CN102627993B - Preparation method of water-soluble graphene oxide-carbon nanotube extreme-pressure lubrication additive - Google Patents

Preparation method of water-soluble graphene oxide-carbon nanotube extreme-pressure lubrication additive Download PDF

Info

Publication number
CN102627993B
CN102627993B CN 201210074349 CN201210074349A CN102627993B CN 102627993 B CN102627993 B CN 102627993B CN 201210074349 CN201210074349 CN 201210074349 CN 201210074349 A CN201210074349 A CN 201210074349A CN 102627993 B CN102627993 B CN 102627993B
Authority
CN
China
Prior art keywords
carbon nanotube
water
preparation
ratio
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201210074349
Other languages
Chinese (zh)
Other versions
CN102627993A (en
Inventor
胡桢
黄玉东
唐培毅
李翠云
赵生俊
李群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN 201210074349 priority Critical patent/CN102627993B/en
Publication of CN102627993A publication Critical patent/CN102627993A/en
Application granted granted Critical
Publication of CN102627993B publication Critical patent/CN102627993B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Lubricants (AREA)

Abstract

The invention relates to a preparation method of a water-soluble extreme-pressure lubrication additive and concretely relates to a preparation method of a water-soluble graphene oxide-carbon nanotube extreme-pressure lubrication additive to solve technical problems of high cost, bad stability, bad lubricating property and the like of present emulsified water-soluble lubricants. The preparation method of the invention comprises the following steps: 1, carboxylated carbon nanotube preparation; 2, chloridizated carbon nanotube preparation; 3, water-soluble polymer modified carbon nanotube preparation; and 4, graphene oxide-carbon nanotube extreme-pressure lubrication additive preparation. Water-soluble lubricants prepared by adopting the extreme-pressure lubrication additive of the invention have the advantages of environmental pollution reduction, production cost reduction, use stability improvement, and extreme-pressure lubrication performance possessing. The extreme-pressure lubrication additive of the invention can be applied to fields of aqueous cold rolling liquids, micro mechanical lubrication and the like.

Description

The preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive
Technical field
The present invention relates to the preparation method of water-soluble extreme boundary lubrication additive.
Background technology
The energy of worldwide production has 1/3-1/2 to consume in frictional wear, and the damage of various machine parts about 80% is because multi-form wearing and tearing cause, this shows friction, the financial loss that causes of wearing and tearing is inestimable.Along with the development of petroleum industry, the oil lubricant technology reaches its maturity, and is widely used in each industrial sector.The whole world is required to be it every year and consumes mineral oil 40,000,000 tons of left and right, accounts for 2% of oil production rate.In the later stage sixties in last century, along with the world energy sources crisis, as lubricant medium, cause people's very big concern with water base fluid proxy mineral oil.And in the last thirty years in global range to the pay attention to day by day of environment protection, make people be more prone to this low pollution medium of water base fluid.For oil, not only petroleum resources can be saved with water, and environmental pollution and production cost can be reduced.
Domestic and international widely used water-based lubricating liquid belongs to oil-in-water type mostly at present, has obvious advantage although compare with oil lubricant, but the oil-in-water type lubricating fluid still has problems, at present most widely used is anionic emulsifier, their emulsifying properties are good, certain cleaning and lubricity are arranged, but stability---resistance to hard water is poor; And nonionic emulsifier is not afraid of hard water, but price is higher again; Common shortcoming is both arranged again simultaneously---be difficult to metal is realized evenly effectively lubricated.
Summary of the invention
The present invention be to solve that existing oil-in-water type water-based lubricating liquid cost is high, poor stability, the poor technical problem of lubricity, and provide the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive.
The preparation method of the water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive in the present invention carries out according to the following steps:
One, the preparation of carboxylic carbon nano-tube: stir and reflux 12~48h carbon nanotube is joined mixed acid solution under agitation condition in, after cooling with mixed solution centrifugation 15~45min under the rotating speed of 3500~4500rpm, isolated throw out washes with water to being neutral, then adopt the millipore filtration of 0.20~0.25 μ m to carry out suction filtration, filter cake at 60~90 ℃ of lower vacuum dryings, is obtained carboxylic carbon nano-tube; Wherein, mixed acid solution is the HNO of 14~15mol/L by concentration 3With concentration be the H of 18~19mol/L 2SO 4Be 1: 2~4 to mix by volume, the ratio of carbon nanotube quality and mixed acid solution volume is 1g: 20~200mL;
Two, the preparation of chloride carbon nanotube: the carboxylic carbon nano-tube that obtains in step 1 is added in the mixed solution of thionyl chloride and toluene and ultra-sonic dispersion 15~60min, then under nitrogen protection, intensification degree to 50~100 ℃ backflow 1~5 day, then carry out centrifugation, abandoning supernatant, precipitated product at 70~100 ℃ of lower vacuum-drying 12~48h, is obtained the chloride nanotube; Wherein, the ratio of carboxylic carbon nano-tube quality and mixeding liquid volume is 1g: 600~1000mL, and in mixed solution, the volume ratio of thionyl chloride and toluene is 1~2: 1;
Three, the preparation of the carbon nanotube of water-soluble polymer modification: the chloride carbon nanotube and the water-soluble high-molecular compound that obtain in step 2 are joined in solvent, and then ultra-sonic dispersion 1~3h reacted 1~3 day under 60~120 ℃ of conditions; Solvent evaporated is scattered in desciccate and obtains the aqueous solution in deionized water, then the aqueous solution is splashed in ethanol precipitates, and the vacuum drying oven that then is placed in 60~90 ℃ is drying to obtain the carbon nanotube that water-soluble polymer is modified; Wherein, the ratio of solvent volume and chloride carbon nanotube quality is 1~5L: 1g, and the mass ratio of water-soluble high-molecular compound and chloride carbon nanotube is 50~200: 1; In the described aqueous solution, the ratio of desciccate quality and deionized water volume is 10~100g: 1L, the volume ratio of ethanol and deionized water is 8~10: 1, described solvent is N, dinethylformamide, described water-soluble high-molecular compound are any one in polyvinyl alcohol, polyoxyethylene glycol and hydro-polyacrylamide;
Four, the preparation of graphene oxide-carbon nanotube extreme boundary lubrication additive: adopt the standby graphite oxide of Hummers legal system, the carbon nanotube that resulting water-soluble polymer in this graphite oxide and step 3 is modified joins in deionized water, after ultra-sonic dispersion 10~60min, the room temperature lucifuge stirred 12 hours, centrifugation 10~30min under the rotating speed of 15000~17000rpm again, the resulting throw out of centrifugation is placed in the dry 12~48h of vacuum drying oven of 60~90 ℃, namely gets graphene oxide-carbon nanotube extreme boundary lubrication additive; Wherein, the carbon nanotube that water-soluble polymer is modified and the mass ratio of graphene oxide are 1~2: 1, and the ratio of graphene oxide quality and deionized water volume is 1g: 1~5L.
Mechanism of the present invention: because graphite has good lubrication, overstable physical property, the nontoxic excellent properties such as inexpensive and high temperature resistant, be acknowledged as desirable solid lubricant, yet, the non-wetting ability of graphite has greatly limited its research and application in Water-based Lubricating Additives, and the application of graphite in Water-based Lubricating Additives that appear as of graphene oxide provides opportunity.Be the relatively sliding of its interlayer due to the mechanism of graphite lubrication, can further improve its lubricity if adopt nanotechnology that sliding friction is become rolling resistance.Carbon nanotube is a kind of typical nanoparticle.The explanation of carbon nanotube antifriction antiwear mechanism is mainly based on the pebbles model in the boundary lubrication theory, think that namely the carbon nanotube size is less, can think approximate bar-shaped, can be as pebbles between friction pair Free-rolling, play support loading and make the wear resistance raising of lubricant film.Adopt graphene oxide-carbon nanotube extreme boundary lubrication additive to replace traditional oil lubricant and oil-in-water type lubricating fluid, but environmental contamination reduction, reduce costs, improve stability in use, have simultaneously the multiple efficacies such as extreme boundary lubrication, cooling, antirust inhibition.
The present invention adopts the Hummers method and is aided with ultra-sonic dispersion and prepares graphene oxide, and this graphene oxide has good dispersiveness in the aqueous solution.Then prepare water-soluble polymer carbon nano-tube modified, wherein water-soluble polymer and carbon nanotube link together by the chemical bonding effect, make carbon nanotube have good wetting ability.Graphene oxide and carbon nanotube interact by pi-pi bond and realize assembling.
Water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive in the present invention has following characteristics: (1) raw material graphite itself has good lubrication, stable chemical nature, the occurring in nature reserves are large, cheap, adopt the standby water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive of graphite-made, production cost is low; (2) have the polymer flexibility molecular chain in carbon nanotube structure, can improve the Wear vesistance of slip additive, lubricity is good; (3) the firm carbon nanotube constituent element that is dispersed in the graphene oxide interlayer can strengthen its supporting capacity; (4) the prepared additive of the present invention has good dispersiveness in water, can form uniform and stable solution, and viscosity is little, free settling not, and life cycle is long.
A plurality of fields such as water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive of the present invention can be applicable to the water-based cold rolling liquid, and micromechanics is lubricated.
Description of drawings
Fig. 1 is the infrared spectra of the polyethyleneglycol modified carbon nanotube that in experiment one, step 2 is synthesized; Fig. 2 is the transmission electron microscope picture of the water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive that in experiment one, step 3 is synthesized; Fig. 3 tests graphene oxide synthetic in-carbon nanotube extreme boundary lubrication additive wear scar diameter and extreme pressure value and its concentration relationship curve, wherein-■-and be the relation curve of wear scar diameter and concentration;--be the relation curve of extreme pressure value and concentration.
Embodiment
Technical solution of the present invention is not limited to following cited embodiment, also comprises the arbitrary combination between each embodiment.
Embodiment one: in present embodiment, the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive carries out according to the following steps:
One, the preparation of carboxylic carbon nano-tube: stir and reflux 12~48h carbon nanotube is joined mixed acid solution under agitation condition in, after cooling with mixed solution centrifugation 15~45min under the rotating speed of 3500~4500rpm, isolated throw out washes with water to being neutral, then adopt the millipore filtration of 0.20~0.25 μ m to carry out suction filtration, filter cake at 60~90 ℃ of lower vacuum dryings, is obtained carboxylic carbon nano-tube; Wherein, mixed acid solution is the HNO of 14~15mol/L by concentration 3With concentration be the H of 18~19mol/L 2SO 4Be 1: 2~4 to mix by volume, the ratio of carbon nanotube quality and mixed acid solution volume is 1g: 20~200mL;
Two, the preparation of chloride carbon nanotube: the carboxylic carbon nano-tube that obtains in step 1 is added in the mixed solution of thionyl chloride and toluene and ultra-sonic dispersion 15~60min, then under nitrogen protection, intensification degree to 50~100 ℃ backflow 1~5 day, then carry out centrifugation, abandoning supernatant, precipitated product at 70~100 ℃ of lower vacuum-drying 12~48h, is obtained the chloride nanotube; Wherein, the ratio of carboxylic carbon nano-tube quality and mixeding liquid volume is 1g: 600~1000mL, and in mixed solution, the volume ratio of thionyl chloride and toluene is 1~2: 1;
Three, the preparation of the carbon nanotube of water-soluble polymer modification: the chloride carbon nanotube and the water-soluble high-molecular compound that obtain in step 2 are joined in solvent, and then ultra-sonic dispersion 1~3h reacted 1~3 day under 60~120 ℃ of conditions; Solvent evaporated is scattered in desciccate and obtains the aqueous solution in deionized water, then the aqueous solution is splashed in ethanol precipitates, and the vacuum drying oven that then is placed in 60~90 ℃ is drying to obtain the carbon nanotube that water-soluble polymer is modified; Wherein, the ratio of solvent volume and chloride carbon nanotube quality is 1~5L: 1g, and the mass ratio of water-soluble high-molecular compound and chloride carbon nanotube is 50~200: 1; In the described aqueous solution, the ratio of desciccate quality and deionized water volume is 10~100g: 1L, the volume ratio of ethanol and deionized water is 8~10: 1, described solvent is N, dinethylformamide, described water-soluble high-molecular compound are any one in polyvinyl alcohol, polyoxyethylene glycol and hydro-polyacrylamide;
Four, the preparation of graphene oxide-carbon nanotube extreme boundary lubrication additive: adopt the standby graphite oxide of Hummers legal system, the carbon nanotube that resulting water-soluble polymer in this graphite oxide and step 3 is modified joins in deionized water, after ultra-sonic dispersion 10~60min, the room temperature lucifuge stirred 12 hours, centrifugation 10~30min under the rotating speed of 15000~17000rpm again, the resulting throw out of centrifugation is placed in the dry 12~48h of vacuum drying oven of 60~90 ℃, namely gets graphene oxide-carbon nanotube extreme boundary lubrication additive; Wherein, the carbon nanotube that water-soluble polymer is modified and the mass ratio of graphene oxide are 1~2: 1, and the ratio of graphene oxide quality and deionized water volume is 1g: 1~5L.
The present invention adopts the Hummers method and is aided with ultra-sonic dispersion and prepares graphene oxide, and this graphene oxide has good dispersiveness in the aqueous solution.Then prepare water-soluble polymer carbon nano-tube modified, wherein water-soluble polymer and carbon nanotube link together by the chemical bonding effect, make carbon nanotube have good wetting ability.Graphene oxide and carbon nanotube interact by pi-pi bond and realize assembling.
Water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive in the present invention has following characteristics: (1) raw material graphite itself has good lubrication, stable chemical nature, the occurring in nature reserves are large, cheap, adopt the standby water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive of graphite-made, production cost is low; (2) have the polymer flexibility molecular chain in carbon nanotube structure, can improve the Wear vesistance of slip additive, lubricity is good; (3) the firm carbon nanotube constituent element that is dispersed in the graphene oxide interlayer can strengthen its supporting capacity; (4) the prepared additive of the present invention has good dispersiveness in water, can form uniform and stable solution, and viscosity is little, free settling not, and life cycle is long.
Embodiment two: what present embodiment was different from embodiment one is: in step 1, the ratio of carbon nanotube quality and mixed acid solution volume is 1g: 60~160mL.Other step and parameter are identical with embodiment one.
Embodiment three: what present embodiment was different from embodiment one is: in step 1, the ratio of carbon nanotube quality and mixed acid solution volume is 1g: 110mL.Other step and parameter are identical with embodiment one.
Embodiment four: what present embodiment was different from one of embodiment one to three is: in step 2, the ratio of carboxylic carbon nano-tube quality and mixeding liquid volume is 1g: 700~900mL.Other step and parameter are identical with one of embodiment one to three.
Embodiment five: what present embodiment was different from one of embodiment one to four is: in step 2 in mixed solution the volume ratio of thionyl chloride and toluene be 1.4~1.6: 1.Other step and parameter are identical with one of embodiment one to four.
Embodiment six: what present embodiment was different from one of embodiment one to five is: in step 3, the mass ratio of water-soluble high-molecular compound and chloride carbon nanotube is 100~150: 1.Other step and parameter are identical with one of embodiment one to five.
Embodiment seven: what present embodiment was different from one of embodiment one to six is: in step 3, the ratio of DMF volume and chloride carbon nanotube quality is 2~4L: 1g.Other step and parameter are identical with one of embodiment one to six.
Embodiment eight: what present embodiment was different from one of embodiment one to seven is: described in step 3 in the aqueous solution ratio of desciccate quality and deionized water volume be 40~70g: 1L.Other step and parameter are identical with one of embodiment one to seven.
Embodiment nine: what present embodiment was different from one of embodiment one to eight is: the carbon nanotube that in step 4, water-soluble polymer is modified and the mass ratio of graphene oxide are 1.4~1.6: 1.Other step and parameter are identical with one of embodiment one to eight.
Embodiment ten: what present embodiment was different from one of embodiment one to nine is: in step 4, the ratio of graphene oxide quality and deionized water volume is 1g: 2~4L.Other step and parameter are identical with one of embodiment one to nine.
For verifying that beneficial effect of the present invention has carried out following experiment:
Experiment one: the preparation method of the water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive of this experiment carries out according to the following steps:
One, the preparation of carboxylic carbon nano-tube: stir and reflux 24h the 5g carbon nanotube is joined mixed acid solution under agitation condition in, after cooling with mixed solution centrifugation 30min under the rotating speed of 4000rpm, isolated throw out washes with water to being neutral, then adopt the millipore filtration of 0.22 μ m to carry out suction filtration, gained carboxylic carbon nano-tube filter cake is vacuum drying under 70 ℃ of conditions, and wherein mixing acid is the HNO of 14.5mol/L by 40mL concentration 3With 120mL concentration be the H of 18.4mol/L 2SO 4Be to mix at 1: 3 by volume;
Two, the preparation of chloride carbon nanotube: the carboxylic carbon nano-tube that obtains in the 1g step 1 is added in the mixed solution of 350mL thionyl chloride and 350mL toluene and ultra-sonic dispersion 25min, then under temperature is 75 ℃ and nitrogen protection condition, reflux and carried out centrifugation in 2 days afterwards, abandoning supernatant, precipitated product at 80 ℃ of lower vacuum-drying 24h, is obtained the chloride carbon nanotube;
Three, the preparation of the carbon nanotube of water-soluble polymer modification: 1g chloride carbon nanotube and the 100g polyoxyethylene glycol of step 1 preparation are joined in the DMF of 2L, and then ultra-sonic dispersion 1h reacted 2 days under 100 ℃ of conditions; Solvent evaporated is scattered in the 20g desciccate in the 500mL deionized water and obtains the aqueous solution, then the aqueous solution is splashed in 5L ethanol precipitates, and the vacuum drying oven that then is placed in 80 ℃ is drying to obtain polyethyleneglycol modified carbon nanotube; The infrared spectra of the polyethyleneglycol modified carbon nanotube of this step preparation has demonstrated the characteristic infrared absorption of carbon nanotube and polyoxyethylene glycol, as shown in Figure 1 at 846cm in Fig. 1 -1With 950cm -1The charateristic avsorption band that the place occurs is the stretching vibration peak of acyl chlorides, at 1720cm -1The place demonstrates strong ester group characteristic peak, proves that carbon nanotube and polyoxyethylene glycol link together by ester group;
Four, the preparation of graphene oxide-carbon nanotube extreme boundary lubrication additive: adopt the standby graphite oxide of Hummers legal system, the carbon nanotube that resulting water-soluble polymer in this graphite oxide of 0.5g and 0.5g step 2 is modified joins in the 1L deionized water, ultra-sonic dispersion 45min, the room temperature lucifuge stirred 12 hours, centrifugation 30min under the rotating speed of 16000rpm, the resulting throw out of centrifugation is placed in the dry 24h of vacuum drying oven of 80 ℃, namely gets graphene oxide-carbon nanotube extreme boundary lubrication additive.The graphene oxide that experiment one is prepared-carbon nanotube extreme boundary lubrication additive is added to the water, make lubricating fluid, utilize transmission electron microscope observing, Fig. 2 shows the transmission electron microscope picture of above-mentioned slip additive, result shows that graphene oxide and carbon nanotube all have good dispersiveness in water, and interacts by pi-pi bond and realize the assembling of graphene oxide and carbon nanotube.
Water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive to preparation in above-mentioned experiment one carries out the frictional behaviour test.Adopt four ball frictional testing machines testing friction performances, speed of mainshaft 1450rpm, 20 ℃ of test temperatures, the test steels ball material is GCr15, and hardness is HRC64-66, and surfaceness is Ra=0.012 μ m.The trolamine aqueous solution of the present invention take mass percent as 2% adds graphene oxide of the present invention-carbon nanotube extreme boundary lubrication additive as basal liquid.Extreme pressure value (PB) is tested with reference to GB3142-82; Wear scar diameter (WSD) is 200N in load, and the test duration is 30 minutes, investigates graphene oxide-carbon nanotube extreme boundary lubrication additive to the impact of WSD.Fig. 3 shown concentration and wear scar diameter and the extreme pressure value of graphene oxide-carbon nanotube extreme boundary lubrication additive relation curve (in figure-■-the be relation curve of wear scar diameter and concentration;--be extreme pressure value with the relation curve of concentration).Presentation of results, the trolamine aqueous solution take mass percent as 2% is respectively 0.86mm and 98.5N as basal liquid carries out wear scar diameter and extreme pressure value that tribology experiments obtains, adding a certain amount of graphene oxide-carbon nanotube extreme boundary lubrication additive in basal liquid can significantly improve the frictional behaviour of basal liquid, improve simultaneously effect best when its mass percent is 0.5%.Add 0.5% graphene oxide-carbon nanotube extreme boundary lubrication additive and make the wear scar diameter of basal liquid reduce 27.9%, make the extreme pressure value increase 270.6%.

Claims (10)

1. the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive is characterized in that the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive carries out according to the following steps:
One, the preparation of carboxylic carbon nano-tube: stir and reflux 12~48h carbon nanotube is joined mixed acid solution under agitation condition in, after cooling with mixed solution centrifugation 15~45min under the rotating speed of 3500~4500rpm, isolated throw out washes with water to being neutral, then adopt the millipore filtration of 0.20~0.25 μ m to carry out suction filtration, filter cake at 60~90 ℃ of lower vacuum dryings, is obtained carboxylic carbon nano-tube; Wherein, mixed acid solution is the HNO of 14~15mol/L by concentration 3With concentration be the H of 18~19mol/L 2SO 4Mix for 1:2~4 by volume, the ratio of carbon nanotube quality and mixed acid solution volume is 1g:20~200mL;
Two, the preparation of chloride carbon nanotube: the carboxylic carbon nano-tube that obtains in step 1 is added in the mixed solution of thionyl chloride and toluene and ultra-sonic dispersion 15~60min, then under nitrogen protection, intensification degree to 50~100 ℃ backflow 1~5 day, then carry out centrifugation, abandoning supernatant, precipitated product at 70~100 ℃ of lower vacuum-drying 12~48h, is obtained the chloride carbon nanotube; Wherein, the ratio of carboxylic carbon nano-tube quality and mixeding liquid volume is 1g:600~1000mL, and in mixed solution, the volume ratio of thionyl chloride and toluene is 1~2:1;
Three, the preparation of the carbon nanotube of water-soluble polymer modification: the chloride carbon nanotube and the water-soluble high-molecular compound that obtain in step 2 are joined in solvent, and then ultra-sonic dispersion 1~3h reacted 1~3 day under 60~120 ℃ of conditions; Solvent evaporated is scattered in desciccate and obtains the aqueous solution in deionized water, then the aqueous solution is splashed in ethanol precipitates, and the vacuum drying oven that then is placed in 60~90 ℃ is drying to obtain the carbon nanotube that water-soluble polymer is modified; Wherein, the ratio of solvent volume and chloride carbon nanotube quality is 1~5L:1g, and the mass ratio of water-soluble high-molecular compound and chloride carbon nanotube is 50~200:1; In the described aqueous solution, the ratio of desciccate quality and deionized water volume is 10~100g:1L, the volume ratio of ethanol and deionized water is 8~10:1, described solvent is N, dinethylformamide, described water-soluble high-molecular compound are any one in polyvinyl alcohol, polyoxyethylene glycol and hydro-polyacrylamide;
Four, the preparation of graphene oxide-carbon nanotube extreme boundary lubrication additive: adopt the standby graphite oxide of Hummers legal system, the carbon nanotube that resulting water-soluble polymer in this graphite oxide and step 3 is modified joins in deionized water, after ultra-sonic dispersion 10~60min, the room temperature lucifuge stirred 12 hours, centrifugation 10~30min under the rotating speed of 15000~17000rpm again, the resulting throw out of centrifugation is placed in the dry 12~48h of vacuum drying oven of 60~90 ℃, namely gets graphene oxide-carbon nanotube extreme boundary lubrication additive; Wherein, the carbon nanotube that water-soluble polymer is modified and the mass ratio of graphite oxide are 1~2:1, and the ratio of graphite oxide quality and deionized water volume is 1g:1~5L.
2. the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive according to claim 1 is characterized in that in step 1, the ratio of carbon nanotube quality and mixed acid solution volume is 1g:60~160mL.
3. the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive according to claim 1 is characterized in that in step 1, the ratio of carbon nanotube quality and mixed acid solution volume is 1g:110mL.
4. the preparation method of according to claim 2 or 3 described water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additives, is characterized in that in step 2, and the ratio of carboxylic carbon nano-tube quality and mixeding liquid volume is 1g:700~900mL.
5. the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive according to claim 4, is characterized in that in step 2, and in mixed solution, the volume ratio of thionyl chloride and toluene is 1.4~1.6:1.
6. the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive according to claim 5, is characterized in that in step 3, and the mass ratio of water-soluble high-molecular compound and chloride carbon nanotube is 100~150:1.
7. the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive according to claim 6, is characterized in that in step 3, and the ratio of DMF volume and chloride carbon nanotube quality is 2~4L:1g.
8. the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive according to claim 7, is characterized in that in step 3, and in the described aqueous solution, the ratio of desciccate quality and deionized water volume is 40~70g:1L.
9. the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive according to claim 8, is characterized in that in step 4, and the carbon nanotube that water-soluble polymer is modified and the mass ratio of graphite oxide are 1.4~1.6:1.
10. the preparation method of water soluble oxidized graphene-carbon nano tube extreme boundary lubrication additive according to claim 9, is characterized in that in step 4, and the ratio of graphite oxide quality and deionized water volume is 1g:2~4L.
CN 201210074349 2012-03-20 2012-03-20 Preparation method of water-soluble graphene oxide-carbon nanotube extreme-pressure lubrication additive Expired - Fee Related CN102627993B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210074349 CN102627993B (en) 2012-03-20 2012-03-20 Preparation method of water-soluble graphene oxide-carbon nanotube extreme-pressure lubrication additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210074349 CN102627993B (en) 2012-03-20 2012-03-20 Preparation method of water-soluble graphene oxide-carbon nanotube extreme-pressure lubrication additive

Publications (2)

Publication Number Publication Date
CN102627993A CN102627993A (en) 2012-08-08
CN102627993B true CN102627993B (en) 2013-06-05

Family

ID=46586388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210074349 Expired - Fee Related CN102627993B (en) 2012-03-20 2012-03-20 Preparation method of water-soluble graphene oxide-carbon nanotube extreme-pressure lubrication additive

Country Status (1)

Country Link
CN (1) CN102627993B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140023864A1 (en) * 2012-07-19 2014-01-23 Anirudha V. Sumant Superlubricating Graphene Films
CN103980978B (en) * 2014-05-15 2016-03-02 张孝彬 Engineering plastics of a kind of graphene/nanometer carbon ball compound of high lubricity and preparation method thereof
US9561526B2 (en) 2014-06-19 2017-02-07 Uchicago Argonne, Llc Low friction wear resistant graphene films
CN104131459B (en) * 2014-07-31 2016-03-16 哈尔滨工业大学 A kind of vinyl ester carbon fiber sizing agent containing CNTs and preparation method thereof
CN106833807A (en) * 2016-12-13 2017-06-13 天津科技大学 A kind of fullerenic carbon nanotubes lubricating additive and its preparation
US10745641B2 (en) 2017-02-09 2020-08-18 Uchicago Argonne, Llc Low friction wear resistant graphene films
CN107011966A (en) * 2017-04-13 2017-08-04 天津科技大学 A kind of fullerenic carbon nanotubes graphene oxide lubricating additive and its preparation
CN108130159B (en) * 2018-01-18 2020-08-04 中国科学院宁波材料技术与工程研究所 Graphene water lubricating additive and preparation method and application thereof
CN108795547B (en) * 2018-07-26 2021-03-23 颜凤生 Plant compound engine oil containing graphene-inorganic nonmetallic fibers
US11440049B2 (en) 2019-09-30 2022-09-13 Uchicago Argonne, Llc Low friction coatings
US11155762B2 (en) 2019-09-30 2021-10-26 Uchicago Argonne, Llc Superlubrious high temperature coatings
CN111559742A (en) * 2019-12-25 2020-08-21 江西悦安新材料股份有限公司 Method for improving stability of carbon nano tube
CN111234897B (en) * 2020-02-27 2022-09-27 中山大学惠州研究院 Silicone oil modified carbon material heat-conducting lubricating additive and preparation method thereof
CN111876227B (en) * 2020-08-05 2022-05-27 扬州工业职业技术学院 Lamellar liquid crystal lubricant with cleaning and anti-creeping properties and preparation method thereof
CN111876223B (en) * 2020-08-05 2022-08-02 扬州工业职业技术学院 Modified carbon nanotube ionic liquid lamellar liquid crystal lubricant and preparation method thereof
CN112920882B (en) * 2021-01-28 2023-10-20 西安工程大学 Preparation method of graphene oxide composite solid lubricating material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308423C (en) * 2005-08-10 2007-04-04 湖南大学 Preparation method of carbon nanotube compounded lubricating oil
US8222190B2 (en) * 2009-08-19 2012-07-17 Nanotek Instruments, Inc. Nano graphene-modified lubricant
CN102041139A (en) * 2010-12-17 2011-05-04 哈尔滨工业大学 Method for preparing graphite oxide/macromolecular water-based cold rolling lubricating additive

Also Published As

Publication number Publication date
CN102627993A (en) 2012-08-08

Similar Documents

Publication Publication Date Title
CN102627993B (en) Preparation method of water-soluble graphene oxide-carbon nanotube extreme-pressure lubrication additive
CN102585973B (en) Preparation method of graphene oxide-fullerene water-based lubricating additives
Wang et al. Ionic liquid capped carbon dots as a high-performance friction-reducing and antiwear additive for poly (ethylene glycol)
CN103160360A (en) Modified molybdenum disulfide composition and modification method
Beheshti et al. Improving tribological properties of oil-based lubricants using hybrid colloidal additives
CN111440651B (en) Preparation method of black phosphorus alkene/graphene oxide composite water-based lubricant additive
CN111944585B (en) Lipophilic carbon quantum dot base nano lubricating oil additive and its preparation method
CN108913280B (en) Cellulose nanocrystalline lubricating oil additive and preparation and application thereof
CN102174341B (en) Preparation method of carbon nano-tube/nano-copper compounded lubricating oil additive
Shaari et al. Investigation of tribological properties of palm oil biolubricant modified nanoparticles
Lin et al. Graphene-reinforced lithium grease for antifriction and antiwear
CN110616102B (en) Composite lubricating grease and preparation method thereof
Ma et al. Tribological properties of SiO 2@ Cu and SiO 2@ MoS 2 core–shell microspheres as lubricant additives
Cao et al. Study on the preparation and tribological properties of fly ash as lubricant additive for steel/steel pair
CN101886022A (en) Preparation method of high-efficiency water-based lubricating liquid based on carbon nano-tube
CN109370721A (en) The excellent heavy duty automobile gear oil composition and preparation method thereof of shear stability
Kumar et al. Experimental study of carbon nanotubes to enhance tribological characteristics of lubricating engine oil SAE10W40
CN115353922A (en) Carbon nitride quantum dot-based polyethylene glycol lubricating additive and preparation method thereof
Chen et al. Inhibition of cold‐welding and adhesive wear occurring on surface of the 6061 aluminum alloy by graphene oxide/polyethylene glycol composite water‐based lubricant
CN106833807A (en) A kind of fullerenic carbon nanotubes lubricating additive and its preparation
Ajay Vardhaman et al. Experimental investigations to enhance the tribological performance of engine oil by using nano-boric acid and functionalized multiwalled carbon nanotubes: A comparative study to assess wear in bronze alloy
Qian et al. Experimental investigation on the tribological properties of modified carbon nanotubes as the additive in castor oil
CN111777728B (en) Preparation method of graphene oxide reinforced polymethyl methacrylate/carbon microsphere composite material
CN107011966A (en) A kind of fullerenic carbon nanotubes graphene oxide lubricating additive and its preparation
CN111944580A (en) Super-smooth composition and super-smooth material based on beta-diketone and cellulose nanocrystal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130605