CN102628635A - 带凝华脱除co2的气体膨胀天然气带压液化工艺 - Google Patents
带凝华脱除co2的气体膨胀天然气带压液化工艺 Download PDFInfo
- Publication number
- CN102628635A CN102628635A CN2012101114195A CN201210111419A CN102628635A CN 102628635 A CN102628635 A CN 102628635A CN 2012101114195 A CN2012101114195 A CN 2012101114195A CN 201210111419 A CN201210111419 A CN 201210111419A CN 102628635 A CN102628635 A CN 102628635A
- Authority
- CN
- China
- Prior art keywords
- natural gas
- gas
- expansion
- band
- introduce
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 328
- 239000003345 natural gas Substances 0.000 title claims abstract description 147
- 238000000034 method Methods 0.000 title claims abstract description 79
- 239000007789 gas Substances 0.000 title claims abstract description 61
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 229910002092 carbon dioxide Inorganic materials 0.000 title abstract description 11
- 239000001569 carbon dioxide Substances 0.000 title abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 239000003949 liquefied natural gas Substances 0.000 claims abstract description 20
- 239000007787 solid Substances 0.000 claims abstract description 16
- 235000011089 carbon dioxide Nutrition 0.000 claims abstract description 12
- 238000005057 refrigeration Methods 0.000 claims abstract description 9
- 239000012530 fluid Substances 0.000 claims description 32
- 238000001465 metallisation Methods 0.000 claims description 20
- 238000005516 engineering process Methods 0.000 claims description 19
- 239000000047 product Substances 0.000 claims description 15
- 238000002425 crystallisation Methods 0.000 claims description 11
- 239000003507 refrigerant Substances 0.000 claims description 9
- 230000008025 crystallization Effects 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 230000003750 conditioning effect Effects 0.000 claims description 6
- 238000005243 fluidization Methods 0.000 claims description 6
- 239000007792 gaseous phase Substances 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 239000012467 final product Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 238000005265 energy consumption Methods 0.000 description 12
- 238000001179 sorption measurement Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 238000007781 pre-processing Methods 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0082—Methane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0254—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/20—Processes or apparatus using other separation and/or other processing means using solidification of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/66—Separating acid gases, e.g. CO2, SO2, H2S or RSH
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本发明涉及一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,天然气在预冷器中保持气态被预冷,然后进入结晶器继续降温,凝华分离出固体干冰的同时CO2含量降至0.5%,紧接着进入低温压缩机加压,然后进入液化器,在较高的压力下液化后送入储罐储存。液化流程所需冷量由独立的气体膨胀制冷循环提供。与现有技术相比,本发明省去了常规天然气液化流程中占地面积很大的CO2预处理设备,可大大降低在造价高昂的海上平台进行天然气液化的投资成本。同时,天然气在较高温度下液化也降低了制冷循环的能耗。
Description
技术领域
本发明属于化工与低温技术领域,涉及天然气的净化和液化工艺,是一种在天然气液化过程中低温脱除二氧化碳的液化工艺,尤其是涉及一种在气体膨胀天然气带压液化过程中凝华脱除二氧化碳的液化工艺。
背景技术
勘探实践证明,在中国海域众多的沉积盆地中蕴藏着丰富的油气资源,目前探明的海上天然气储量约为全国天然气储量的1/3。海上天然气的开发利用不仅能够提供一种高热值的清洁能源,同时可以降低对石油资源的依赖程度,具有重要的环保和能源战略安全意义。为便于天然气的输运贸易,常将其液化。传统的天然气液化之前需进行净化处理,其中脱CO2一般要达到50~100ppm的标准,该预处理过程不仅占地面积大,而且能耗不少。
天然气带压液化技术(PLNG技术)是指在较高的压力约1~2MPa下使天然气液化得到带压的液化天然气(LNG)产品的技术。对应的液化温度约为-100~-120℃,较高的液化温度不仅减少了所需提供的冷量及所需的换热面积,降低了能耗,而且大大增加了LNG中CO2的溶解度(CO2在常压LNG中摩尔溶解度小于0.01%,而在PLNG条件下可增大到1~3%)。溶解度的增大降低了净化过程对脱除CO2的要求,对于PLNG流程来说,考虑安全余量,一般认为达到0.5%的标准即可。最初的PLNG流程主要是针对CO2含量较低的天然气提出的,然而由于CO2在PLNG中的溶解度随温度升高的增量有其限度,PLNG流程对于CO2含量高于0.5%的天然气就无能为力了,其应用因此受到极大限制。如何拓展PLNG流程对CO2含量的适用范围成为亟待解决的问题。
在各种方法中,采用凝华的方法分离脱除天然气中的CO2使其摩尔分数降至0.5%,既保留了普通PLNG流程不专设CO2预处理设备的优点,又避免了某些方法中固液两相同时出现易于引发的堵塞等问题,为CO2摩尔分数高于0.5%的天然气采用PLNG技术提供了可能。
凝华脱除天然气中CO2的技术,主要是利用CO2三相点温度较高易凝华的相变特性,结合带压液化流程提供给天然气的冷量,使得天然气中的CO2在较低的温度下凝华结霜,从而实现CO2和天然气的气固分离。为避免凝华过程中出现液化现象,必须保证天然气中CO2的结霜温度高于天然气的露点温度,为满足这个要求,在1.4~1.6MPa压力下天然气中CO2的摩尔分数不得高于30%。凝华脱除天然气中CO2的方法,一方面,可以脱除天然气中CO2的含量,使得天然气中CO2的含量达到液化流程的要求;另一方面,还可以得到固体干冰作为副产品。
气体膨胀流程利用高压制冷剂气体通过透平膨胀机绝热膨胀提供冷量实现天然气的液化,制冷剂气体在膨胀机中膨胀降温的同时,还能输出功,可用于驱动流程中的压缩机。该液化流程具有流程简单、调节灵活、工作可靠、易启动、易操作、维护方便等诸多优点。采用气体膨胀制冷循环无需设置可燃制冷剂储罐,可提高装置安全性、减少占地面积;如果采用氮气作为气体膨胀制冷循环的工质,还可进一步提高装置安全性。
已有技术中,申请号为03802427.6、名称为“通过除去可凝固固体生产液化天然气的方法和装置”的发明专利,采用由特殊材料制成的冷却器以及涡流技术连续除去天然气进料物流中的二氧化碳等可凝固组分。但是该专利中的冷却器的材料需为金属氧化物、陶瓷、单晶或者蓝宝石之一,太过特殊而昂贵,难以推广应用;且作为该专利核心的固相在容器中心而不是在壁面上形成的技术,在工程实践中很难实现。专利号为5819555、名称为“进料物流通过气固分离脱除CO2的一种方法”的美国专利,提出了相关的凝华脱除CO2的技术,但是未涉及到天然气液化工艺,且无法保证天然气在后续液化过程中不析出固体CO2。
发明内容
本发明的目的就是为减少天然气液化装置的占地面积,克服海上天然气液化装置应用受限的难题,同时降低天然气液化流程的能耗,提出了一种带凝华脱除CO2的气体膨胀天然气带压液化工艺。该工艺主要是针对CO2含量较高的天然气设计的,对于CO2摩尔分数小于0.5%的天然气,PLNG流程能够容忍全部的CO2而不析出固体,因而可以直接去掉占地很大的CO2预处理设备,为场地极为有限的海上平台实施天然气液化提供可能性。对于CO2摩尔分数大于或等于0.5%的天然气,利用CO2的凝华特性,通过带压液化过程提供的冷量将天然气中的CO2凝华脱除,采用带压液化技术液化天然气,从而实现去掉CO2预处理装置、减少占地面积的目的。
本发明的目的可以通过以下技术方案来实现:
一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,该工艺主要是针对CO2含量较高的天然气设计的,对于CO2摩尔分数小于0.5%的天然气,PLNG流程能够容忍全部的CO2而不析出固体,因而可以直接去掉占地很大的CO2预处理设备,为场地极为有限的海上平台实施天然气液化提供可能性。对于CO2摩尔分数大于或等于0.5%的天然气,利用CO2的凝华特性,通过带压液化过程提供的冷量将天然气中的CO2凝华脱除,采用带压液化技术液化天然气,从而实现去掉CO2预处理装置、减少占地面积的目的。
带凝华脱除CO2的气体膨胀天然气带压液化工艺的主要特点是在天然气液化的过程中凝华脱除CO2,然后生产出带压的LNG产品,该工艺在流程上的创新设计取消了CO2预处理装置,并且保证了后续液化过程中无CO2晶体析出。
本工艺具体包括以下步骤:
1)将CO2摩尔分数在0.5%~30%之间的原料天然气引入压力调节设备,将其调压至1.4~1.6MPa;
2)将通过步骤1)调压后的天然气引入预冷器预冷降温;
3)将通过步骤2)预冷后的天然气引入结晶器降温,凝华分离出其中的固体干冰;
4)将通过步骤3)分离出CO2后的天然气引入低温压缩机加压;
5)将通过步骤4)压缩后的天然气引入液化器,吸收冷量后液化;
6)将通过步骤5)带压液化后的液化天然气产品引入储罐储存即可。
其中,步骤2)、3)、5)中天然气降温液化过程所需冷量由一套独立的气体膨胀制冷系统提供,将制冷剂气体引入压缩机加压,然后引入第一冷却器中冷却,再引入增压膨胀机组增压段增压,然后引入第二冷却器冷却,再引入预冷器预冷,然后引入增压膨胀机机组膨胀段膨胀降温,将膨胀功回收给增压膨胀机组增压段使用,再将膨胀后的气体依次通过液化器、结晶器和预冷器,为这三个设备提供冷量。
步骤1)中所述的原料天然气的压力在1.4~1.6MPa时省略步骤1)。
步骤2)中所述的天然气在在预冷器的出口温度不低于天然气中CO2的结霜温度。
步骤3)中所述的结晶器集天然气降温、CO2凝华结晶、干冰回收功能于一体,结晶器气相出口中天然气的CO2摩尔分数为0.5%。
步骤4)中所述的压缩机能承受-110℃,压缩机出口处的天然气的压力为1.8~2.2MPa,压力的升高保证了后续液化过程中无CO2晶体析出。
步骤5)中所述的液化器在1.8~2.2MPa压力下使进入其中的天然气液化。
步骤5)中得到的压力为1.8~2.2MPa的液体不经节流降压,直接作为产品引入储罐储存,液化天然气产品压力高于常规天然气液化流程。
步骤6)中所述的储罐的最低工作压力为1.8~2.2MPa。
所述的制冷剂气体选自氮气或甲烷中的一种或几种。
与现有技术相比,本发明能够省去CO2预处理设备,减少换热面积,节约设备投资,节省占地面积。通过石化行业广泛采用的HYSYS软件的模拟计算,证实本发明能大大提高天然气液化流程对CO2的容忍度,且能明显地降低液化天然气的单位能耗,并获得干冰作为副产品。占地面积的大大减小,能耗的显著降低,为海上天然气的液化提供了可能性。
附图说明
图1为带凝华脱除CO2的气体膨胀天然气带压液化流程图。
图中,1为压力调节设备、2为预冷器、3为结晶器、4为低温压缩机、5为液化器、6为储罐、7为压缩机、8为第一冷却器、9为增压膨胀机组增压段、10为第二冷却器、11为增压膨胀机组膨胀段。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,实施方案如图1所示。气体膨胀循环制冷剂为纯甲烷,流量6.693kmol/h,原料天然气摩尔组分0.5%CO2+99.5%CH4、压力1.5MPa、温度35℃、流量1kmol/h,则带凝华脱除CO2的气体膨胀天然气带压液化工艺的具体步骤如下:
(1)由于原料天然气在1.4~1.6MPa压力范围之内,本实施例可以省略掉压力调节设备1。将原料气引入预冷器2,从制冷剂甲烷吸收冷量,流出预冷器2,温度降到-73℃;
(2)将经过步骤(1)预冷后的天然气引入结晶器3,从制冷剂甲烷吸收冷量,温度开始下降,气态天然气中的CO2开始凝华结晶析出,结晶析出的固体CO2从结晶器中分离出来作为副产品干冰。随着温度的进一步降低,更多的CO2结晶析出,残留在气态天然气中的CO2含量逐渐降低,直到达到带压液化流程允许的摩尔含量值0.5%为止,结晶器3气相出口天然气的温度降为-109℃;
(3)将经过步骤(2)凝华脱除CO2后含二氧化碳0.5%的天然气引入低温压缩机4,加压到2MPa,温度升高到-93℃;
(4)将经过步骤(3)加压后的天然气引入液化器5,从制冷剂甲烷吸收冷量进行100%液化,温度降到-107℃;
(5)将经过步骤(4)降温液化后的天然气引入储罐6;
(6)以上天然气降温液化过程所需冷量由一套独立的气体膨胀制冷系统提供。将制冷剂甲烷引入压缩机7加压到3258kPa,冷却至35℃,然后引入增压膨胀机组增压段9加压至5000kPa,冷却至35℃,然后引入预冷器2预冷至-61℃,然后引入增压膨胀机组膨胀段11膨胀至964kPa,产生的2.224kW膨胀功回收给增压膨胀机组增压段9使用,膨胀后的低温制冷剂甲烷温度降为-125℃,依次通过液化器5、结晶器3、预冷器2为天然气提供冷量,最后复温至30℃,回到压缩机7。
经过模拟计算得出,该气体膨胀天然气带压液化流程在凝华脱除CO2后的天然气完全液化时,LNG产品的单位能耗约为0.31kWh/Nm3,相较于常规气体膨胀天然气液化流程约0.50kWh/Nm3的能耗,降低了大约38%。
实施例2
一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,在天然气液化的过程中凝华脱除CO2,然后生产出带压的LNG产品,该工艺在流程上的创新设计取消了CO2预处理装置,并且保证了后续液化过程中无CO2晶体析出。
气体膨胀循环制冷剂为纯甲烷,流量7.837kmol/h,原料天然气摩尔组分10%CO2+90%CH4、压力1.5MPa、温度35℃、流量1kmol/h,则带凝华脱除CO2的气体膨胀天然气带压液化工艺的具体步骤如下:
(1)由于原料天然气在1.4~1.6MPa压力范围之内,本实施例可以省略掉压力调节设备1。将原料气引入预冷器2,从制冷剂甲烷吸收冷量,流出预冷器2,温度降到-73℃;
(2)将经过步骤(1)预冷后的天然气引入结晶器3,从制冷剂甲烷吸收冷量,温度开始下降,气态天然气中的CO2开始凝华结晶析出,结晶析出的固体CO2从结晶器中分离出来作为副产品干冰。随着温度的进一步降低,更多的CO2结晶析出,残留在气态天然气中的CO2含量逐渐降低,直到达到带压液化流程允许的摩尔含量值0.5%为止,结晶器3气相出口天然气的温度降为-109℃;
(3)将经过步骤(2)凝华脱除CO2后含二氧化碳0.5%的天然气引入低温压缩机4,加压到2MPa,温度升高到-93℃;
(4)将经过步骤(3)加压后的天然气引入液化器5,从制冷剂甲烷吸收冷量进行100%液化,温度降到-107℃;
(5)将经过步骤(4)降温液化后的天然气引入储罐6;
(6)以上天然气降温液化过程所需冷量由一套独立的气体膨胀制冷系统提供。将制冷剂甲烷引入压缩机7加压到3384kPa,冷却至35℃,然后引入增压膨胀机组增压段9加压至5000kPa,冷却至35℃,然后引入预冷器2预冷至-61℃,然后引入增压膨胀机组膨胀段11膨胀至1142kPa,产生的2.361kW膨胀功回收给增压膨胀机组增压段9使用,膨胀后的低温制冷剂甲烷温度降为-121℃,依次通过液化器5、结晶器3、预冷器2为天然气提供冷量,最后复温至30C,回到压缩机7。
经过模拟计算得出,该气体膨胀天然气带压液化流程在凝华脱除CO2后的天然气完全液化时,LNG产品的单位能耗约为0.35kWh/Nm3,相较于常规气体膨胀天然气液化流程约0.50kWh/Nm3的能耗,降低了大约30%,且可得到近0.1kmol/h的固体CO2产品。
实施例3
一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,该工艺主要是针对CO2含量较高的天然气设计的,对于CO2摩尔分数小于或等于0.5%的天然气,PLNG流程能够容忍全部的CO2而不析出固体,因而可以直接去掉占地很大的CO2预处理设备,为场地极为有限的海上平台实施天然气液化提供可能性。对于CO2摩尔分数大于0.5%的天然气,利用CO2的凝华特性,通过带压液化过程提供的冷量将天然气中的CO2凝华脱除,采用带压液化技术液化天然气,从而实现去掉CO2预处理装置、减少占地面积的目的。
带凝华脱除CO2的气体膨胀天然气带压液化工艺的主要特点是在天然气液化的过程中凝华脱除CO2,然后生产出带压的LNG产品,该工艺在流程上的创新设计取消了CO2预处理装置,并且保证了后续液化过程中无CO2晶体析出。
气体膨胀循环制冷剂为纯甲烷,流量7.837kmol/h,原料天然气摩尔组分30%CO2+70%CH4、压力1.5MPa、温度35℃、流量1kmol/h,则带凝华脱除CO2的气体膨胀天然气带压液化工艺的具体步骤如下:
(1)由于原料天然气在1.4~1.6MPa压力范围之内,本实施例可以省略掉压力调节设备1。将原料气引入预冷器2,从制冷剂甲烷吸收冷量,流出预冷器2,温度降到-73℃;
(2)将经过步骤(1)预冷后的天然气引入结晶器3,从制冷剂甲烷吸收冷量,温度开始下降,气态天然气中的CO2开始凝华结晶析出,结晶析出的固体CO2从结晶器中分离出来作为副产品干冰。随着温度的进一步降低,更多的CO2结晶析出,残留在气态天然气中的CO2含量逐渐降低,直到达到带压液化流程允许的摩尔含量值0.5%为止,结晶器3气相出口天然气的温度降为-109℃;
(3)将经过步骤(2)凝华脱除CO2后含二氧化碳0.5%的天然气引入低温压缩机4,加压到2MPa,温度升高到-93℃;
(4)将经过步骤(3)加压后的天然气引入液化器5,从制冷剂甲烷吸收冷量进行100%液化,温度降到-107℃;
(5)将经过步骤(4)降温液化后的天然气引入储罐6;
(6)以上天然气降温液化过程所需冷量由一套独立的气体膨胀制冷系统提供。将制冷剂甲烷引入压缩机7加压到3552kPa,冷却至35℃,然后引入增压膨胀机组增压段9加压至5000kPa,冷却至35℃,然后引入预冷器2预冷至-61℃,然后引入增压膨胀机组膨胀段11膨胀至1406kPa,产生的2.766kW膨胀功回收给增压膨胀机组增压段9使用,膨胀后的低温制冷剂甲烷温度降为-116℃,依次通过液化器5、结晶器3、预冷器2为天然气提供冷量,最后复温至30℃,回到压缩机7。
经过模拟计算得出,该气体膨胀天然气带压液化流程在凝华脱除CO2后的天然气完全液化时,LNG产品的单位能耗约为0.50kWh/Nm3,相较于常规气体膨胀天然气液化流程约0.50kWh/Nm3的能耗,能耗无增加,且可得到近0.3kmol/h的固体CO2产品。
Claims (9)
1.一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,其特征在于,该工艺包括以下步骤:
1)将CO2摩尔分数在0.5%~30%之间的原料天然气引入压力调节设备(1),将其调压至1.4~1.6MPa;
2)将通过步骤1)调压后的天然气引入预冷器(2)预冷降温;
3)将通过步骤2)预冷后的天然气引入结晶器(3)降温,凝华分离出其中的固体干冰;
4)将通过步骤3)分离出CO2后的天然气引入低温压缩机(4)加压;
5)将通过步骤4)压缩后的天然气引入液化器(5),吸收冷量后液化;
6)将通过步骤5)带压液化后的液化天然气产品引入储罐(6)储存即可;
其中,步骤2)、3)、5)中天然气降温液化过程所需冷量由一套独立的气体膨胀制冷系统提供,将制冷剂气体引入压缩机(7)加压,然后引入第一冷却器(8)中冷却,再引入增压膨胀机组增压段(9)增压,然后引入第二冷却器(10)冷却,再引入预冷器(2)预冷,然后引入增压膨胀机机组膨胀段(11)膨胀降温,将膨胀功回收给增压膨胀机组增压段(9)使用,再将膨胀后的气体依次通过液化器(5)、结晶器(3)和预冷器(2),为这三个设备提供冷量。
2.根据权利要求1所述的一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,其特征在于,步骤1)中所述的原料天然气的压力在1.4~1.6MPa时省略步骤1)。
3.根据权利要求1所述的一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,其特征在于,步骤2)中所述的天然气在在预冷器(2)的出口温度不低于天然气中CO2的结霜温度。
4.根据权利要求1所述的一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,其特征在于,步骤3)中所述的结晶器(3)具有天然气降温、CO2凝华结晶、干冰回收功能,结晶器(3)气相出口中天然气的CO2摩尔分数为0.5%。
5.根据权利要求1所述的一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,其特征在于,步骤4)中所述的压缩机(4)能承受-110℃低温,压缩机(4)出口处的天然气的压力为1.8~2.2MPa。
6.根据权利要求1所述的一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,其特征在于,步骤5)中所述的液化器(5)在1.8~2.2MPa压力下使进入其中的天然气液化。
7.根据权利要求1所述的一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,其特征在于,步骤5)中得到的压力为1.8~2.2MPa的液体不经节流降压,直接作为产品引入储罐(6)储存,液化天然气产品压力高于常规天然气液化流程。
8.根据权利要求1所述的一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,其特征在于,步骤6)中所述的储罐(6)的最低工作压力为1.8~2.2MPa。
9.根据权利要求1所述的一种带凝华脱除CO2的气体膨胀天然气带压液化工艺,其特征在于,所述的制冷剂气体选自氮气或甲烷中的一种或几种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210111419.5A CN102628635B (zh) | 2012-04-16 | 2012-04-16 | 带凝华脱除co2的气体膨胀天然气带压液化工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210111419.5A CN102628635B (zh) | 2012-04-16 | 2012-04-16 | 带凝华脱除co2的气体膨胀天然气带压液化工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102628635A true CN102628635A (zh) | 2012-08-08 |
CN102628635B CN102628635B (zh) | 2014-10-15 |
Family
ID=46586946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210111419.5A Expired - Fee Related CN102628635B (zh) | 2012-04-16 | 2012-04-16 | 带凝华脱除co2的气体膨胀天然气带压液化工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102628635B (zh) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017011124A1 (en) * | 2015-07-15 | 2017-01-19 | Exxonmobil Upstream Research Company | Increasing efficiency in an lng production system by pre-cooling a natural gas feed stream |
CN106823443A (zh) * | 2017-04-12 | 2017-06-13 | 中国石油大学(华东) | 天然气中二氧化碳雪化分离器、分离系统及分离方法 |
CN108291769A (zh) * | 2015-12-03 | 2018-07-17 | 国际壳牌研究有限公司 | 从受污染的烃物料流去除co2的方法 |
US10480854B2 (en) | 2015-07-15 | 2019-11-19 | Exxonmobil Upstream Research Company | Liquefied natural gas production system and method with greenhouse gas removal |
US10488105B2 (en) | 2015-12-14 | 2019-11-26 | Exxonmobil Upstream Research Company | Method and system for separating nitrogen from liquefied natural gas using liquefied nitrogen |
US10551117B2 (en) | 2015-12-14 | 2020-02-04 | Exxonmobil Upstream Research Company | Method of natural gas liquefaction on LNG carriers storing liquid nitrogen |
US10578354B2 (en) | 2015-07-10 | 2020-03-03 | Exxonmobil Upstream Reseach Company | Systems and methods for the production of liquefied nitrogen using liquefied natural gas |
US10663115B2 (en) | 2017-02-24 | 2020-05-26 | Exxonmobil Upstream Research Company | Method of purging a dual purpose LNG/LIN storage tank |
EP3719426A1 (fr) * | 2019-04-04 | 2020-10-07 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Purification et liquéfaction du biogaz par combinaison d'un système de cristallisation avec un échangeur de liquéfaction |
US11083994B2 (en) | 2019-09-20 | 2021-08-10 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration |
US11215410B2 (en) | 2018-11-20 | 2022-01-04 | Exxonmobil Upstream Research Company | Methods and apparatus for improving multi-plate scraped heat exchangers |
US11326834B2 (en) | 2018-08-14 | 2022-05-10 | Exxonmobil Upstream Research Company | Conserving mixed refrigerant in natural gas liquefaction facilities |
CN114618259A (zh) * | 2022-03-23 | 2022-06-14 | 北京大学 | 一种烟气中二氧化碳捕集方法 |
CN114702993A (zh) * | 2022-03-18 | 2022-07-05 | 中海石油气电集团有限责任公司 | 一种适用于高酸气含量的海上天然气处理方法 |
US11415348B2 (en) | 2019-01-30 | 2022-08-16 | Exxonmobil Upstream Research Company | Methods for removal of moisture from LNG refrigerant |
US11465093B2 (en) | 2019-08-19 | 2022-10-11 | Exxonmobil Upstream Research Company | Compliant composite heat exchangers |
US11506454B2 (en) | 2018-08-22 | 2022-11-22 | Exxonmobile Upstream Research Company | Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same |
US11536510B2 (en) | 2018-06-07 | 2022-12-27 | Exxonmobil Upstream Research Company | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
US11555651B2 (en) | 2018-08-22 | 2023-01-17 | Exxonmobil Upstream Research Company | Managing make-up gas composition variation for a high pressure expander process |
US11578545B2 (en) | 2018-11-20 | 2023-02-14 | Exxonmobil Upstream Research Company | Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers |
US11635252B2 (en) | 2018-08-22 | 2023-04-25 | ExxonMobil Technology and Engineering Company | Primary loop start-up method for a high pressure expander process |
US11668524B2 (en) | 2019-01-30 | 2023-06-06 | Exxonmobil Upstream Research Company | Methods for removal of moisture from LNG refrigerant |
US11806639B2 (en) | 2019-09-19 | 2023-11-07 | ExxonMobil Technology and Engineering Company | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
US11808411B2 (en) | 2019-09-24 | 2023-11-07 | ExxonMobil Technology and Engineering Company | Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen |
US11815308B2 (en) | 2019-09-19 | 2023-11-14 | ExxonMobil Technology and Engineering Company | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
US11927391B2 (en) | 2019-08-29 | 2024-03-12 | ExxonMobil Technology and Engineering Company | Liquefaction of production gas |
US12050054B2 (en) | 2019-09-19 | 2024-07-30 | ExxonMobil Technology and Engineering Company | Pretreatment, pre-cooling, and condensate recovery of natural gas by high pressure compression and expansion |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6082133A (en) * | 1999-02-05 | 2000-07-04 | Cryo Fuel Systems, Inc | Apparatus and method for purifying natural gas via cryogenic separation |
WO2001069149A1 (en) * | 2000-03-15 | 2001-09-20 | Den Norske Stats Oljeselskap A.S. | Natural gas liquefaction process |
CN1262808C (zh) * | 2000-06-09 | 2006-07-05 | 布拉克及维特奇普里特查德有限公司 | 改进的闭合回路单混合制冷剂工艺 |
US20060225461A1 (en) * | 2005-04-11 | 2006-10-12 | Henri Paradowski | Process for sub-cooling an LNG stream obtained by cooling by means of a first refrigeration cycle, and associated installation |
-
2012
- 2012-04-16 CN CN201210111419.5A patent/CN102628635B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6082133A (en) * | 1999-02-05 | 2000-07-04 | Cryo Fuel Systems, Inc | Apparatus and method for purifying natural gas via cryogenic separation |
WO2001069149A1 (en) * | 2000-03-15 | 2001-09-20 | Den Norske Stats Oljeselskap A.S. | Natural gas liquefaction process |
CN1262808C (zh) * | 2000-06-09 | 2006-07-05 | 布拉克及维特奇普里特查德有限公司 | 改进的闭合回路单混合制冷剂工艺 |
US20060225461A1 (en) * | 2005-04-11 | 2006-10-12 | Henri Paradowski | Process for sub-cooling an LNG stream obtained by cooling by means of a first refrigeration cycle, and associated installation |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10578354B2 (en) | 2015-07-10 | 2020-03-03 | Exxonmobil Upstream Reseach Company | Systems and methods for the production of liquefied nitrogen using liquefied natural gas |
US10480854B2 (en) | 2015-07-15 | 2019-11-19 | Exxonmobil Upstream Research Company | Liquefied natural gas production system and method with greenhouse gas removal |
WO2017011124A1 (en) * | 2015-07-15 | 2017-01-19 | Exxonmobil Upstream Research Company | Increasing efficiency in an lng production system by pre-cooling a natural gas feed stream |
US11060791B2 (en) | 2015-07-15 | 2021-07-13 | Exxonmobil Upstream Research Company | Increasing efficiency in an LNG production system by pre-cooling a natural gas feed stream |
CN108291769A (zh) * | 2015-12-03 | 2018-07-17 | 国际壳牌研究有限公司 | 从受污染的烃物料流去除co2的方法 |
CN108291769B (zh) * | 2015-12-03 | 2020-09-15 | 国际壳牌研究有限公司 | 从受污染的烃物料流去除co2的方法 |
US10488105B2 (en) | 2015-12-14 | 2019-11-26 | Exxonmobil Upstream Research Company | Method and system for separating nitrogen from liquefied natural gas using liquefied nitrogen |
US10551117B2 (en) | 2015-12-14 | 2020-02-04 | Exxonmobil Upstream Research Company | Method of natural gas liquefaction on LNG carriers storing liquid nitrogen |
US10663115B2 (en) | 2017-02-24 | 2020-05-26 | Exxonmobil Upstream Research Company | Method of purging a dual purpose LNG/LIN storage tank |
US10989358B2 (en) | 2017-02-24 | 2021-04-27 | Exxonmobil Upstream Research Company | Method of purging a dual purpose LNG/LIN storage tank |
CN106823443A (zh) * | 2017-04-12 | 2017-06-13 | 中国石油大学(华东) | 天然气中二氧化碳雪化分离器、分离系统及分离方法 |
CN106823443B (zh) * | 2017-04-12 | 2022-09-30 | 中国石油大学(华东) | 天然气中二氧化碳雪化分离器、分离系统及分离方法 |
US11536510B2 (en) | 2018-06-07 | 2022-12-27 | Exxonmobil Upstream Research Company | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
US11326834B2 (en) | 2018-08-14 | 2022-05-10 | Exxonmobil Upstream Research Company | Conserving mixed refrigerant in natural gas liquefaction facilities |
US11506454B2 (en) | 2018-08-22 | 2022-11-22 | Exxonmobile Upstream Research Company | Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same |
US12050056B2 (en) | 2018-08-22 | 2024-07-30 | ExxonMobil Technology and Engineering Company | Managing make-up gas composition variation for a high pressure expander process |
US11555651B2 (en) | 2018-08-22 | 2023-01-17 | Exxonmobil Upstream Research Company | Managing make-up gas composition variation for a high pressure expander process |
US11635252B2 (en) | 2018-08-22 | 2023-04-25 | ExxonMobil Technology and Engineering Company | Primary loop start-up method for a high pressure expander process |
US11215410B2 (en) | 2018-11-20 | 2022-01-04 | Exxonmobil Upstream Research Company | Methods and apparatus for improving multi-plate scraped heat exchangers |
US11578545B2 (en) | 2018-11-20 | 2023-02-14 | Exxonmobil Upstream Research Company | Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers |
US11415348B2 (en) | 2019-01-30 | 2022-08-16 | Exxonmobil Upstream Research Company | Methods for removal of moisture from LNG refrigerant |
US11668524B2 (en) | 2019-01-30 | 2023-06-06 | Exxonmobil Upstream Research Company | Methods for removal of moisture from LNG refrigerant |
FR3094782A1 (fr) * | 2019-04-04 | 2020-10-09 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Purification et liquéfaction du biogaz par combinaison d’un système de cristallisation avec un échangeur de liquéfaction |
EP3719426A1 (fr) * | 2019-04-04 | 2020-10-07 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Purification et liquéfaction du biogaz par combinaison d'un système de cristallisation avec un échangeur de liquéfaction |
US11066347B2 (en) | 2019-04-04 | 2021-07-20 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Purification and liquefaction of biogas by combination of a crystallization system with a liquefaction exchanger |
US11465093B2 (en) | 2019-08-19 | 2022-10-11 | Exxonmobil Upstream Research Company | Compliant composite heat exchangers |
US11927391B2 (en) | 2019-08-29 | 2024-03-12 | ExxonMobil Technology and Engineering Company | Liquefaction of production gas |
US11806639B2 (en) | 2019-09-19 | 2023-11-07 | ExxonMobil Technology and Engineering Company | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
US11815308B2 (en) | 2019-09-19 | 2023-11-14 | ExxonMobil Technology and Engineering Company | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
US12050054B2 (en) | 2019-09-19 | 2024-07-30 | ExxonMobil Technology and Engineering Company | Pretreatment, pre-cooling, and condensate recovery of natural gas by high pressure compression and expansion |
US11083994B2 (en) | 2019-09-20 | 2021-08-10 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration |
US11808411B2 (en) | 2019-09-24 | 2023-11-07 | ExxonMobil Technology and Engineering Company | Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen |
CN114702993A (zh) * | 2022-03-18 | 2022-07-05 | 中海石油气电集团有限责任公司 | 一种适用于高酸气含量的海上天然气处理方法 |
CN114618259B (zh) * | 2022-03-23 | 2022-12-30 | 北京大学 | 一种烟气中二氧化碳捕集方法 |
CN114618259A (zh) * | 2022-03-23 | 2022-06-14 | 北京大学 | 一种烟气中二氧化碳捕集方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102628635B (zh) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102628635B (zh) | 带凝华脱除co2的气体膨胀天然气带压液化工艺 | |
CN102620523B (zh) | 带凝华脱除co2的混合制冷剂循环天然气带压液化工艺 | |
EP3368630B1 (en) | Low-temperature mixed--refrigerant for hydrogen precooling in large scale | |
RU2718378C1 (ru) | Крупномасштабное сжижение водорода посредством водородного холодильного цикла высокого давления, объединенного с новым предварительным охлаждением однократно смешанным хладагентом | |
CN103215093B (zh) | 小型撬装式氮膨胀天然气液化系统及其方法 | |
US8250883B2 (en) | Process to obtain liquefied natural gas | |
CA2775449C (en) | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams | |
EP3575716B1 (en) | Modularized lng separation device and flash gas heat exchanger | |
CA2552327C (en) | Method for selective extraction of natural gas liquids from "rich" natural gas | |
CN108458549B (zh) | 从天然气中提氦并液化的系统与方法 | |
EP1939564A1 (en) | Process to obtain liquefied natural gas | |
KR20180095870A (ko) | 액체 질소로 보강된, 팽창기-기반 lng 생산 방법 | |
CN103175381B (zh) | 低浓度煤层气含氧深冷液化制取lng工艺 | |
CN103363778B (zh) | 小型撬装式单阶混合制冷剂天然气液化系统及其方法 | |
CN102620524B (zh) | 带凝华脱除co2的级联式天然气带压液化工艺 | |
MX2010011500A (es) | Proceso de expansion dual de nitrogeno. | |
KR102516628B1 (ko) | 대규모 연안 액화 | |
CN104930815A (zh) | 适用于海上的天然气液化及ngl回收系统及应用 | |
CN103868324B (zh) | 小型撬装式混合制冷剂天然气液化和ngl回收一体系统 | |
CN103175380B (zh) | 低浓度煤层气含氧深冷液化制取lng装置 | |
CN105737516A (zh) | 混合制冷剂预冷氮气膨胀的天然气液化系统及方法 | |
CN103267402B (zh) | 提取低浓度含氧煤层气中甲烷的方法 | |
US10995910B2 (en) | Process for expansion and storage of a flow of liquefied natural gas from a natural gas liquefaction plant, and associated plant | |
CN203177588U (zh) | 低浓度煤层气含氧深冷液化制取天然气的装置 | |
Brennan et al. | Liquefaction and Separation of Gases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141015 Termination date: 20200416 |
|
CF01 | Termination of patent right due to non-payment of annual fee |