CN102645348A - 一种蒸汽透平驱动的流体输送设备能效监控系统 - Google Patents

一种蒸汽透平驱动的流体输送设备能效监控系统 Download PDF

Info

Publication number
CN102645348A
CN102645348A CN2012101350465A CN201210135046A CN102645348A CN 102645348 A CN102645348 A CN 102645348A CN 2012101350465 A CN2012101350465 A CN 2012101350465A CN 201210135046 A CN201210135046 A CN 201210135046A CN 102645348 A CN102645348 A CN 102645348A
Authority
CN
China
Prior art keywords
conveying equipment
fluid substances
fluid
module
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101350465A
Other languages
English (en)
Inventor
赵昼辰
庄诚
林红权
陈良怀
李小龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANBO ZHONGZI TECH Co Ltd BEIJING
Original Assignee
SANBO ZHONGZI TECH Co Ltd BEIJING
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANBO ZHONGZI TECH Co Ltd BEIJING filed Critical SANBO ZHONGZI TECH Co Ltd BEIJING
Priority to CN2012101350465A priority Critical patent/CN102645348A/zh
Publication of CN102645348A publication Critical patent/CN102645348A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明提供了一种蒸汽透平驱动的流体输送设备能效监控系统,包括数据采集模块和数据处理模块,所述数据采集模块与所述数据处理模块连接;所述数据采集模块采集的参数包括:进入透平的能量的参数和流出所述透平的能量的参数,及经过所述透平驱动的流体输送设备的流体获得的能量的参数;所述数据处理模块根据所述数据采集模块获取的参数计算所述流体输送设备的能效;所述能效为所述流体输送设备输出给所述流体的能量的值与进入透平的能量与流出所述透平的能量的参数之差的比值。本发明广泛应用于对于生产设备的能效监控过程。

Description

一种蒸汽透平驱动的流体输送设备能效监控系统
技术领域
本发明涉及生产设备能效监控系统,特别是监控利用蒸汽透平驱动的泵、鼓风机、通风机、压缩机等设备的能效的系统。
背景技术
在生产实践中,利用蒸汽透平作为动力装置驱动生产设备得到广泛的应用。蒸汽透平(turbine)是将蒸汽中蕴有的能量转换成机械功的机器,又称涡轮。透平的主要部件是旋转元件(转子或称叶轮),被安装在透平轴上,具有沿圆周均匀排列的叶片。蒸汽所具有的能量在流动中经过喷管时转换成动能,流过转子时流体冲击叶片,推动转子转动,从而驱动透平轴旋转。透平轴直接或经传动机构带动其他机械,输出机械功。
蒸汽透平所驱动的生产设备以流体输送设备为主,主要包括泵、鼓风机、通风机、压缩机等。目前对于这些设备能效的监控方法采用合同管理模式,即设定一定时期内要达到的能效指标,在到期后测算是否达到该能效指标。这种监控形式是在生产设备长时间运转后的事后监控,对生产过程中流体输送设备的能效状态缺乏监控,也就不能针对性地发现能效降低的问题,及制定相应的设备维修计划。
发明内容
为了解决现有技术不能实时监控生产设备的能效状态的问题,本发明提供了一种蒸汽透平驱动的流体输送设备能效监控系统。
本发明的技术方案如下:
一种蒸汽透平驱动的流体输送设备能效监控系统,包括数据采集模块和数据处理模块,所述数据采集模块与所述数据处理模块连接;所述数据采集模块采集的参数包括:进入透平的能量的参数和流出所述透平的能量的参数,及经过所述透平驱动的流体输送设备的流体获得的能量的参数;所述数据处理模块根据所述数据采集模块获取的参数计算所述流体输送设备的能效;所述能效为所述流体输送设备输出给所述流体的能量的值与进入透平的能量与流出所述透平的能量的参数之差的比值。
所述数据采集模块根据所述流体输送设备的种类采集相应的所述流体获得的能量的参数;所述数据处理模块根据所述流体获得的能量的参数获得所述流体输送设备输出给所述流体的能量的值。
所述进入透平的能量的参数包括:过热蒸汽质量、过热蒸汽温度和过热蒸汽压力;所述数据处理模块根据所述过热蒸汽质量、过热蒸汽温度和过热蒸汽压力获取所述过热蒸汽的比焓,进而得到所述过热蒸汽的焓的值。
所述流出所述透平的能量的参数包括:饱和蒸汽质量及饱和蒸汽温度或压力;冷凝水质量及冷凝水温度;所述数据处理模块根据所述饱和蒸汽质量及饱和蒸汽温度获得所述饱和蒸汽的比焓,进而获得所述饱和蒸汽的焓的值;所述数据处理模块根据所述冷凝水质量及冷凝水温度获得所述冷凝水的比焓,进而获得所述冷凝水的焓的值。
当所述流体输送设备输送的流体为液体时,所述流体输送设备输出给所述流体的能量的值的计算公式如下:
WY=ρgQiH×10-3
H为所述流体输送设备的扬程, H = ( p 2 × 10 6 ρg + Z 2 + V 2 2 2 g ) - ( p 1 × 10 6 ρg + Z 1 + V 1 2 2 g ) ;
其中,
Figure BDA00001590912100022
及所述数据采集模块获取的如下参数:
ρ为流体的密度,g为重力加速度,Qi为所述流体输送设备输出液体的体积,ti为所述液体通过所述流体输送设备的时间,D1为所述流体输送设备入口直径,D2为所述流体输送设备出口直径,p1为所述流体输送设备入口处所述液体的压力值,p2为所述流体输送设备出口处所述液体的压力值,Z1为测量压力参照基准面到所述流体输送设备入口测压仪表中心水平面的垂直高差,Z2为测量压力参照基准面到所述流体输送设备入口测压仪表中心水平面的垂直高差。
当所述流体输送设备输送的流体为气体时,所述流体输送设备输出给所述流体的能量的值的计算公式如下:
Wq=QtpKP×10-3
其中, p = ( p 2 P + ρ 2 P 2 V 2 P 2 ) - ( p 1 P + ρ 1 P 2 V 1 P 2 ) ;
V 1 p = Q A 1 P ;
V 2 p = ρ 1 P Q ρ 2 P A 2 P ;
ρ 1 P = P a + p 1 p RT 1 p ;
ρ 2 p = P a + p 2 p RT 2 p ;
K P = k P 1 P ( k - 1 ) p [ ( 1 + p P 1 P ) k - 1 k - 1 ] ; 及所述数据采集模块获取的如下参数:
Qt为所述流体输送设备输出气体的体积,p1P为所述流体输送设备进气口处静压,p2P为所述流体输送设备出气口处静压,A1P为所述流体输送设备进气口处测量所述气体速度的横截面积,A2P为所述流体输送设备出气口处测量所述流体速度的横截面积,R为所述气体的常数,Pa,T1p为所述流体输送设备进气口处热力学温度,T2p为所述流体输送设备出气口处热力学温度k为所述气体的绝热指数。
所述流体输送设备能效监控系统还包括实时数据库模块和历史数据库模块,所述实时数据库模块用于存储所述数据采集模块采集的参数,所述历史数据库模块用于存储所述数据处理模块处理的所述参数和获得的结果;所述数据处理模块分别与所述实时数据库模块和所述历史数据库模块连接。
所述流体输送设备能效监控系统还包括WEB服务模块,所述WEB服务模块用于调取所述实时数据库模块和所述历史数据库模块中的数据供客户端显示;所述WEB服务模块分别与所述实时数据库模块和所述历史数据库模块连接。
所述流体输送设备能效监控系统还包括中间件模块,所述中间件模块分别与所述数据处理模块和所述WEB服务模块连接;所述中间件模块用于实现所述WEB服务模块与所述数据处理模块之间的通讯。
所述中间件模块还用于对来自所述数据处理模块的数据进行处理;和/或启动、停止所述数据处理模块获得所述流体输送设备能效的过程。
本发明的技术效果:
本发明的蒸汽透平驱动的流体输送设备能效监控系统利用数据采集模块实时采集进入透平的能量参数(即进入透平的蒸汽所具有的能量的参数),相应流体输送设备输出的能量的参数,由数据处理模块对这些参数进行处理与计算,及时得到流体输送设备的能效值,利于生产管理者及时获知流体输送设备的能效状态,以便及时发现问题,及时维修,减少浪费。
附图说明
图1为蒸汽透平驱动流体输送设备的原理图。
图2本发明蒸汽透平驱动的流体输送设备能效监控系统的原理图。
图3本发明蒸汽透平驱动的流体输送设备能效监控系统一个实施例的结构图。
图4为本发明监控多个流体输送设备时的原理图。
图5本发明蒸汽透平驱动的流体输送设备能效监控系统监控结果图表的一个实例。
图中标识说明如下:
1、客户端;2、数据处理服务器;3、WEB服务器;4、实时数据库;5、历史数据库;6、数据采集平台;7、泵组入口数据采集器;8、泵组出口数据采集器;9、能效曲线;10、流量曲线。
具体实施方式
以下结合附图对本发明的技术方案进行详细说明。
图1显示了蒸汽透平驱动流体输送设备过程中能量的传递方向。进入透平的能量是由输入透平的过热蒸汽所携带的。输出透平的蒸汽和冷凝水携带流出透平的能量。进入透平的能量与流出透平的能量差驱动透平转动,进而驱动与透平连接的流体输送设备。流体进入流体输送设备时已经具备一定的能量,经过流体输送设备的作用,该流体的能量进一步增加了。流体增加的能量(即流体输送设备输出给流体的能量)与进入透平的能量与流出透平的能量差的比值就是流体输送设备的能效值。
图2显示了本发明透平驱动的流体输送设备能效监控系统的原理。所述流体输送设备能效监控系统包括数据采集模块和数据处理模块。数据采集模块与数据处理模块连接。数据采集模块用于采集一定周期内进入透平的能量的参数和流出所述透平的能量的参数,及经过所述透平驱动的流体输送设备的流体获得的能量的参数。这里所述的各种能量的参数是可通过传感器或测量仪表获取的经过透平、流体输送设备的介质的参数,这些参数经过处理、计算即可得到进、出透平的能量,流体所述设备输出给流体的能量。数据处理模块对数据采集模块采集的各种参数进行存储、处理、计算,计算的最终结果就是流体输送设备的能效值。
以下详细说明各种参数,及参数的处理。
一、进入透平的能量
进入透平的能量是通过过热蒸汽携带的,以过热蒸汽的焓计量。过热蒸汽的焓的计算公式是一个周期内进入透平的过热蒸汽的质量与过热蒸汽的比焓的乘积。过热蒸汽的比焓是根据过热蒸汽的温度和压力通过《过热蒸汽热力学数据表》查询得到的。当然,当在一个周期内采集参数时,为了方便计算,温度与压力都是在周期内的平均值,相应的比焓也是平均比焓。
表1显示了过热蒸汽能量参数的名称及数值的来源。
表1
Figure BDA00001590912100051
二、流出透平的能量
流出透平的能量通过饱和蒸汽和冷凝水携带。
1、饱和蒸汽能量
饱和蒸汽的能量以饱和蒸汽的焓计量。饱和蒸汽的焓的计算公式是一个周期内流出透平的饱和蒸汽的质量与饱和蒸汽的比焓的乘积。饱和蒸汽的比焓是根据饱和蒸汽的温度或压力通过《饱和蒸汽、水的热力学数据表》查询得到的。当然,当在一个周期内采集参数时,为了方便计算,温度与压力都是在周期内的平均值,相应的比焓也是平均比焓。
表2显示了饱和蒸汽能量参数的名称及数值来源。
表2
Figure BDA00001590912100052
2、冷凝水能量
冷凝水的能量以冷凝水的焓计量。冷凝水的焓的计算公式是一个周期内流出透平的冷凝水的质量与冷凝水的比焓的乘积。冷凝水的比焓是根据冷凝水的温度或压力通过《饱和蒸汽、水的热力学数据表》查询得到的。当然,当在一个周期内采集参数时,为了方便计算,温度与压力都是在周期内的平均值,相应的比焓也是平均比焓。冷凝水的质量可以通过冷凝水的体积(更容易测量)与密度的乘积得到。
表3显示了冷凝水能量参数的名称及数值来源。
表3
Figure BDA00001590912100061
三、输送液体的流体输送设备能量
输送液体的流体输送设备主要是指泵类设备。泵类设备的有效能量WY(即泵类设备输出给经过的液体的能量)计算公式如下:
WY=ρgQiH×10-3    (1)
H为泵或泵组的扬程,
H = ( p 2 × 10 6 ρg + Z 2 + V 2 2 2 g ) - ( p 1 × 10 6 ρg + Z 1 + V 1 2 2 g ) - - - ( 2 )
其中, V 1 = 4 Q i t i π D 1 2 , V 2 = 4 Q i t i π D 2 2 ,
ρ为液体的密度,g为重力加速度,Qi为所述流体输送设备输出液体的体积,ti为所述液体通过所述流体输送设备的时间,D1为所述流体输送设备入口直径,D2为所述流体输送设备出口直径,p1为所述流体输送设备入口处所述液体的压力值,p2为所述流体输送设备出口处所述液体的压力值,Z1为测量压力参照基准面到所述流体输送设备入口测压仪表中心水平面的垂直高差,Z2为测量压力参照基准面到所述流体输送设备入口测压仪表中心水平面的垂直高差。
在本发明的流体输送设备能效监控系统中,针对输送液体的流体输送设备的能量计算,分别建立输入参数表(表4)和输出参数表(表5)。输入参数表存储所采集的参数,输出参数表存储对所述参数计算和处理后的结果。
表4
Figure BDA00001590912100071
表5
  参数名称   符号   单位
  流体设备输出的有效功率   WY   kJ
  流体设备扬程   H   m水柱
  流体设备入口总管液体平均流速   V1   m/s
  流体设备出口总管液体平均流速   V2   m/s
其中,在输送的液体具有一定的粘度时,Qi/KQ是对测量到的流量的修正值,H/KH是对扬程的修正值,流体设备的能效值与Kη的比值是对能效的修正值。KQ、KH和Kη是液体的属性特征,能够测量得到。
四、输送气体的流体输送设备能量
输送气体的流体输送设备主要包括鼓风机、通风机、压缩机。输送气体的流体输送设备的有效能量(即输送气体的流体输送设备输出给经过的气体的能量)计算公式如下:
Wq=QtpKP×10-3  (3)
其中, p = ( p 2 P + ρ 2 P 2 V 2 P 2 ) - ( p 1 P + ρ 1 P 2 V 1 P 2 ) ;
V 1 p = Q A 1 P ;
V 2 p = ρ 1 P Q ρ 2 P A 2 P ;
ρ 1 P = P a + p 1 p RT 1 p ;
ρ 2 p = P a + p 2 p RT 2 p ;
K P = k P 1 P ( k - 1 ) p [ ( 1 + p P 1 P ) k - 1 k - 1 ] ; 及所述数据采集模块获取的如下参数:
Qt为所述流体输送设备输出气体的体积,p1P为所述流体输送设备进气口处静压,p2P为所述流体输送设备出气口处静压,A1P为所述流体输送设备进气口处测量所述气体速度的横截面积,A2P为所述流体输送设备出气口处测量所述流体速度的横截面积,R为所述气体的常数,Pa为大气压强,Q为所述流体输送设备进气口处体积流量,T1p为所述流体输送设备进气口处热力学温度,T2p为所述流体输送设备出气口处热力学温度k为所述气体的绝热指数。
在本发明的流体输送设备能效监控系统中,针对输送气体的流体输送设备的能量计算,分别建立输入参数表(表6)和输出参数表(表7)。输入参数表存储所采集的参数,输出参数表存储对所述参数计算和处理后的结果。
表6
Figure BDA00001590912100087
Figure 111
表7
  参数名称   符号   单位
  计算周期内流体设备输出的有效能量   Wq   kJ
  流体设备全压   p   Pa
  流体设备进风总管静压测点风速   V1p   m/s
  流体设备出风总管静压测点风速   V2p   m/s
  流体设备进风总管测量流量横截面气体密度   ρ1p   kg/m3
  流体设备出风总管测量流量横截面气体密度   ρ2p   kg/m3
根据以上流体输送设备的能量参数和计算方法可以很方便地编写计算机程序函数实现能量计算。函数的形参是根据参数表形成的结构变量,计算结果和中间结果填入各自的结构变量中。然后利用表1和表2的焓值和表5或表7中的有效能量值计算流体输送设备的能效。函数定义举例如下:
过热蒸汽焓值计算函数:
Void superheatedSteamEnergy(struct superheatedSteamTable);
形参superheatedSteamTable是表1所定义的内容。
饱和蒸汽和冷凝水焓值计算函数:
void saturatedSteamEnergy(struct saturatedSteamTable);
形参saturatedSteamTable是表2或表3定义的内容。
液体有效能量计算函数:
void liquidEffectiveEnergy(struct liquidTable);
形参liquidTable是表4和表5定义的内容。
气体有效能量计算函数:
void gasEffectiveEnergy(struct gasTable);
形参gasTable是表6和7定义的内容。
效率计算函数:
float efficiency();
图3显示了本发明流体输送设备能效监控系统的结构,包括通过网络连接的客户端1、数据处理服务器2、WEB服务器3、实时数据库4、历史数据库5和数据采集平台6。数据采集模块设置在数据采集平台6上,数据处理模块设置在数据处理服务器2上。实时数据库模块设置在实时数据库4上,用于存储所述数据采集模块采集的参数。历史数据库模块设置在历史数据库5上,用于存储所述数据处理模块处理的所述参数和获得的结果。WEB服务模块设置在WEB服务器3上,用于调取所述实时数据库模块和所述历史数据库模块中的数据供客户端显示。客户端1供操作人员控制、管理流体输送设备能效监控系统,也可供操作人员查询监控数据,分析设备生产状态。数据处理服务器2完成的计算结果传送给WEB服务器,计算结果的传送方式可以是传送计算结果在数据库(实时数据库4或历史数据库5)的存储位置,这样降低了网络流量,提高了效率。
在数据处理模块与WEB服务模块之间还设置有中间件模块,中间件模块分别与数据处理模块和WEB服务模块连接,用于实现所述WEB服务模块与所述数据处理模块之间的通讯。在图3中,中间件模块可设置在数据处理服务器2或WEB服务器3上。
所述中间件模块还用于对来自所述数据处理模块的数据进行处理。因为在实际使用过程中情况多变,例如输送流体设备的流体出口和流体入口有分管道和合并管道的情况,流量仪表可能会安装在管道的不同位置,这样在配置流量仪表时就需要中间件模块将多块仪表的数据进行加和处理,然后再传送给数据处理模块计算。
图4显示了在生产实际中,将3个泵(虚线框中的泵)组合进行能效监控的情况,泵组入口数据采集器7和泵组出口数据采集器8分别采集参数,将这三个泵虚拟成一个泵进行能效监控。当然,最好还要分别监控三个泵的能效情况,以便能及时确定哪一个泵产生了问题。
中间件模块的另一个功能是启动或停止数据处理模块对某输送流体设备能效计算的过程。由于对流体输送设备能效的监控会根据系统使用者的实际情况确定,随时会产生启动或停止对某流体输送设备能效的监控,这些启动和停止的命令从客户端1发出,由中间件模块执行。
客户端1通过WEB服务模块调取历史数据库模块中的数据进行统计与分析。图5是这种统计分析图表的一个例子,从中可以看到能效曲线9和流量曲线10,进而可以分析出能效的变化与其他参数的关系,如果出现能效失常的情况,可以及时分析情况,及时发现问题,消除隐患。
值得注意的是,以上所述仅为本发明的较佳实施例,并非因此限定本发明的专利保护范围,本发明还可以采用等同技术进行替换。故凡运用本发明的说明书及图示内容所作的等效变化,或直接或间接运用于其他相关技术领域均同理皆包含于本发明所涵盖的范围内。

Claims (10)

1.一种蒸汽透平驱动的流体输送设备能效监控系统,其特征在于:包括数据采集模块和数据处理模块,所述数据采集模块与所述数据处理模块连接;所述数据采集模块采集的参数包括:进入透平的能量的参数和流出所述透平的能量的参数,及经过所述透平驱动的流体输送设备的流体获得的能量的参数;所述数据处理模块根据所述数据采集模块获取的参数计算所述流体输送设备的能效;所述能效为所述流体输送设备输出给所述流体的能量的值与进入透平的能量与流出所述透平的能量的参数之差的比值。
2.根据权利要求1所述流体输送设备能效监控系统,其特征在于:所述数据采集模块根据所述流体输送设备的种类采集相应的所述流体获得的能量的参数;所述数据处理模块根据所述流体获得的能量的参数获得所述流体输送设备输出给所述流体的能量的值。
3.根据权利要求2所述流体输送设备能效监控系统,其特征在于:所述进入透平的能量的参数包括:过热蒸汽质量、过热蒸汽温度和过热蒸汽压力;所述数据处理模块根据所述过热蒸汽质量、过热蒸汽温度和过热蒸汽压力获取所述过热蒸汽的比焓,进而得到所述过热蒸汽的焓的值。
4.根据权利要求3所述流体输送设备能效监控系统,其特征在于:所述流出所述透平的能量的参数包括:饱和蒸汽质量及饱和蒸汽温度或压力;冷凝水质量及冷凝水温度;所述数据处理模块根据所述饱和蒸汽质量及饱和蒸汽温度获得所述饱和蒸汽的比焓,进而获得所述饱和蒸汽的焓的值;所述数据处理模块根据所述冷凝水质量及冷凝水温度获得所述冷凝水的比焓,进而获得所述冷凝水的焓的值。
5.根据权利要求4所述流体输送设备能效监控系统,其特征在于:当所述流体输送设备输送的流体为液体时,所述流体输送设备输出给所述流体的能量的值的计算公式如下:
WY=ρgQiH×10-3
H为所述流体输送设备的扬程, H = ( p 2 × 10 6 ρg + Z 2 + V 2 2 2 g ) - ( p 1 × 10 6 ρg + Z 1 + V 1 2 2 g ) ;
其中,
Figure FDA00001590912000012
Figure FDA00001590912000013
及所述数据采集模块获取的如下参数:
ρ为流体的密度,g为重力加速度,Qi为所述流体输送设备输出液体的体积,ti为所述液体通过所述流体输送设备的时间,D1为所述流体输送设备入口直径,D2为所述流体输送设备出口直径,p1为所述流体输送设备入口处所述液体的压力值,p2为所述流体输送设备出口处所述液体的压力值,Z1为测量压力参照基准面到所述流体输送设备入口测压仪表中心水平面的垂直高差,Z2为测量压力参照基准面到所述流体输送设备入口测压仪表中心水平面的垂直高差。
6.根据权利要求4所述流体输送设备能效监控系统,其特征在于:当所述流体输送设备输送的流体为气体时,所述流体输送设备输出给所述流体的能量的值的计算公式如下:
Wq=QtpKP×10-3
其中, p = ( p 2 P + ρ 2 P 2 V 2 P 2 ) - ( p 1 P + ρ 1 P 2 V 1 P 2 ) ;
V 1 p = Q A 1 P ;
V 2 p = ρ 1 P Q ρ 2 P A 2 P ;
ρ 1 P = P a + p 1 p RT 1 p ;
ρ 2 p = P a + p 2 p RT 2 p ;
K P = k P 1 P ( k - 1 ) p [ ( 1 + p P 1 P ) k - 1 k - 1 ] ; 及所述数据采集模块获取的如下参数:
Qt为所述流体输送设备输出气体的体积,p1P为所述流体输送设备进气口处静压,p2P为所述流体输送设备出气口处静压,A1P为所述流体输送设备进气口处测量所述气体速度的横截面积,A2P为所述流体输送设备出气口处测量所述流体速度的横截面积,R为所述气体的常数,Pa为大气压强,Q为所述流体输送设备进气口处体积流量,T1p为所述流体输送设备进气口处热力学温度,T2p为所述流体输送设备出气口处热力学温度k为所述气体的绝热指数。
7.根据权利要求5或6所述流体输送设备能效监控系统,其特征在于:还包括实时数据库模块和历史数据库模块,所述实时数据库模块用于存储所述数据采集模块采集的参数,所述历史数据库模块用于存储所述数据处理模块处理的所述参数和获得的结果;所述数据处理模块分别与所述实时数据库模块和所述历史数据库模块连接。
8.根据权利要求7所述流体输送设备能效监控系统,其特征在于:还包括WEB服务模块,所述WEB服务模块用于调取所述实时数据库模块和所述历史数据库模块中的数据供客户端显示;所述WEB服务模块分别与所述实时数据库模块和所述历史数据库模块连接。
9.根据权利要求8所述流体输送设备能效监控系统,其特征在于:还包括中间件模块,所述中间件模块分别与所述数据处理模块和所述WEB服务模块连接;所述中间件模块用于实现所述WEB服务模块与所述数据处理模块之间的通讯。
10.根据权利要求9所述流体输送设备能效监控系统,其特征在于:所述中间件模块还用于对来自所述数据处理模块的数据进行处理;和/或启动、停止所述数据处理模块获得所述流体输送设备能效的过程。
CN2012101350465A 2012-04-28 2012-04-28 一种蒸汽透平驱动的流体输送设备能效监控系统 Pending CN102645348A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101350465A CN102645348A (zh) 2012-04-28 2012-04-28 一种蒸汽透平驱动的流体输送设备能效监控系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101350465A CN102645348A (zh) 2012-04-28 2012-04-28 一种蒸汽透平驱动的流体输送设备能效监控系统

Publications (1)

Publication Number Publication Date
CN102645348A true CN102645348A (zh) 2012-08-22

Family

ID=46658310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101350465A Pending CN102645348A (zh) 2012-04-28 2012-04-28 一种蒸汽透平驱动的流体输送设备能效监控系统

Country Status (1)

Country Link
CN (1) CN102645348A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366876C (zh) * 2004-05-31 2008-02-06 宝山钢铁股份有限公司 燃气-蒸汽联合循环发电站运行效率在线解析方法和系统
US7356383B2 (en) * 2005-02-10 2008-04-08 General Electric Company Methods and apparatus for optimizing combined cycle/combined process facilities
WO2008112823A1 (en) * 2007-03-12 2008-09-18 Emerson Process Management Power & Water Solutions, Inc. Use of statistical analysis in power plant performance monitoring
CN101739610A (zh) * 2009-11-30 2010-06-16 华南理工大学 一种造纸厂热电联产能量系统优化系统及其工作方法
CN102053613A (zh) * 2010-12-31 2011-05-11 北京三博中自科技有限公司 一种工业过程设备能量实时监控系统及监控方法
CN202648968U (zh) * 2012-04-28 2013-01-02 北京三博中自科技有限公司 一种蒸汽透平驱动的流体输送设备能效监控系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366876C (zh) * 2004-05-31 2008-02-06 宝山钢铁股份有限公司 燃气-蒸汽联合循环发电站运行效率在线解析方法和系统
US7356383B2 (en) * 2005-02-10 2008-04-08 General Electric Company Methods and apparatus for optimizing combined cycle/combined process facilities
WO2008112823A1 (en) * 2007-03-12 2008-09-18 Emerson Process Management Power & Water Solutions, Inc. Use of statistical analysis in power plant performance monitoring
CN101739610A (zh) * 2009-11-30 2010-06-16 华南理工大学 一种造纸厂热电联产能量系统优化系统及其工作方法
CN102053613A (zh) * 2010-12-31 2011-05-11 北京三博中自科技有限公司 一种工业过程设备能量实时监控系统及监控方法
CN202648968U (zh) * 2012-04-28 2013-01-02 北京三博中自科技有限公司 一种蒸汽透平驱动的流体输送设备能效监控系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
寇宏波等: "高炉煤气余压回收透平发电监控系统", 《天津科技大学学报》, vol. 26, no. 3, 30 June 2011 (2011-06-30) *
戴新西等: "透平循环压缩机在线状态监控系统", 《化工装备技术》, vol. 22, no. 3, 31 March 2001 (2001-03-31), pages 40 - 43 *

Similar Documents

Publication Publication Date Title
CN202471131U (zh) 对电厂凝汽器性能进行实时监测的系统
CN100451442C (zh) 基于混沌分析和微处理器的管道微泄漏诊断方法与装置
CN105257277B (zh) 基于多变量灰色模型的有杆泵抽油井井下故障预测方法
CN106224781A (zh) 一种流体管网泄漏监测系统
CN101672723A (zh) 一种风电机组振动分析故障诊断方法和系统
CN102032167A (zh) 数字变频计量泵的流量补偿技术
CN203797782U (zh) 区域供暖分布式监控管理系统
CN102338568A (zh) 基于清洁系数指标的电厂凝汽器性能在线监测系统及方法
CN109029000A (zh) 一种凝汽器清洁度在线监测系统及监测方法
CN103336735A (zh) 风机水泵能效在线监测系统
CN104405650A (zh) 通用离心泵运行参数的集成测量方法
CN102109823A (zh) 用于电机驱动的流体输送设备能效计算的建模方法和系统
CN109899120A (zh) 一种汽轮机低压通流区安全监测预警系统及工作方法
CN112483427A (zh) 一种高效的离心泵能效管理方法及系统
CN109084408A (zh) 空调系统能效在线检测诊断分析仪及方法
CN202648968U (zh) 一种蒸汽透平驱动的流体输送设备能效监控系统
CN104361261B (zh) 一种基于率模可靠性理论的齿轮泵健康状态评估方法
CN105927195B (zh) 一种天然气井智能加药方法及实现该方法的系统
CN112503000B (zh) 一种基于历史数据的离心泵能效管控方法及系统
CN102607658A (zh) 一种基于浓度法的复杂结构通道内气体流量测量方法
CN102645348A (zh) 一种蒸汽透平驱动的流体输送设备能效监控系统
CN201965614U (zh) 一种用于电机驱动的流体输送设备能效计算的建模系统
Keisar et al. High pressure vertical axis wind pump
CN206398839U (zh) 一种供热管网计量站监控管网失水及其监控报警系统
CN112610386A (zh) 水轮机机组故障诊断系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120822