CN102629241A - 一种i2c总线隔离电路及i2c总线系统 - Google Patents

一种i2c总线隔离电路及i2c总线系统 Download PDF

Info

Publication number
CN102629241A
CN102629241A CN2012100651304A CN201210065130A CN102629241A CN 102629241 A CN102629241 A CN 102629241A CN 2012100651304 A CN2012100651304 A CN 2012100651304A CN 201210065130 A CN201210065130 A CN 201210065130A CN 102629241 A CN102629241 A CN 102629241A
Authority
CN
China
Prior art keywords
bus
resistance
triode
node device
negate unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100651304A
Other languages
English (en)
Other versions
CN102629241B (zh
Inventor
邓登基
侯鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Digital Power Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201210065130.4A priority Critical patent/CN102629241B/zh
Publication of CN102629241A publication Critical patent/CN102629241A/zh
Application granted granted Critical
Publication of CN102629241B publication Critical patent/CN102629241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本发明实施例公开了一种I2C总线隔离电路,I2C总线系统中的主节点设备通过隔离电路挂接在I2C总线上,所述隔离电路采用三极管设计,对于主节点设备发出的时钟信号或数据信号取反后驱动三极管,所述时钟信号或数据信号的电平经所述三极管集电极的上拉电阻上拉至所述I2C总线的电源电压;对于接收自I2C总线的数据信号取反后驱动三极管,所述数据信号的电平经所述三极管集电极的上拉电阻上拉至所述主节点设备芯片的工作电压。本发明实施例还公开一种I2C总线系统。采用本发明实施例,能够实现设备芯片与I2C总线的电压匹配,支持设备热插拔,且该电路结构简单、成本较低。

Description

一种I2C总线隔离电路及I2C总线系统
技术领域
本发明涉及通信技术领域,特别是涉及一种I2C总线隔离电路及I2C总线系统。
背景技术
在通信电源中,经常用到I2C总线。I2C(Inter-Integrated Circuit)总线是两线式串行总线,用于连接微控制器以及外围设备,是微电子通信领域广泛采用的一种总线标准。
在实际应用中,经常存在需要挂接在I2C总线上的设备的供电电压与总线电平不匹配的现象。例如,总线为5V I2C电平信号供电,而设备需要3.3V电压供电。此时,就需要为电压不匹配的设备分别配置一总线电平适配电路,实现将设备挂接在I2C总线上。
参照图1,为现有技术的I2C总线系统结构图。I2C总线包括两条总线线路:一条串行数据线SDA,一条串行时钟线SCL。
如图1所示,设备1和设备2的供电电压与I2C总线电平不匹配,设备3的供电电压与I2C总线电平匹配。
故而,设备3可以直接挂接在I2C总线上,设备1和设备2则需要分别通过一总线电平适配电路(如ADMU1250)挂接在I2C总线上,实现设备1和设备2与I2C总线的电平适配。
而且,在通信电源中,挂接在同一I2C总线上的设备,可能不在同一个单板上,而是分布在不同的单板上。这些单板就需要支持热插拔,I2C总线也需要支持板级间的热插拔。如图1所示,为实现设备的热插拔,还需要为各设备分别配置一热插拔电路。
由此可见,现有技术中,当设备供电电压与I2C总线电平不匹配时,需要为设备专门配置一总线电平适配电路,实现设备与I2C总线的电平适配;而且,为支持设备的热插拔,还需要为各设备分别配置一热插拔电路。由此使得,现有电路的结构复杂,成本较高。
发明内容
有鉴于此,本发明的目的在于提供一种I2C总线隔离电路及I2C总线系统,能够实现设备芯片与I2C总线的电压匹配,支持设备热插拔,且该电路结构简单、成本较低。
本发明实施例提供一种I2C总线隔离电路,所述隔离电路用于将I2C总线系统中的主节点设备挂接在I2C总线上;
所述隔离电路包括:
第一取反单元的输入端接主节点设备处理器的时钟信号输出端,第一取反单元的电源端接主节点设备芯片的工作电压,第一取反单元的输出端通过第一电阻接第一三极管的基极;
所述第一三极管的集电极接I2C总线的串行时钟总线和第二电阻的一端,所述第二电阻的另一端接I2C总线的电源电压;第一三极管的发射极接地;
第二取反单元的输入端接所述主节点设备处理器的数据发送端口,第二取反单元的电源端接所述主节点设备芯片的工作电压,第二取反单元的输出端通过第三电阻接第二三极管的基极;
所述第二三极管的集电极接I2C总线的串行数据总线和第四电阻的一端,所述第四电阻的另一端接I2C总线的电源电压;第二三极管的发射极接地;
第三取反单元的输入端接I2C总线的串行数据总线,第三取反单元的电源端接I2C总线的电源电压,第三取反单元的输出端通过第五电阻接第三三极管的基极;
所述第三三极管的集电极接所述主节点设备处理器的数据接收端口和第六电阻的一端,所述第六电阻的另一端接所述主节点设备芯片的工作电压,所述第三三极管的发射极接地。
本发明实施例还提供一种I2C总线系统,所述I2C总线系统中的主节点设备通过一隔离电路挂接在I2C总线上;
所述隔离电路包括:
第一取反单元的输入端接主节点设备处理器的时钟信号输出端,第一取反单元的电源端接主节点设备芯片的工作电压,第一取反单元的输出端通过第一电阻接第一三极管的基极;
所述第一三极管的集电极接I2C总线的串行时钟总线和第二电阻的一端,所述第二电阻的另一端接I2C总线的电源电压;第一三极管的发射极接地;
第二取反单元的输入端接所述主节点设备处理器的数据发送端口,第二取反单元的电源端接所述主节点设备芯片的工作电压,第二取反单元的输出端通过第三电阻接第二三极管的基极;
所述第二三极管的集电极接I2C总线的串行数据总线和第四电阻的一端,所述第四电阻的另一端接I2C总线的电源电压;第二三极管的发射极接地;
第三取反单元的输入端接I2C总线的串行数据总线,第三取反单元的电源端接I2C总线的电源电压,第三取反单元的输出端通过第五电阻接第三三极管的基极;
所述第三三极管的集电极接所述主节点设备处理器的数据接收端口和第六电阻的一端,所述第六电阻的另一端接所述主节点设备芯片的工作电压,所述第三三极管的发射极接地。
本发明实施例还提供一种I2C总线隔离电路,所述隔离电路用于将I2C总线系统中的从节点设备挂接在I2C总线上;
所述隔离电路包括:
第四取反单元的输入端接所述I2C总线的串行时钟总线,第四取反单元的电源端接I2C总线的电源电压,第四取反单元的输出端通过第七电阻接第四三极管的基极;
所述第四三极管的集电极接从节点设备处理器的时钟信号接收端口和第八电阻的一端,所述第八电阻的另一端接所述从节点设备芯片的工作电压,所述第四三极管的发射极接地;
第二取反单元的输入端接所述从节点设备处理器的数据发送端口,第二取反单元的电源端接所述从节点设备芯片的工作电压,第二取反单元的输出端通过第三电阻接第二三极管的基极;
所述第二三极管的集电极接I2C总线的串行数据总线和第四电阻的一端,所述第四电阻的另一端接I2C总线的电源电压;第二三极管的发射极接地;
第三取反单元的输入端接I2C总线的串行数据总线,第三取反单元的电源端接I2C总线的电源电压,第三取反单元的输出端通过第五电阻接第三三极管的基极;
所述第三三极管的集电极接所述从节电设备处理器的数据接收端口和第六电阻的一端,所述第六电阻的另一端接所述从节点设备芯片的工作电压,所述第三三极管的发射极接地。
本发明实施例还提供一种I2C总线系统,所述I2C总线系统中的从节点设备通过一隔离电路挂接在I2C总线上;
所述隔离电路包括:
第四取反单元的输入端接I2C总线的串行时钟总线,第四取反单元的电源端接I2C总线的电源电压,第四取反单元的输出端通过第七电阻接第四三极管的基极;
所述第四三极管的集电极接所述从节点设备处理器的时钟信号接收端口和第八电阻的一端,所述第八电阻的另一端接所述从节点设备芯片的工作电压,所述第四三极管的发射极接地;
第二取反单元的输入端接所述从节点设备处理器的数据发送端口,第二取反单元的电源端接所述从节点设备芯片的工作电压,第二取反单元的输出端通过第三电阻接第二三极管的基极;
所述第二三极管的集电极接I2C总线的串行数据总线和第四电阻的一端,所述第四电阻的另一端接I2C总线的电源电压;第二三极管的发射极接地;
第三取反单元的输入端接I2C总线的串行数据总线,第三取反单元的电源端接I2C总线的电源电压,第三取反单元的输出端通过第五电阻接第三三极管的基极;
所述第三三极管的集电极接所述从节电设备处理器的数据接收端口和第六电阻的一端,所述第六电阻的另一端接所述从节点设备芯片的工作电压,所述第三三极管的发射极接地。
根据本发明提供的具体实施例,本发明实施例公开了以下技术效果:
本发明实施例中,I2C总线系统中的主节点设备通过隔离电路挂接在I2C总线上,所述隔离电路采用三极管设计,对于主节点设备发出的时钟信号或数据信号取反后驱动三极管,所述时钟信号或数据信号的电平经所述三极管集电极的上拉电阻上拉至所述I2C总线的电源电压;对于接收自I2C总线的数据信号取反后驱动三极管,所述数据信号的电平经所述三极管集电极的上拉电阻上拉至所述主节点设备芯片的工作电压。
由此,利用三极管的电压隔离特性,解决了I2C总线一主多从架构中,主节点设备芯片的供电电压与I2C总线电平不匹配的问题;同时,由于所述三极管的隔离特性,该隔离电路还能够实现主节点设备的热插拔功能。本发明实施例所述的隔离电路,采用三极管设计,使得电路结构简单且成本较低。
附图说明
图1为现有技术的I2C总线系统结构图;
图2为本发明实施例一的I2C总线系统结构图;
图3为本发明实施例二的I2C总线系统结构图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
有鉴于此,本发明的目的在于提供一种I2C总线隔离电路及I2C总线系统,能够实现设备与I2C总线的电压匹配,支持设备热插拔,且该电路结构简单、成本较低。
本发明实施例一所述的I2C总线隔离电路用于:I2C总线上采取一主多从架构,当主节点设备芯片的供电电压与I2C总线电平不匹配时,通过所述隔离电路实现主节点设备芯片与I2C总线之间的电压匹配。
参照图2,为本发明实施例一的I2C总线系统结构图。
如图2所示,所述主节点设备10通过所述隔离电路30挂接在I2C总线上,通过所述隔离电路30实现主节点设备10的芯片与I2C总线的电平匹配,并可以实现主节点设备10的热插拔。
需要说明的是,所述主节点设备10的时钟信号SCL为单向信号,由处理器20的时钟信号输出端口SCL发出,所有的从节点设备(图中未示出)接收。
主节点设备10的数据信号SDA为双向信号,分用两个数据通道,分别为数据发送通道和数据接收通道。其中,主节点设备10输出的数据,由所述处理器20的数据发送端口SDA_T发出,通过所述数据发送通道至I2C总线;主节点设备10从I2C总线接收的数据,通过所述数据接收通道输入至处理器20的数据接收端口SDA_R。
当主节点设备10芯片的工作电压与I2C总线电平不匹配时,不能直接将主节点设备10挂接在I2C总线上,需要对主节点设备10发送的时钟信号SCL和数据信号SDA、以及接收的数据信号SDA进行电平转换,实现主节点设备10芯片与I2C总线之间的电压匹配。
本发明实施例提供的隔离电路30,通过使用三极管实现主节点设备10芯片与I2C总线之间的电压匹配,其电路结构简单且成本较低。下面对本发明实施例所述的隔离电路30进行详细描述。
所述隔离电路30包括:第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第一三极管Q1、第二三极管Q2、第三三极管Q3、第一取反单元X1、第二取反单元X2、第三取反单元X3。
所述第一取反单元X1的输入端接所述主节点设备10的处理器20的时钟信号输出端SCL,第一取反单元X1的电源端接处理器20的电源端VCC(VCC即为主节点设备芯片的工作电压),第一取反单元X1的输出端通过第一电阻R1接第一三极管Q1的基极。
所述第一三极管Q1的集电极接I2C总线的串行时钟总线SCL和第二电阻R2的一端,所述第二电阻R2的另一端接I2C总线的电源电压Vbus;第一三极管Q1的发射极接地。
所述第二取反单元X2的输入端接所述处理器20的数据发送端口SDA_T,第二取反单元的电源端接所述处理器20的电源端VCC,第二取反单元X2的输出端通过第三电阻R3接第二三极管Q2的基极。
所述第二三极管Q2的集电极接I2C总线的串行数据总线SDA和第四电阻R4的一端,所述第四电阻R4的另一端接I2C总线的电源电压Vbus;第二三极管Q2的发射极接地。
所述第三取反单元X3的输入端接I2C总线的串行数据总线SDA,第三取反单元X3的电源端接I2C总线的电源电压Vbus,第三取反单元X3的输出端通过第五电阻R5接第三三极管Q3的基极。
所述第三三极管Q3的集电极接所述处理器20的数据接收端口SDA_R和第六电阻R6的一端,所述第六电阻R6的另一端接所述处理器20的电源端VCC,所述第三三极管Q3的发射极接地。
本发明实施例一中,I2C总线系统中的主节点设备通过隔离电路挂接在I2C总线上,所述隔离电路采用三极管设计,对于主节点设备发出的时钟信号或数据信号取反后驱动三极管,所述时钟信号或数据信号的电平经所述三极管集电极的上拉电阻上拉至所述I2C总线的电源电压;对于接收自I2C总线的数据信号取反后驱动三极管,所述数据信号的电平经所述三极管集电极的上拉电阻上拉至所述主节点设备芯片的工作电压。
由此,利用三极管的电压隔离特性,解决了I2C总线一主多从架构中,主节点设备芯片的供电电压与I2C总线电平不匹配的问题;同时,由于所述三极管的隔离特性,该隔离电路还能够实现主节点设备的热插拔功能。本发明实施例所述的隔离电路,采用三极管设计,使得电路结构简单且成本较低。
需要说明的是,本发明实施例一中,所述第一取反单元X1、和/或第二取反单元X2、和/或第三取反单元X3可以但不限于采用非门器件,其作用在于对接收到的信号进行取反后输出。当然,在本发明其他实施例中,所述第一取反单元X1、第二取反单元X2、以及第三取反单元X3也可以采用其他形式电路实现。
下面对本发明实施例一所述的I2C总线隔离电路的工作原理进行阐述。
如图2所示,由所述主节点设备10的处理器20的时钟信号输出端口SCL发出的单向时钟信号SCL,经过所述第一取反单元X1的一级逻辑非后,驱动所述第一三极管Q1,所述第一三极管Q1的集电极通过第二电阻R2将时钟信号SCL的电平上拉至I2C总线的电源电压Vbus,由此可以实现时钟信号SCL的电平转换。
对于数据发送通道,如图2所示,由主节点设备10的处理器20的数据发送端口SDA_T发出的数据信号SDA,经过所述第二取反单元X2的一级逻辑非后,驱动所述第二三极管Q2,所述第二三极管Q2的集电极通过第四电阻R4将数据信号SDA的电平上拉至I2C总线的电源电压Vbus,由此可以实现主节点设备10发出的数据信号SDA的电平转换。
对于数据接收通道,如图2所示,接收自I2C总线的数据信号SDA,经过所述第三取反单元X3的一级逻辑非后,驱动所述第三三极管Q3,所述第三三极管Q3的集电极通过第六电阻R6将数据信号SDA的电平上拉至主节点设备芯片的工作电压VCC,由此可以实现主节点设备10接收的数据信号SDA的电平转换。
所述隔离电路30中,所述第二电阻R2、第四电阻R4和第六电阻R6均为上拉电阻,用于将时钟信号或数据信号的电平上拉至所需的电压。
例如,当主节点设备芯片的工作电压VCC为3.3V,而I2C总线的电源电压Vbus为5V时,可以设定所述第二电阻R2、第四电阻R4和第六电阻R6的阻值均为4.7KΩ或者10KΩ。
当然,在实际应用中,主节点设备芯片的工作电压VCC和I2C总线的电源电压Vbus并不局限于上述取值,例如主节点设备芯片的工作电压VCC可以为5V,而I2C总线的电源电压Vbus为3.3V等。此时,只需要根据主节点设备的工作电压VCC和I2C总线的电源电压Vbus对第二电阻R2、第四电阻R4和第六电阻R6的阻值进行具体设定即可。
进一步的,本发明实施例一所述隔离电路30中,由于采用了三极管设计,使得该隔离电路30支持主节点设备10的热插拔功能。具体的,当主节点设备10进行热插拔时,三极管的门极电压能够对主节点设备10热插拔导致的瞬态过压起到缓冲和抑制的作用,保护设备安全,实现主节点设备10的热插拔功能。
因此,本发明实施例一所述隔离电路,利用三极管的电压隔离特性,解决了I2C总线一主多从架构中,主节点设备芯片的供电电压与I2C总线电平不匹配的问题;同时,由于所述三极管的隔离特性,该隔离电路还能够实现主节点设备的热插拔功能。本发明实施例一所述的隔离电路,采用三极管设计,使得电路结构简单且成本较低。
本发明前述实施例一提供的隔离电路,可以解决I2C总线上采取一主多从架构,当主节点设备芯片的供电电压与I2C总线电平不匹配时,主节点设备芯片与I2C总线之间的电压匹配的问题。下面,本发明实施例二提供一种隔离电路,可以解决当从节点设备芯片的供电电压与I2C总线电平不匹配时,从节点设备芯片与I2C总线之间的电压匹配的问题
参照图3,为本发明实施例二的I2C总线系统结构图。
如图3所示,所述从节点设备40通过所述隔离电路60挂接在I2C总线上,通过所述隔离电路60实现从节点设备40的芯片与I2C总线的电平匹配,并可以实现从节点设备40的热插拔。
需要说明的是,所述从节点设备40的时钟信号SCL为单向信号,如图3所示,主节点设备(图3中未示出)发送的时钟信号通过I2C总线的串行时钟总线SCL,输送至从节点设备40的处理器50的时钟信号接收端口SCL。
从节点设备40的数据信号SDA为双向信号,分用两个数据通道,分别为数据发送通道和数据接收通道。其中,从节点设备40输出的数据,由所述处理器50的数据发送端口SDA_T发出,通过所述数据发送通道至I2C总线;从节点设备50从I2C总线接收的数据,通过所述数据接收通道输入至处理器50的数据接收端口SDA_R。
当从节点设备40芯片的工作电压与I2C总线电平不匹配时,不能直接将从节点设备40挂接在I2C总线上,需要对从节点设备40发送的时钟信号SCL和数据信号SDA、以及接收的数据信号SDA进行电平转换,实现从节点设备40芯片与I2C总线之间的电压匹配。
本发明实施例提供的隔离电路60,通过使用三极管实现从节点设备40芯片与I2C总线之间的电压匹配,其电路结构简单且成本较低。下面对本发明实施例所述的隔离电路60进行详细描述。
所述隔离电路60包括:第七电阻R7、第八电阻R8、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第四三极管Q4、第二三极管Q2、第三三极管Q3、第四取反单元X4、第二取反单元X2、第三取反单元X3。
所述第四取反单元X4的输入端接I2C总线的串行时钟总线SCL,第四取反单元X4的电源端接I2C总线的电源电压Vbus,第四取反单元X4的输出端通过第七电阻R7接第四三极管Q4的基极。
所述第四三极管Q4的集电极接所述处理器50的时钟信号接收端口SCL和第八电阻R8的一端,所述第八电阻R8的另一端接所述处理器50的电源端VCC(VCC即为从节点设备芯片的工作电压),所述第四三极管Q4的发射极接地。
所述第二取反单元X2的输入端接所述处理器50的数据发送端口SDA_T,第二取反单元的电源端接所述处理器50的电源端VCC,第二取反单元X2的输出端通过第三电阻R3接第二三极管Q2的基极。
所述第二三极管Q2的集电极接I2C总线的串行数据总线SDA和第四电阻R4的一端,所述第四电阻R4的另一端接I2C总线的电源电压Vbus;第二三极管Q2的发射极接地。
所述第三取反单元X3的输入端接I2C总线的串行数据总线SDA,第三取反单元X3的电源端接I2C总线的电源电压Vbus,第三取反单元X3的输出端通过第五电阻R5接第三三极管Q3的基极。
所述第三三极管Q3的集电极接所述处理器50的数据接收端口SDA_R和第六电阻R6的一端,所述第六电阻R6的另一端接所述处理器50的电源端VCC,所述第三三极管Q3的发射极接地。
本发明实施例中,I2C总线系统中的从节点设备通过隔离电路挂接在I2C总线上,所述隔离电路采用三极管设计,对于从节点设备发出的数据信号取反后驱动三极管,所述数据信号的电平经所述三极管集电极的上拉电阻上拉至所述I2C总线的电源电压;对于接收自I2C总线的时钟信号或数据信号取反后驱动三极管,所述时钟信号或数据信号的电平经所述三极管集电极的上拉电阻上拉至所述从节点设备芯片的工作电压。
由此,利用三极管的电压隔离特性,解决了I2C总线一主多从架构中,从节点设备芯片的供电电压与I2C总线电平不匹配的问题;同时,由于所述三极管的隔离特性,该隔离电路还能够实现从节点设备的热插拔功能。本发明实施例所述的隔离电路,采用三极管设计,使得电路结构简单且成本较低。
需要说明的是,本发明实施例二中,所述第四取反单元X4、和/或第二取反单元X2、和/或第三取反单元X3可以但不限于采用非门器件,其作用在于对接收到的信号进行取反后输出。当然,在本发明其他实施例中,所述第四取反单元X4、第二取反单元X2、以及第三取反单元X3也可以采用其他形式电路实现。
下面对本发明实施例二所述的I2C总线隔离电路的工作原理进行阐述。
如图3所示,通过I2C总线的串行时钟总线SCL接收主节点设备发出的单向时钟信号SCL,该时钟信号经过所述第四取反单元X4的一级逻辑非后,驱动所述第四三极管Q4,所述第四三极管Q4的集电极通过第八电阻R8将时钟信号SCL的电平上拉至从节点设备芯片的工作电压VCC,由此可以实现时钟信号SCL的电平转换。
对于数据发送通道,如图3所示,由从节点设备40的处理器50的数据发送端口SDA_T发出的数据信号SDA,经过所述第二取反单元X2的一级逻辑非后,驱动所述第二三极管Q2,所述第二三极管Q2的集电极通过第四电阻R4将数据信号SDA的电平上拉至I2C总线的电源电压Vbus,由此可以实现从节点设备40发出的数据信号SDA的电平转换。
对于数据接收通道,如图3所示,接收自I2C总线的数据信号SDA,经过所述第三取反单元X3的一级逻辑非后,驱动所述第三三极管Q3,所述第三三极管Q3的集电极通过第六电阻R6将数据信号SDA的电平上拉至从节点设备芯片的工作电压VCC,由此可以实现从节点设备40接收的数据信号SDA的电平转换。
所述隔离电路60中,所述第八电阻R8、第四电阻R4和第六电阻R6均为上拉电阻,用于将时钟信号或数据信号的电平上拉至所需的电压。
例如,当主节点设备芯片的工作电压VCC为3.3V,而I2C总线的电源电压Vbus为5V时,可以设定所述第八电阻R8、第四电阻R4和第六电阻R6的阻值均为4.7KΩ或10KΩ。
当然,在实际应用中,主节点设备芯片的工作电压VCC和I2C总线的电源电压Vbus并不局限于上述取值,此时,只需要根据主节点设备的工作电压VCC和I2C总线的电源电压Vbus对第八电阻R8、第四电阻R4和第六电阻R6的阻值进行具体设定即可。
进一步的,本发明实施例二所述隔离电路60中,由于采用了三极管设计,使得该隔离电路60支持从节点设备40的热插拔功能。具体的,当从节点设备40进行热插拔时,三极管的门极电压能够对从节点设备40热插拔导致的瞬态过压起到缓冲和抑制的作用,保护设备安全,实现从节点设备40的热插拔功能。
因此,本发明实施例二所述隔离电路,利用三极管的电压隔离特性,解决了I2C总线一主多从架构中,从节点设备芯片的供电电压与I2C总线电平不匹配的问题;同时,由于所述三极管的隔离特性,该隔离电路还能够实现从节点设备的热插拔功能。本发明实施例二所述的隔离电路,采用三极管设计,使得电路结构简单且成本较低。
本发明实施例一和二提供的隔离电路,其区别仅在于时钟收发通道。由于时钟信号为单向信号,对于主节点设备,是由其发出时钟信号通过I2C总线的串行时钟总线SCL发送至从节点设备;而对于从节点设备,则是通过I2C总线的串行时钟总线SCL接收时钟信号。因此,本发明实施例所述隔离电路,针对主节点设备和从节点设备分别发送和接收时钟信号的区别,其电路结构有所不同,但是其工作原理是相同的。
因此,本发明实施例所述隔离电路,利用三极管的电压隔离特性,解决了I2C总线一主多从架构中,主、从节点设备芯片的供电电压与I2C总线电平不匹配的问题;同时,由于所述三极管的隔离特性,该隔离电路还能够实现主、从节点设备的热插拔功能。本发明实施例所述的隔离电路,采用三极管设计,使得电路结构简单且成本较低。
以上对本发明所提供的一种I2C总线的隔离电路及I2C总线系统,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种I2C总线隔离电路,其特征在于,所述隔离电路用于将I2C总线系统中的主节点设备挂接在I2C总线上;
所述隔离电路包括:
第一取反单元的输入端接主节点设备处理器的时钟信号输出端,第一取反单元的电源端接主节点设备芯片的工作电压,第一取反单元的输出端通过第一电阻接第一三极管的基极;
所述第一三极管的集电极接I2C总线的串行时钟总线和第二电阻的一端,所述第二电阻的另一端接I2C总线的电源电压;第一三极管的发射极接地;
第二取反单元的输入端接所述主节点设备处理器的数据发送端口,第二取反单元的电源端接所述主节点设备芯片的工作电压,第二取反单元的输出端通过第三电阻接第二三极管的基极;
所述第二三极管的集电极接I2C总线的串行数据总线和第四电阻的一端,所述第四电阻的另一端接I2C总线的电源电压;第二三极管的发射极接地;
第三取反单元的输入端接I2C总线的串行数据总线,第三取反单元的电源端接I2C总线的电源电压,第三取反单元的输出端通过第五电阻接第三三极管的基极;
所述第三三极管的集电极接所述主节点设备处理器的数据接收端口和第六电阻的一端,所述第六电阻的另一端接所述主节点设备芯片的工作电压,所述第三三极管的发射极接地。
2.根据权利要求1所述的I2C总线隔离电路,其特征在于,所述I2C总线的电源电压为3.3V,所述主节点设备芯片的工作电压为5V,
则所述第二电阻、第四电阻以及第六电阻为4.7KΩ或10KΩ。
3.根据权利要求1所述的I2C总线隔离电路,其特征在于,所述第一取反单元、和/或第二取反单元、和/或第三取反单元为非门。
4.一种I2C总线系统,其特征在于,所述I2C总线系统中的主节点设备通过一隔离电路挂接在I2C总线上;
所述隔离电路包括:
第一取反单元的输入端接主节点设备处理器的时钟信号输出端,第一取反单元的电源端接主节点设备芯片的工作电压,第一取反单元的输出端通过第一电阻接第一三极管的基极;
所述第一三极管的集电极接I2C总线的串行时钟总线和第二电阻的一端,所述第二电阻的另一端接I2C总线的电源电压;第一三极管的发射极接地;
第二取反单元的输入端接所述主节点设备处理器的数据发送端口,第二取反单元的电源端接所述主节点设备芯片的工作电压,第二取反单元的输出端通过第三电阻接第二三极管的基极;
所述第二三极管的集电极接I2C总线的串行数据总线和第四电阻的一端,所述第四电阻的另一端接I2C总线的电源电压;第二三极管的发射极接地;
第三取反单元的输入端接I2C总线的串行数据总线,第三取反单元的电源端接I2C总线的电源电压,第三取反单元的输出端通过第五电阻接第三三极管的基极;
所述第三三极管的集电极接所述主节点设备处理器的数据接收端口和第六电阻的一端,所述第六电阻的另一端接所述主节点设备芯片的工作电压,所述第三三极管的发射极接地。
5.根据权利要求4所述的I2C总线系统,其特征在于,所述I2C总线的电源电压为3.3V,所述主节点设备芯片的工作电压为5V,
则所述第二电阻、第四电阻以及第六电阻为4.7KΩ或10KΩ。
6.一种I2C总线隔离电路,其特征在于,所述隔离电路用于将I2C总线系统中的从节点设备挂接在I2C总线上;
所述隔离电路包括:
第四取反单元的输入端接所述I2C总线的串行时钟总线,第四取反单元的电源端接I2C总线的电源电压,第四取反单元的输出端通过第七电阻接第四三极管的基极;
所述第四三极管的集电极接从节点设备处理器的时钟信号接收端口和第八电阻的一端,所述第八电阻的另一端接所述从节点设备芯片的工作电压,所述第四三极管的发射极接地;
第二取反单元的输入端接所述从节点设备处理器的数据发送端口,第二取反单元的电源端接所述从节点设备芯片的工作电压,第二取反单元的输出端通过第三电阻接第二三极管的基极;
所述第二三极管的集电极接I2C总线的串行数据总线和第四电阻的一端,所述第四电阻的另一端接I2C总线的电源电压;第二三极管的发射极接地;
第三取反单元的输入端接I2C总线的串行数据总线,第三取反单元的电源端接I2C总线的电源电压,第三取反单元的输出端通过第五电阻接第三三极管的基极;
所述第三三极管的集电极接所述从节电设备处理器的数据接收端口和第六电阻的一端,所述第六电阻的另一端接所述从节点设备芯片的工作电压,所述第三三极管的发射极接地。
7.根据权利要求6所述的I2C总线隔离电路,其特征在于,所述I2C总线的电源电压为3.3V,所述从节点设备芯片的工作电压为5V,
则所述第八电阻、第四电阻以及第六电阻为4.7KΩ或10KΩ。
8.根据权利要求6所述的I2C总线隔离电路,其特征在于,所述第四取反单元、和/或第二取反单元、和/或第三取反单元为非门。
9.一种I2C总线系统,其特征在于,所述I2C总线系统中的从节点设备通过一隔离电路挂接在I2C总线上;
所述隔离电路包括:
第四取反单元的输入端接I2C总线的串行时钟总线,第四取反单元的电源端接I2C总线的电源电压,第四取反单元的输出端通过第七电阻接第四三极管的基极;
所述第四三极管的集电极接所述从节点设备处理器的时钟信号接收端口和第八电阻的一端,所述第八电阻的另一端接所述从节点设备芯片的工作电压,所述第四三极管的发射极接地;
第二取反单元的输入端接所述从节点设备处理器的数据发送端口,第二取反单元的电源端接所述从节点设备芯片的工作电压,第二取反单元的输出端通过第三电阻接第二三极管的基极;
所述第二三极管的集电极接I2C总线的串行数据总线和第四电阻的一端,所述第四电阻的另一端接I2C总线的电源电压;第二三极管的发射极接地;
第三取反单元的输入端接I2C总线的串行数据总线,第三取反单元的电源端接I2C总线的电源电压,第三取反单元的输出端通过第五电阻接第三三极管的基极;
所述第三三极管的集电极接所述从节电设备处理器的数据接收端口和第六电阻的一端,所述第六电阻的另一端接所述从节点设备芯片的工作电压,所述第三三极管的发射极接地。
10.根据权利要求9所述的I2C总线系统,其特征在于,所述I2C总线的电源电压为3.3V,所述从节点设备芯片的工作电压为5V,
则所述第八电阻、第四电阻以及第六电阻为4.7KΩ或10KΩ。
CN201210065130.4A 2012-03-13 2012-03-13 一种i2c总线隔离电路及i2c总线系统 Active CN102629241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210065130.4A CN102629241B (zh) 2012-03-13 2012-03-13 一种i2c总线隔离电路及i2c总线系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210065130.4A CN102629241B (zh) 2012-03-13 2012-03-13 一种i2c总线隔离电路及i2c总线系统

Publications (2)

Publication Number Publication Date
CN102629241A true CN102629241A (zh) 2012-08-08
CN102629241B CN102629241B (zh) 2015-04-15

Family

ID=46587501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210065130.4A Active CN102629241B (zh) 2012-03-13 2012-03-13 一种i2c总线隔离电路及i2c总线系统

Country Status (1)

Country Link
CN (1) CN102629241B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792401A (zh) * 2012-10-30 2014-05-14 苏州工业园区新宏博通讯科技有限公司 直流电表板卡模块
US8902554B1 (en) 2013-06-12 2014-12-02 Cypress Semiconductor Corporation Over-voltage tolerant circuit and method
CN104461989A (zh) * 2013-09-24 2015-03-25 联想(北京)有限公司 一种接口模块带电插拔的方法和设备
CN105191221A (zh) * 2013-03-13 2015-12-23 阿提瓦公司 双电压通信总线
CN106844270A (zh) * 2017-03-02 2017-06-13 杭州领芯电子有限公司 一种自动识别和配置i2c接口电路逻辑电平的电路和方法
CN109542821A (zh) * 2018-12-03 2019-03-29 郑州云海信息技术有限公司 一种i2c通讯控制方法、装置、设备及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2596439Y (zh) * 2002-10-15 2003-12-31 青岛海信电器股份有限公司 I2c总线电平匹配器电路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2596439Y (zh) * 2002-10-15 2003-12-31 青岛海信电器股份有限公司 I2c总线电平匹配器电路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周学礼等: "基于MSP430单片机的12V风扇智能调速器设计", 《微计算机信息》 *
宫学庚等: "基于单总线的电池包多点测温网络设计", 《电子测量技术》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792401A (zh) * 2012-10-30 2014-05-14 苏州工业园区新宏博通讯科技有限公司 直流电表板卡模块
CN105191221A (zh) * 2013-03-13 2015-12-23 阿提瓦公司 双电压通信总线
CN105191221B (zh) * 2013-03-13 2018-10-26 阿提瓦公司 双向总线系统和操作双向总线的方法
US8902554B1 (en) 2013-06-12 2014-12-02 Cypress Semiconductor Corporation Over-voltage tolerant circuit and method
CN104461989A (zh) * 2013-09-24 2015-03-25 联想(北京)有限公司 一种接口模块带电插拔的方法和设备
CN104461989B (zh) * 2013-09-24 2018-06-01 联想(北京)有限公司 一种接口模块带电插拔的方法和设备
CN106844270A (zh) * 2017-03-02 2017-06-13 杭州领芯电子有限公司 一种自动识别和配置i2c接口电路逻辑电平的电路和方法
CN106844270B (zh) * 2017-03-02 2019-07-26 杭州领芯电子有限公司 一种自动识别和配置i2c接口电路逻辑电平的电路和方法
CN109542821A (zh) * 2018-12-03 2019-03-29 郑州云海信息技术有限公司 一种i2c通讯控制方法、装置、设备及系统
CN109542821B (zh) * 2018-12-03 2021-11-19 郑州云海信息技术有限公司 一种i2c通讯控制方法、装置、设备及系统

Also Published As

Publication number Publication date
CN102629241B (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
CN102629241B (zh) 一种i2c总线隔离电路及i2c总线系统
CN106021150B (zh) Type-C接口设备、通信系统和通信方法
CN103095855B (zh) I2c通信接口装置
CN203224819U (zh) 一种主板
CN202564744U (zh) 高速外设组件互连接口与usb3.0装置之间的桥接器
CN204965418U (zh) 一种新型rs-485接口驱动电路
CN204576500U (zh) 一种兼容i2c通信的usb通信电路和系统
CN106951383A (zh) 一种提高pcie数据通道使用率的主板及方法
CN109213718B (zh) 一种i2c通信装置及i2c通信设备
CN204117139U (zh) 一种rs485的方向控制电路
CN106649185A (zh) 基于usb接口的rs232/422/485串口模块
CN104426025A (zh) 电子装置连接系统
CN204314873U (zh) 一种i2c隔离电路及i2c总线系统
CN203689514U (zh) 一种主从协同工作的龙芯服务器pci-e设备
CN202267960U (zh) 通用异步收发器调试装置
CN113783584B (zh) 一种隔离型单线串行通信装置及方法
CN203838530U (zh) 多个相同i2c器件地址共用的装置
CN102568418A (zh) 车载显示系统
CN204697180U (zh) 机芯主板及电视机
CN206584349U (zh) 一种智能usb集线器电路
CN202422677U (zh) 车载显示系统
CN106708772A (zh) 一种智能usb集线器
CN204480237U (zh) 一种连接器、通用串行总线设备及智能终端设备
CN207319229U (zh) 简易rs232多功能串口扩展装置
CN102364452A (zh) 一种ps2接口键盘鼠标可热插拔使用的实现方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211109

Address after: 518043 No. 01, 39th floor, building a, antuoshan headquarters building, No. 33, antuoshan Sixth Road, Xiang'an community, Xiangmihu street, Futian District, Shenzhen, Guangdong Province

Patentee after: Huawei Digital Energy Technology Co.,Ltd.

Address before: 518129 Bantian HUAWEI headquarters office building, Longgang District, Guangdong, Shenzhen

Patentee before: HUAWEI TECHNOLOGIES Co.,Ltd.