multiple sensors with different center frequencies and to replace them several times during detection. In addition, when the sensor uses a fixed permanent magnet magnetic circuit, if the measured waveguide material and size change, it is difficult for the material to maintain the optimal magnetization state. Therefore, it is necessary to develop a single sensor with adjustable center frequency and adjustable static bias magnetic field to meet the requirements of actual detection.
发明内容 Contents of the invention
本发明的目的在于实现一种中心频率可调节的单体纵向模态磁致伸缩传感器,使其可在钢杆和钢索等圆柱型铁磁性材料波导中激励出纵向模态超声导波,并且可对该传感器提供的静态偏置磁场强度进行控制,以适应波导材料和尺寸的变化,确保材料处于最佳磁化状态。The purpose of the present invention is to realize a single longitudinal mode magnetostrictive sensor with adjustable center frequency, so that it can excite longitudinal mode ultrasonic guided waves in cylindrical ferromagnetic material waveguides such as steel rods and steel cables, and The strength of the static bias magnetic field provided by the sensor can be controlled to accommodate changes in waveguide material and dimensions to ensure optimal magnetization of the material.
为实现上述目的,本发明采用如下技术方案。频率可调的纵向模态磁致伸缩传感器包括由半圆铁环1、轭铁3、永磁体7和鞍片8组成的永磁体磁路以及一片柔性印刷励磁线圈4和一片柔性印刷感应线圈5。半圆铁环1形成的圆孔内径大于圆柱型铁磁性材料波导2外径。两块轭铁3位于圆柱型铁磁性材料波导2的两侧,平行于圆柱型铁磁性材料波导2的轴线方向。轭铁3的两端分别通过永磁体7、鞍片8搭接在由两个半圆铁环1组成的圆环上;圆柱型铁磁性材料波导2的两端架在上述由半圆铁环1组成的圆环上;轭铁3、永磁体7、半圆铁环1和鞍片8形成单边磁路;柔性印刷励磁线圈4和柔性印刷感应线圈5卷曲一次后经与各自焊接的连接器6扣合锁固后安装于圆柱型铁磁性材料波导2上;柔性印刷励磁线圈4和柔性印刷感应线圈5保持轴向几何中心位置一致,且柔性印刷励磁线圈4的轴向长度大于柔性印刷感应线圈5的轴向长度2倍以上;柔性印刷励磁线圈4位于柔性印刷感应线圈5的外侧,In order to achieve the above object, the present invention adopts the following technical solutions. The frequency adjustable longitudinal mode magnetostrictive sensor includes a permanent magnet magnetic circuit composed of a
柔性印刷感应线圈5印刷有2N段布线一致的铜质线圈9,经过连接器6扣合锁固后,柔性印刷感应线圈5形成2N段与圆柱型铁磁性材料波导2同轴的螺线管线圈。每段螺线管包含两个连接端口11,共4N个接口印刷和布置在柔性基板10上,其中N为自然数。The flexible printed
通过对4N个接口进行不同的连线方式,可实现对2N段螺线管的绕向进行控制,形成n段正反向交替绕制的等间距螺线管,最终实现对传感器中心频率的控制,其中n为可被2N整除的自然数,N为自然数。By connecting 4N interfaces in different ways, it is possible to control the winding direction of 2N sections of solenoids, forming n sections of equal-spaced solenoids wound alternately in forward and reverse directions, and finally realizing the control of the center frequency of the sensor , where n is a natural number divisible by 2N, and N is a natural number.
永磁体磁路主要提供给静态偏置磁场用于对圆柱型铁磁性材料波导2的磁化,当圆柱型铁磁性材料波导2的材料和尺寸发生变化时,最佳的静态偏置磁场强度不同,因此需针对实际检测条件调整静态偏置磁场的强度,为此设计柔性印刷励磁线圈,控制其中通入直流的大小和方向,即可在永磁体磁路形成的静态偏置磁场基础上增大或减小偏置磁场的强度。The permanent magnet magnetic circuit mainly provides the static bias magnetic field for magnetizing the cylindrical
所述的柔性感应线圈包含的偶数段同向绕制的螺线管线圈可划分为等长间隔的线圈组,线圈组数为可被柔性感应线圈数整除的自然数,线圈组数×每组内包含柔性印刷线圈段数=总柔性印刷感应线圈段数,通过调整柔性线圈所有的2倍于柔性感应线圈段数的连接端口的连接方式,以此调节柔性感应线圈的频率特征参数。连接端口在柔性基板10一端,可实现每组线圈内部同向绕制,线圈组间依次正反交替绕制。The even-numbered solenoid coils wound in the same direction in the flexible induction coil can be divided into coil groups with equal length intervals, the number of coil groups is a natural number divisible by the number of flexible induction coils, and the number of coil groups × each group Including the number of flexible printed coil segments = the total number of flexible printed induction coil segments, the frequency characteristic parameters of the flexible induction coil are adjusted by adjusting the connection mode of all the connection ports of the flexible coil that are twice the number of flexible induction coil segments. The connection port is at one end of the
本发明可以获得如下有益效果:The present invention can obtain following beneficial effect:
本发明采用以上技术方案,使得单体柔性纵向模态磁致伸缩传感器可实现中心频率的调节,扩展单体磁致伸缩传感器的工作频带单位,并且针对被测波导材料变化和尺寸变化调节最佳磁化所需的静态偏置磁场强度,以使传感器性能最佳。The present invention adopts the above technical scheme, so that the single flexible longitudinal mode magnetostrictive sensor can realize the adjustment of the center frequency, expand the working frequency band unit of the single magnetostrictive sensor, and adjust the best for the change of the measured waveguide material and the size change The static bias field strength required for magnetization to optimize sensor performance.
附图说明 Description of drawings
图1本发明整体安装简图;Fig. 1 overall installation diagram of the present invention;
图2柔性印刷感应线圈示意图;Fig. 2 Schematic diagram of flexible printing induction coil;
图3频率特征参数为L时柔性印刷感应线圈端口连接方式;Fig. 3 The connection mode of the flexible printing induction coil port when the frequency characteristic parameter is L;
图4频率特征参数为L/2时柔性印刷感应线圈端口连接方式;Fig. 4 The port connection mode of the flexible printing induction coil when the frequency characteristic parameter is L/2;
图5频率特征参数为L/n时柔性印刷感应线圈端口连接方式;Fig. 5 The port connection mode of the flexible printing induction coil when the frequency characteristic parameter is L/n;
图6直径为6.3mm钢杆中L(0,1)模态的波长-频率频散曲线;Fig. 6 is the wavelength-frequency dispersion curve of the L(0,1) mode in a 6.3mm steel rod;
图7单体传感器工作于中心频率64KHz时,在直径为6.3mm钢杆中的实验信号;Figure 7: When the single sensor works at a center frequency of 64KHz, the experimental signal in a steel rod with a diameter of 6.3mm;
图8特征参数D=40mm时的中心频率;Center frequency when the characteristic parameter D=40mm of Fig. 8;
图9单体传感器工作于130KHz中心频率时,在直径为6.3mm钢杆中的实验信号;Figure 9 is the experimental signal in a steel rod with a diameter of 6.3mm when the single sensor works at a center frequency of 130KHz;
图10特征参数D=20mm时的中心频率;Center frequency when the characteristic parameter D=20mm in Fig. 10;
图11单体传感器工作于240KHz中心频率时,在直径为6.3mm钢杆中的实验信号;Figure 11: When the single sensor works at the center frequency of 240KHz, the experimental signal in the steel rod with a diameter of 6.3mm;
图12特征参数D=10mm时的中心频率。Figure 12 The center frequency when the characteristic parameter D=10mm.
图中:1、半圆铁环,2、圆柱型铁磁材料波导,3、轭铁,4、柔性印刷激励线圈,5、柔性印刷感应线圈,6、连接器,7、永磁体,8、鞍片,9、铜质线圈、10、柔性基板,11、连接端口。In the figure: 1. Semicircular iron ring, 2. Cylindrical ferromagnetic material waveguide, 3. Yoke iron, 4. Flexible printing excitation coil, 5. Flexible printing induction coil, 6. Connector, 7. Permanent magnet, 8. Saddle sheet, 9, copper coil, 10, flexible substrate, 11, connection port.
具体实施方式 Detailed ways
下面结合附图和具体实施方式对于本发明做进一步的说明:Below in conjunction with accompanying drawing and specific embodiment the present invention will be further described:
如图1频率可调的纵向模态磁致伸缩传感器由永磁体磁路、柔性印刷励磁线圈4和柔性印刷感应线圈5组成。柔性印刷感应线圈5包含的2N(N为自然数)段,且柔性印刷感应线圈5长度大于被测圆柱型铁磁性材料波导轴向周长。永磁体磁路通过两个半圆铁环扣合后以非接触方式安装于圆柱型铁磁性材料波导2上,分离两个半圆铁环可将永磁体磁路从圆柱型铁磁性材料波导2上拆卸;柔性印刷励磁线圈4和柔性印刷感应线圈5都具有柔性,可卷曲成圆柱状,贴覆在圆柱型铁磁性材料波导2表面,经连接器扣合后安装于圆柱型铁磁性材料波导2上,解除连接器锁固后,可从圆柱型铁磁性材料波导2上拆装。由此,整个频率可调的柔性纵向模态磁致伸缩传感器都便于拆装,适合用于实际工程检测。As shown in Figure 1, the frequency-adjustable longitudinal mode magnetostrictive sensor consists of a permanent magnet magnetic circuit, a flexible printed
纵向模态磁致伸缩传感器要实现对中心频率f的控制,必须将轴向长度为L的柔性印刷感应线圈5包含的2N(N为自然数)段同向绕制螺线管划分成n(n为可被2N整除的自然数)组等间距的线圈,在每组线圈内,各段线圈依然保持同向绕制方式,但相邻两组线圈间必须为正反交替绕制。In order to control the center frequency f of the longitudinal mode magnetostrictive sensor, it is necessary to divide the 2N (N is a natural number) segments of co-winding solenoids contained in the flexible
每组线圈的轴向长度为L/n,称作频率特征参数D(如图2),当n(n为可被2N整除的自然数)取不同值时,柔性印刷感应线圈5的频率特征参数D取值不同。如图3中的组数n=1,则其频率特征参数为L;图4中的组数n=2,则其频率特征参数为L/2;图5中的组数为n,则其频率特征参数为L/n。The axial length of each group of coils is L/n, which is called the frequency characteristic parameter D (as shown in Figure 2). When n (n is a natural number divisible by 2N) takes different values, the frequency characteristic parameter of the flexible printing induction coil 5 D takes different values. As group number n=1 in Fig. 3, then its frequency characteristic parameter is L; Group number n=2 among Fig. 4, then its frequency characteristic parameter is L/2; Group number among Fig. 5 is n, then its The frequency characteristic parameter is L/n.
当柔性印刷感应线圈5的频率特征参数D确定后,通过计算圆柱型铁磁性材料波导2中纵向模态的波长(λ)与频率(f)的频散曲线,令D=L/n=λ/2,即可确定频率特征参数D对应的频率f,称作柔性印刷感应线圈5在频率特征参数D控制下的中心频率。After the frequency characteristic parameter D of the flexible
为验证单体磁致伸缩传感器频率可调的功能,采用轴向长度为40mm,分成2N=4组的线圈进行试验。如上所述线圈划分方法,对应存在n=1,n=2和n=4共三种划分方式。采用上述的接口连接方法(图3、4、5),三种方式对应的频率特征参数分别为D=40mm,D=20mm和D=10mm。图6为直径为6.3mm钢杆中L(0,1)模态的波长-频率频散曲线,频率特征参数D=40mm,D=20mm和D=10mm分别控制的中心频率约为f=64kHz,f=130kHz和f=240kHz。In order to verify the frequency-adjustable function of the single magnetostrictive sensor, a coil with an axial length of 40mm and divided into 2N=4 groups is used for the test. According to the above-mentioned coil division method, there are three division methods corresponding to n=1, n=2 and n=4. Using the above-mentioned interface connection method (Fig. 3, 4, 5), the frequency characteristic parameters corresponding to the three methods are D=40mm, D=20mm and D=10mm respectively. Figure 6 is the wavelength-frequency dispersion curve of the L(0,1) mode in a steel rod with a diameter of 6.3mm. The frequency characteristic parameters D=40mm, D=20mm and D=10mm respectively control the center frequency to be about f=64kHz , f=130kHz and f=240kHz.
将线圈频率特征参数分别为D=40mm,D=20mm和D=10mm的单体纵向模态磁致伸缩传感器在直径为6.3mm,长为2.0m的钢杆中依次进行试验。单体纵向模态磁致伸缩传感器安装于距离钢杆左端部0.5m处,距离钢杆右端部0.5m处存在一轴向长度2mm,深度2mm的人工切槽。图7、9和11分别对应频率特征参数为D=40mm,D=20mm和D=10mm时的试验信号。选择图7、9和11中的右端面回波,分别计算其频谱图,可看出,频率特征参数为D=40mm,D=20mm和D=10mm时,其频率如图8、10、12;纵向模态磁致伸缩传感器可工作于f=64kHz,f=130kHz和f=240kHz,从而拓展了单体纵向模态磁致伸缩传感器的工作频带范围。Single-body longitudinal mode magnetostrictive sensors with coil frequency characteristic parameters of D=40mm, D=20mm and D=10mm were tested sequentially in a steel rod with a diameter of 6.3mm and a length of 2.0m. The single longitudinal mode magnetostrictive sensor is installed at a distance of 0.5m from the left end of the steel rod, and there is an artificial cut groove with an axial length of 2mm and a depth of 2mm at a distance of 0.5m from the right end of the steel rod. Figures 7, 9 and 11 respectively correspond to the test signals when the frequency characteristic parameters are D=40mm, D=20mm and D=10mm. Select the right end face echoes in Figures 7, 9 and 11, and calculate their spectrum diagrams respectively. It can be seen that when the frequency characteristic parameters are D=40mm, D=20mm and D=10mm, the frequencies are shown in Figures 8, 10 and 12 ; The longitudinal mode magnetostrictive sensor can work at f=64kHz, f=130kHz and f=240kHz, thereby expanding the working frequency band range of the single longitudinal mode magnetostrictive sensor.
频率可调的纵向模态磁致伸缩传感器包括的柔性印刷励磁线圈4为同向绕制的螺线管线圈,在其中通入直流,可在其内部形成静态偏置磁场,并与永磁体磁路形成的静态偏置磁场相叠加,对圆柱型铁磁性材料波导2进行磁化,当磁场强度对应的材料磁致伸缩系数最大时,达到最佳磁化状态,可提升磁致伸缩传感器在圆柱型铁磁性材料波导2中激励与接收超声导波的能力。当圆柱型铁磁性材料波导2材料变化和尺寸变化后,最佳磁化状态对应的静态偏置磁场强度发生改变。当控制通入柔性印刷励磁线圈4的直流大小和方向,可实现对叠加后静态偏置磁场强度大小的控制,以保持磁致伸缩传感器激励和接收超声导波的性能。The flexible printed
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101153541A CN102645490A (en) | 2012-04-18 | 2012-04-18 | Frequency-adjustable longitudinal modal magnetostriction sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101153541A CN102645490A (en) | 2012-04-18 | 2012-04-18 | Frequency-adjustable longitudinal modal magnetostriction sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102645490A true CN102645490A (en) | 2012-08-22 |
Family
ID=46658443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101153541A Pending CN102645490A (en) | 2012-04-18 | 2012-04-18 | Frequency-adjustable longitudinal modal magnetostriction sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102645490A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103529131A (en) * | 2013-10-18 | 2014-01-22 | 国家电网公司 | Adjustable magnetostrictive waveguide sensor |
CN104122329A (en) * | 2014-07-22 | 2014-10-29 | 华中科技大学 | Detection sensor based on magnetostriction guide waves, detection system and application |
CN104483382A (en) * | 2014-11-20 | 2015-04-01 | 北京工业大学 | Longitudinal-mode magnetostrictive array sensor |
CN104874538A (en) * | 2014-12-08 | 2015-09-02 | 北京工业大学 | Bending-mode magnetostriction sensor |
CN105319274A (en) * | 2015-10-09 | 2016-02-10 | 中国石油化工股份有限公司 | Water cooler heat exchange tube torsional mode guided wave sensor |
CN105548372A (en) * | 2015-12-09 | 2016-05-04 | 镇江天颐装备科技有限公司 | Pipeline guided-wave transducer based on giant magnetostrictive material, and manufacture and use method |
CN105973995A (en) * | 2016-06-13 | 2016-09-28 | 华中科技大学 | Electromagnetic ultrasonic probe suitable for detecting round-section steel products and plates |
CN107607623A (en) * | 2017-09-21 | 2018-01-19 | 北京中盈盘古智能技术有限公司 | Squirrel-cage magnetostriction longitudinal mode Guided waves sensor |
CN109616276A (en) * | 2018-11-02 | 2019-04-12 | 中国航空工业集团公司西安飞行自动控制研究所 | A kind of unequal spacing solenoid |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0036532A1 (en) * | 1980-03-14 | 1981-09-30 | Mannesmann Kienzle GmbH | Transmitter for measuring mechanical forces |
CN2587531Y (en) * | 2002-12-05 | 2003-11-26 | 董玉环 | Vibration generator made of ultramagnetostriction material |
CN1813177A (en) * | 2003-12-05 | 2006-08-02 | 日立电线株式会社 | Magnetostrictive torque sensor |
JP2008145165A (en) * | 2006-12-07 | 2008-06-26 | Siemens Vdo Automotive Corp | Magnetoelastic torque sensor and hysteresis elimination method |
RU2357219C2 (en) * | 2006-04-26 | 2009-05-27 | ООО "Лантан-Авто" | Magneto-elastic transducer of shaft turning torque |
CN202034920U (en) * | 2011-05-13 | 2011-11-09 | 兰州大学 | Electromagnetic micro driver based on magnetic elastic materials |
-
2012
- 2012-04-18 CN CN2012101153541A patent/CN102645490A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0036532A1 (en) * | 1980-03-14 | 1981-09-30 | Mannesmann Kienzle GmbH | Transmitter for measuring mechanical forces |
CN2587531Y (en) * | 2002-12-05 | 2003-11-26 | 董玉环 | Vibration generator made of ultramagnetostriction material |
CN1813177A (en) * | 2003-12-05 | 2006-08-02 | 日立电线株式会社 | Magnetostrictive torque sensor |
RU2357219C2 (en) * | 2006-04-26 | 2009-05-27 | ООО "Лантан-Авто" | Magneto-elastic transducer of shaft turning torque |
JP2008145165A (en) * | 2006-12-07 | 2008-06-26 | Siemens Vdo Automotive Corp | Magnetoelastic torque sensor and hysteresis elimination method |
CN202034920U (en) * | 2011-05-13 | 2011-11-09 | 兰州大学 | Electromagnetic micro driver based on magnetic elastic materials |
Non-Patent Citations (2)
Title |
---|
P. W. TSE ET. AL.: "An innovative design for using flexible printed coils for magnetostrictive-based longitudinal guided wave sensors in steel strand inspection", 《SMART MATERIALS STRUCTURES》 * |
吴斌等: "兆赫兹纵向模态磁致伸缩传感器的设计及其在钢绞线中的试验研究", 《机械工程学报》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103529131A (en) * | 2013-10-18 | 2014-01-22 | 国家电网公司 | Adjustable magnetostrictive waveguide sensor |
CN103529131B (en) * | 2013-10-18 | 2015-12-02 | 国家电网公司 | A kind of adjustable magnetostrictive waveguide sensor |
CN104122329B (en) * | 2014-07-22 | 2016-06-01 | 华中科技大学 | Based on the detecting sensor of magnetic striction wave guide, detection system and application |
CN104122329A (en) * | 2014-07-22 | 2014-10-29 | 华中科技大学 | Detection sensor based on magnetostriction guide waves, detection system and application |
CN104483382A (en) * | 2014-11-20 | 2015-04-01 | 北京工业大学 | Longitudinal-mode magnetostrictive array sensor |
CN104483382B (en) * | 2014-11-20 | 2017-02-22 | 北京工业大学 | Longitudinal-mode magnetostrictive array sensor |
CN104874538A (en) * | 2014-12-08 | 2015-09-02 | 北京工业大学 | Bending-mode magnetostriction sensor |
CN104874538B (en) * | 2014-12-08 | 2017-05-24 | 北京工业大学 | Bending-mode magnetostriction sensor |
CN105319274A (en) * | 2015-10-09 | 2016-02-10 | 中国石油化工股份有限公司 | Water cooler heat exchange tube torsional mode guided wave sensor |
CN105548372A (en) * | 2015-12-09 | 2016-05-04 | 镇江天颐装备科技有限公司 | Pipeline guided-wave transducer based on giant magnetostrictive material, and manufacture and use method |
CN105973995A (en) * | 2016-06-13 | 2016-09-28 | 华中科技大学 | Electromagnetic ultrasonic probe suitable for detecting round-section steel products and plates |
CN107607623A (en) * | 2017-09-21 | 2018-01-19 | 北京中盈盘古智能技术有限公司 | Squirrel-cage magnetostriction longitudinal mode Guided waves sensor |
CN107607623B (en) * | 2017-09-21 | 2020-11-24 | 北京中盈盘古智能技术有限公司 | Squirrel-cage magnetostrictive longitudinal mode guided wave detection sensor |
CN109616276A (en) * | 2018-11-02 | 2019-04-12 | 中国航空工业集团公司西安飞行自动控制研究所 | A kind of unequal spacing solenoid |
CN109616276B (en) * | 2018-11-02 | 2020-08-11 | 中国航空工业集团公司西安飞行自动控制研究所 | Unequal-spacing solenoid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102645490A (en) | Frequency-adjustable longitudinal modal magnetostriction sensor | |
WO2017080133A1 (en) | Open magnetic circuit-based method and device for detecting magnetostrictive guided-wave | |
CN104297281B (en) | Circular arc unilateral nuclear magnetic resonance sensor | |
CN102435357B (en) | Flexible Magnetostrictive and Magnetoelastic Integrated Sensors for Steel Cable Stress and Defect Detection | |
CN104122330B (en) | Defect inspection method and apparatus based on electromagnetic acoustic longitudinal wave guide | |
CN102841132B (en) | Flexible magnetostriction and eddy integrated sensor for detecting defects of high-voltage transmission line | |
US11626230B2 (en) | Permanent magnet structure-based pipeline demagnetization device and application thereof | |
JP6200638B2 (en) | Eddy current testing probe and eddy current testing equipment | |
WO2019242322A1 (en) | Detection coil, detection device, and detection system | |
CN108802638B (en) | A nanocrystal high-frequency magnetic property detection device and measurement method considering stress | |
EP3311154A1 (en) | Wireless ultrasound sensor | |
CN107774552A (en) | A kind of electromagnet ultrasonic changer of more magnet arrangements | |
CN103123400B (en) | A kind of High-accuracy metal detection sensor device | |
CN103529131B (en) | A kind of adjustable magnetostrictive waveguide sensor | |
CN205210021U (en) | Magnetic induced shrinkage or elongation guided wave detects sensor and detecting system based on open magnetic circuit | |
CN103217359B (en) | Torsional mode magnetostrictive sensor used for minor-diameter metal bar | |
CN205949256U (en) | Many magnet structure's electromagnetic acoustic transducer | |
CN202994722U (en) | Flexibility magnetostriction and eddy integrated sensor for high-voltage transmission line defect detecting | |
CN104874538B (en) | Bending-mode magnetostriction sensor | |
CN103871710B (en) | A kind of octagon three ring field coil | |
CN110548664B (en) | Variable-mode magnetic concentrator type lamb wave electromagnetic acoustic transducer | |
CN203535018U (en) | Adjustable magnetostriction guided wave sensor | |
CN103675721A (en) | Open-loop magnetic flux sensor | |
CN109187749B (en) | Bending mode guided wave sensor | |
CN202101706U (en) | Electromagnetic flowmeter sensor with elliptical inner pipeline |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120822 |