CN102611302A - Buck-Boost voltage-regulating type voltage balance converter - Google Patents

Buck-Boost voltage-regulating type voltage balance converter Download PDF

Info

Publication number
CN102611302A
CN102611302A CN2012100562673A CN201210056267A CN102611302A CN 102611302 A CN102611302 A CN 102611302A CN 2012100562673 A CN2012100562673 A CN 2012100562673A CN 201210056267 A CN201210056267 A CN 201210056267A CN 102611302 A CN102611302 A CN 102611302A
Authority
CN
China
Prior art keywords
voltage
power
power switch
switch pipe
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100562673A
Other languages
Chinese (zh)
Inventor
郑欢
江道灼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2012100562673A priority Critical patent/CN102611302A/en
Publication of CN102611302A publication Critical patent/CN102611302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The invention discloses a Buck-Boost voltage-regulating type voltage balance converter. When an input DC voltage of the traditional converter greatly fluctuates, an output DC voltage of the traditional converter is instable. The Buck-Boost voltage-regulating type voltage balance converter comprises an input voltage source, a voltage-regulating switch circuit, a voltage balance circuit, a first state selection circuit and a second state selection circuit, wherein a first power switch tube S1 is connected in parallel with a diode D1; a second power switch tube S2 is connected in parallel with a diode D2; a third power switch tube S3 is connected in parallel with a diode D3; a fourth power switch tube S4 is connected in parallel with a diode D4; a fifth power switch tube S5 is connected in parallel with a diode D5, a sixth diode D6 and a second inductance L2; and a sixth power switch tube S6 is connected in parallel with a diode D7, an eighth diode D8, a ninth diode D9 and a third inductance L3. The Buck-Boost voltage-regulating type voltage balance converter can maintain that voltages at two ends of a DC voltage-dividing capacitor when loads at two poles of a DC power distribution network are not balanced; and when the input DC voltage greatly fluctuates, the output DC voltage is maintained to be stable.

Description

Buck-Boost pressure-adjusting type voltage balance converter
Technical field
The invention belongs to the power electronics application, relate in particular to a kind of Buck-Boost pressure-adjusting type voltage balance converter.
Background technology
Tremendous development and extensive use along with new forms of energy, new material, information technology and power electronic technology; And the user is to the improving constantly of requirements such as need for electricity, the quality of power supply and power supply reliability, and will obtain increasing concern based on the power distribution network of direct current.In the DC distribution net, adopt two ac line electric energy transmittings (being one pole DC distribution net) often can't satisfy the requirement of various power inverters and power consumption equipment to input voltage.For example for output voltage identical half-bridge inverter and full-bridge inverter, the input voltage of half-bridge inverter is about the twice of full-bridge inverter, inserts the comparatively inconvenience of one pole DC distribution net simultaneously; The household lighting circuit required voltage is lower, and the required input voltage of household electrical appliance such as refrigerator, air-conditioning is then higher relatively, and one pole DC distribution net also can't satisfy the requirement of various power consumption equipments to input voltage simultaneously.Therefore; Insert the DC distribution net for the ease of various power inverters and power consumption equipment; Improve the application flexibility of DC distribution net; Solve all pressures problem of dc capacitor simultaneously, must design independently voltage balance converter, convert two ac line distribution systems (one pole DC distribution net) into three line distribution systems (bipolar DC power distribution network).
Summary of the invention
The objective of the invention is deficiency, a kind of Buck-Boost pressure-adjusting type voltage balance converter is provided to prior art.
The present invention includes input voltage source, pressure regulating on-off circuit, voltage balancing circuit, first state selecting circuit, second state selecting circuit.
Pressure regulating on-off circuit comprises first power switch pipe S 1, first power diode D 1, second power switch pipe S 2, second power diode D 2First power switch pipe S 1The collector electrode and first power diode D 1Second inductance in negative electrode, first state selecting circuit L 2One end is connected, first power switch pipe S 1The emitter and first power diode D 1Anode, second power switch pipe S 2Collector electrode, second power diode D 2The 3rd inductance in negative electrode, second state selecting circuit L 3One end is connected, second power switch pipe S 2The emitter and second power diode D 2Anode, input voltage source negative pole are connected.
First state selecting circuit comprises the 5th power switch pipe S 5, the 5th power diode D 5, the 6th power diode D 6, second inductance L 2.The 5th power switch pipe S 5Collector electrode and the 5th power diode D 5Negative electrode, second inductance L 2The other end, input voltage source positive pole are connected; The 5th power switch pipe S 5Emitter and the 5th power diode D 5Anode, the 6th power diode D 6Anode is connected; The 6th power diode D 6The negative electrode and second inductance L 2First power diode in one end, the pressure regulating on-off circuit D 1Negative electrode is connected.
Second state selecting circuit comprises the 6th power switch pipe S 6, the 7th power diode D 7, the 8th power diode D 8, the 9th power diode D 9, the 3rd inductance L 3The 6th power switch pipe S 6Collector electrode and the 7th power diode D 7Negative electrode, the 3rd inductance L 3One end is connected, the 6th power switch pipe S 6Emitter and the 7th power diode D 7Anode, the 8th power diode D 8Anode is connected, the 8th power diode D 8Negative electrode and the 3rd inductance L 3The other end, the 9th power diode D 9Anode is connected, the 9th power diode D 9The 3rd power diode in negative electrode and the voltage balancing circuit D 3Negative electrode is connected.
Voltage balancing circuit comprises the 3rd power switch pipe S 3, the 3rd power diode D 3, the 4th power switch pipe S 4, the 4th power diode D 4, first inductance L 1, first electric capacity C 1, second electric capacity C 2.The 3rd power switch pipe S 3Collector electrode and the 3rd power diode D 3Negative electrode, first electric capacity C 1One end is connected, the 3rd power switch pipe S 3Emitter and the 3rd power diode D 3Anode, first inductance L 1One end is connected, the 4th power switch pipe S 4The collector electrode and first inductance L 1One end, the 4th power diode D 4Negative electrode is connected, the 4th power switch pipe S 4Emitter and the 4th power diode D 4Anode, second electric capacity C 2One end, input voltage source negative pole are connected, first inductance L 1The other end and first electric capacity C 1The other end, second electric capacity C 2The other end is connected.
Workflow of the present invention is following:
To input direct voltage V InSample, with the input direct voltage of sampling acquisition V InAnd DC reference voltage V DcrefDifference △ VWith permission difference △ V RefCompare, operating state of the present invention is judged and selected through comparative result:
(1) if △ VAbsolute value less than allowing difference △ V Ref, then judge input direct voltage V InBe in normal range (NR), control first state selecting circuit and second state selecting circuit this moment, converts circuit structure of the present invention into normal operating conditions, and only voltage balancing circuit adopts the PWM control strategy of fixed frequency 20khz, guarantees first electric capacity C 1With second electric capacity C 2Voltage equates.
(2) if △ VGreater than △ V Ref, then judge input direct voltage V InBe higher than upper voltage limit, control first state selecting circuit and second state selecting circuit this moment, converts circuit structure of the present invention into the Buck operating state, and pressure regulating on-off circuit is worked under Buck circuit control strategy, guarantees output dc voltage V InBe in normal range (NR); Voltage balancing circuit adopts the PWM control strategy of fixed frequency 20kHz, guarantees first electric capacity C 1With second electric capacity C 2Voltage equates.
(3) if △ VLess than-△ V Ref, then judge input direct voltage V InBe lower than lower voltage limit, control first state selecting circuit and second state selecting circuit this moment, converts circuit structure of the present invention into the Boost operating state, and pressure regulating on-off circuit is worked under Boost circuit control strategy, guarantees output dc voltage V InBe in normal range (NR); Voltage balancing circuit adopts the PWM control strategy of fixed frequency 20khz, guarantees first electric capacity C 1With second electric capacity C 2Voltage equates.
Described upper voltage limit is a DC reference voltage V DcrefWith permission difference △ V RefWith;
Described lower voltage limit is a DC reference voltage V DcrefWith permission difference △ V RefPoor.
The invention has the beneficial effects as follows: Buck-Boost pressure-adjusting type voltage balance converter not only can be constructed a stable output neutral voltage; Convert two ac line distribution systems (one pole DC distribution net) of DC distribution net into three line distribution systems (bipolar DC power distribution network), and it is equal under the situation of DC distribution net the two poles of the earth laod unbalance, to keep dc partial voltage electric capacity voltage constantly; Can also be when converter input direct voltage fluctuation; It is stable to keep output dc voltage; The voltage fluctuation of isolated DC power distribution network medium voltage side is to the influence of low-pressure side voltage, and control principle is simply effective, has improved the application flexibility and the operational reliability of DC distribution net.
Description of drawings
Fig. 1 is a circuit diagram of the present invention;
Fig. 2 is a control flow chart of the present invention;
Fig. 3 is voltage balancing circuit PWM control principle figure of the present invention;
Fig. 4 is the Buck circuit control principle figure of Buck operating state of the present invention;
Fig. 5 is the Boost circuit control principle figure of Boost operating state of the present invention;
Fig. 6 is the equivalent circuit diagram of normal operating conditions of the present invention;
Fig. 7 is the equivalent circuit diagram of Buck operating state of the present invention;
Fig. 8 is the equivalent circuit diagram of Boost operating state of the present invention;
Fig. 9 is circuit mode 1 sketch map of normal operating conditions of the present invention;
Figure 10 is circuit mode 2 sketch mapes of normal operating conditions of the present invention;
Figure 11 is circuit mode 3 sketch mapes of normal operating conditions of the present invention;
Figure 12 is circuit mode 4 sketch mapes of normal operating conditions of the present invention;
Figure 13 is circuit mode 1 sketch map of Buck operating state of the present invention;
Figure 14 is circuit mode 2 sketch mapes of Buck operating state of the present invention;
Figure 15 is circuit mode 1 sketch map of Boost operating state of the present invention;
Figure 16 is circuit mode 2 sketch mapes of Boost operating state of the present invention;
Figure 17 is artificial circuit figure of the present invention;
Figure 18 is the main simulation waveform Fig. 1 of the present invention;
Figure 19 is the main simulation waveform Fig. 2 of the present invention.
Embodiment
Below in conjunction with accompanying drawing the present invention is described further.
As shown in Figure 1, the present invention includes input voltage source, pressure regulating on-off circuit, voltage balancing circuit, first state selecting circuit, second state selecting circuit.
Pressure regulating on-off circuit comprises first power switch pipe S 1, first power diode D 1, second power switch pipe S 2, second power diode D 2First power switch pipe S 1The collector electrode and first power diode D 1Second inductance in negative electrode, first state selecting circuit L 2One end is connected, first power switch pipe S 1The emitter and first power diode D 1Anode, second power switch pipe S 2Collector electrode, second power diode D 2The 3rd inductance in negative electrode, second state selecting circuit L 3One end is connected, second power switch pipe S 2The emitter and second power diode D 2Anode, input voltage source negative pole are connected.
First state selecting circuit comprises the 5th power switch pipe S 5, the 5th power diode D 5, the 6th power diode D 6, second inductance L 2.The 5th power switch pipe S 5Collector electrode and the 5th power diode D 5Negative electrode, second inductance L 2The other end, input voltage source positive pole are connected; The 5th power switch pipe S 5Emitter and the 5th power diode D 5Anode, the 6th power diode D 6Anode is connected; The 6th power diode D 6The negative electrode and second inductance L 2First power diode in one end, the pressure regulating on-off circuit D 1Negative electrode is connected.
Second state selecting circuit comprises the 6th power switch pipe S 6, the 7th power diode D 7, the 8th power diode D 8, the 9th power diode D 9, the 3rd inductance L 3The 6th power switch pipe S 6Collector electrode and the 7th power diode D 7Negative electrode, the 3rd inductance L 3One end is connected, the 6th power switch pipe S 6Emitter and the 7th power diode D 7Anode, the 8th power diode D 8Anode is connected, the 8th power diode D 8Negative electrode and the 3rd inductance L 3The other end, the 9th power diode D 9Anode is connected, the 9th power diode D 9The 3rd power diode in negative electrode and the voltage balancing circuit D 3Negative electrode is connected.
Voltage balancing circuit comprises the 3rd power switch pipe S 3, the 3rd power diode D 3, the 4th power switch pipe S 4, the 4th power diode D 4, first inductance L 1, first electric capacity C 1, second electric capacity C 2.The 3rd power switch pipe S 3Collector electrode and the 3rd power diode D 3Negative electrode, first electric capacity C 1One end is connected, the 3rd power switch pipe S 3Emitter and the 3rd power diode D 3Anode, first inductance L 1One end is connected, the 4th power switch pipe S 4The collector electrode and first inductance L 1One end, the 4th power diode D 4Negative electrode is connected, the 4th power switch pipe S 4Emitter and the 4th power diode D 4Anode, second electric capacity C 2One end, input voltage source negative pole are connected, first inductance L 1The other end and first electric capacity C 1The other end, second electric capacity C 2The other end is connected.
Shown in Fig. 2 ~ 17, control principle of the present invention, the course of work are described.
As shown in Figure 2, with input direct voltage V InSampled value V In(k) compare with the direct voltage upper limit and lower limit, thereby the operating state that the present invention should take is judged and selected.
Normal operating conditions: if V In(k), then judge input direct voltage less than upper voltage limit and greater than lower voltage limit V InBe in normal range (NR), control first power switch pipe this moment S 1, the 5th power switch pipe S 5And the 6th power switch pipe S 6Open-minded, second power switch pipe S 2Turn-off, convert the circuit structure of converter into normal operating conditions, as shown in Figure 6; Get first electric capacity C 1Voltage V C1With second electric capacity C 2Voltage V C2As feedback signal, after the proportion of utilization link was regulated its control sensitivity, input comparator and triangular wave compared, and one road signal directly drives the 3rd power switch pipe in its output signal S 3, another road signal negate rear drive the 4th power switch pipe S 4, as shown in Figure 3.
When first load resistance R L1 Greater than second load resistance R L2 The time, the 3rd power switch pipe S 3ON time greater than the 4th power switch pipe S 4ON time, first electric capacity C 1Through first inductance L 1Transfer portion electric energy to the second electric capacity C 2On, make first electric capacity C 1Voltage V C1With second electric capacity C 2Voltage V C2Equate.This moment, converter had two kinds of circuit mode: as shown in Figure 9, and the 3rd power switch pipe S 3Conducting, the 4th power switch pipe S 4Turn-off the 3rd power diode D 3With the 4th power diode D 4End first electric capacity C 1Portion of energy is through the 3rd power switch pipe S 3To first inductance L 1Shift first inductive current i L1 Linear rising, first electric capacity C 1Voltage V C1Descend; Shown in figure 10, the 3rd power switch pipe S 3With the 4th power switch pipe S 4Turn-off the 3rd power diode D 3End the 4th power diode D 4Conducting, first inductance L 1Middle energy stored is through the 4th power diode D 4To second electric capacity C 2Transmit first inductive current i L1 Linear decline, second electric capacity C 2Voltage V C2Rise.
When first load resistance R L1 Less than second load resistance R L2 The time, control the 3rd power switch pipe S 3ON time less than the 4th power switch pipe S 4ON time, first inductive current i L1 Be negative value, second electric capacity C 2Through first inductance L 1Transfer portion electric energy to the first electric capacity C 1On, make the first electric capacity voltage V C1With the second electric capacity voltage V C2Equate.This moment, converter also had two kinds of circuit mode: shown in figure 11, and the 3rd power switch pipe S 3Turn-off the 4th power switch pipe S 4Conducting, the 3rd power diode D 3With the 4th power diode D 4End second electric capacity C 2Portion of energy is through the 4th power switch pipe S 4To first inductance L 1Shift ,- i L1 Linear rising, second electric capacity C 2Voltage V C2Descend; Shown in figure 12, the 3rd power switch pipe S 3With the 4th power switch pipe S 4Turn-off the 3rd power diode D 3Conducting, the 4th power diode D 4End first inductance L 1Middle energy stored is through the 3rd power diode D 3To second electric capacity C 2Transmit ,- i L1 Linear decline, first electric capacity C 1Voltage V C1Rise.
The Buck operating state: if V In(k), then judge input direct voltage greater than upper voltage limit V InBe higher than the direct voltage upper limit, control the 5th power switch pipe this moment S 5Open-minded, second power switch pipe S 2With the 6th power switch pipe S 6Turn-off, convert the circuit structure of converter into the Buck operating state, as shown in Figure 7; Get the converter output dc voltage V OutAs feedback signal, input comparator and DC reference voltage V DcrefCompare, its output signal directly drives first power switch pipe S 1, as shown in Figure 4; Voltage balancing circuit still adopts the PWM control described in normal operating conditions, and its control principle and the course of work repeat no more at this.
Under the Buck operating state, the present invention has two kinds of circuit mode (voltage balancing circuit is not discussed): shown in figure 13, and first power switch pipe S 1Conducting, second power diode D 2End the 3rd inductive current i L3 Linear rising, output dc voltage V OutRise; Shown in figure 14, first power switch pipe S 1Turn-off second power diode D 2Conducting, the 3rd inductive current i L3 Linear decline, output dc voltage V OutDescend.Along with the variation of load resistance, the Buck circuit is if produce the semiconductor switch DCM, and its principle is no longer described at this.
The Boost operating state: if V In(k), then judge input direct voltage less than lower voltage limit V InBe lower than the direct voltage lower limit, control the 5th power switch pipe this moment S 5Turn-off first power switch pipe S 1With the 6th power switch pipe S 6Open-minded, convert circuit structure of the present invention into the Boost operating state, as shown in Figure 8; With output dc voltage V OutAs feedback signal, utilize outer voltage control output dc voltage V OutEqual DC reference voltage V Dcref, the direct input comparator of output signal and second inductive current of outer voltage i L2 Compare the formation current inner loop, the output signal of current inner loop directly drives second power switch pipe S 2, as shown in Figure 5; Voltage balancing circuit still adopts the PWM control described in normal operating conditions.
Under the Boost operating state, the present invention has two kinds of circuit mode (voltage balancing circuit is not discussed): shown in figure 15, and second power switch pipe S 2Conducting, the 9th power diode D 9End second inductive current i L2 Linear rising, output dc voltage V OutDescend; Shown in figure 16, second power switch pipe S 2Turn-off the 9th power diode D 9Conducting, second inductive current i L2 Linear decline, output dc voltage V OutRise.Along with the variation of load resistance, the Boost circuit is if produce the semiconductor switch DCM, and its principle is no longer described at this.
Described upper voltage limit is a DC reference voltage V DcrefWith permission difference △ V RefWith;
Described lower voltage limit is a DC reference voltage V DcrefWith permission difference △ V RefPoor.
Shown in Figure 17 ~ 19, the present invention is carried out emulation.
Artificial circuit figure is shown in figure 17, and its simulation parameter is following: sample frequency 20kHz, input direct voltage V InBe the 400V DC power supply, at 250 ~ 400ms stack 40V/50Hz sine ac power supply, first inductance L 1, second inductance L 2, the 3rd inductance L 3Get 50mH, 0.8mH, 0.5mH respectively, first electric capacity C 1, second electric capacity C 2Be respectively 1000 μ F, DC reference voltage V Dcref, direct voltage allows difference △ V RefBe respectively 400V, 8V, first electric capacity C 1Two ends parallel connection first load resistance R L1 , second electric capacity C 2Two ends parallel connection second load resistance R L2
It is shown in figure 18, R L1 =100 Ω, R L2 =10 Ω.Because R L1 > R L2 And differ bigger, therefore first inductive current i L1 Perseverance is on the occasion of, first electric capacity C 1Through first inductance L 1Transfer portion electric energy to the second electric capacity C 2On, make the first electric capacity voltage V C1With the second electric capacity voltage V C2Equate.At input direct voltage V InWhen fluctuation took place, the present invention was switched between normal operating conditions, Buck operating state and Boost operating state, second inductance L 2, the 3rd inductance L 3Take turns to operate, make output dc voltage V OutBe stabilized in about 400V, fluctuating range is no more than direct voltage and allows difference △ V RefIn the process of switching in working order, first inductive current i L1 Basically unaffected.
It is shown in figure 19, R L1 =10 Ω, R L2 =100 Ω.Because R L1 < R L2 And differ bigger, therefore first inductive current i L1 Perseverance is a negative value, second electric capacity C 2Through first inductance L 1Transfer portion electric energy to the first electric capacity C 1On, make the first electric capacity voltage V C1With the second electric capacity voltage V C2Equate.At input direct voltage V InWhen fluctuation took place, the present invention was switched between normal operating conditions, Buck operating state and Boost operating state, second inductance L 2, the 3rd inductance L 3Take turns to operate, make output dc voltage V OutBe stabilized in about 400V, fluctuating range is no more than direct voltage and allows difference △ V RefIn the process of switching in working order, first inductive current i L1 Basically unaffected.
Figure 18,19 simulation result show; The present invention not only can convert two ac line distribution systems of DC distribution net into three line distribution systems; Keep the stable of output neutral voltage; It is stable under the situation of input direct voltage fluctuation, to keep output dc voltage, and the voltage fluctuation of isolated DC power distribution network medium voltage side is to the influence of low-pressure side voltage.

Claims (1)

1. Buck-Boost pressure-adjusting type voltage balance converter is characterized in that: comprise input voltage source, pressure regulating on-off circuit, voltage balancing circuit, first state selecting circuit, second state selecting circuit;
Pressure regulating on-off circuit comprises first power switch pipe S 1, first power diode D 1, second power switch pipe S 2, second power diode D 2First power switch pipe S 1The collector electrode and first power diode D 1Second inductance in negative electrode, first state selecting circuit L 2One end is connected, first power switch pipe S 1The emitter and first power diode D 1Anode, second power switch pipe S 2Collector electrode, second power diode D 2The 3rd inductance in negative electrode, second state selecting circuit L 3One end is connected, second power switch pipe S 2The emitter and second power diode D 2Anode, input voltage source negative pole are connected;
First state selecting circuit comprises the 5th power switch pipe S 5, the 5th power diode D 5, the 6th power diode D 6, second inductance L 2;The 5th power switch pipe S 5Collector electrode and the 5th power diode D 5Negative electrode, second inductance L 2The other end, input voltage source positive pole are connected; The 5th power switch pipe S 5Emitter and the 5th power diode D 5Anode, the 6th power diode D 6Anode is connected; The 6th power diode D 6The negative electrode and second inductance L 2First power diode in one end, the pressure regulating on-off circuit D 1Negative electrode is connected;
Second state selecting circuit comprises the 6th power switch pipe S 6, the 7th power diode D 7, the 8th power diode D 8, the 9th power diode D 9, the 3rd inductance L 3The 6th power switch pipe S 6Collector electrode and the 7th power diode D 7Negative electrode, the 3rd inductance L 3One end is connected, the 6th power switch pipe S 6Emitter and the 7th power diode D 7Anode, the 8th power diode D 8Anode is connected, the 8th power diode D 8Negative electrode and the 3rd inductance L 3The other end, the 9th power diode D 9Anode is connected, the 9th power diode D 9The 3rd power diode in negative electrode and the voltage balancing circuit D 3Negative electrode is connected;
Voltage balancing circuit comprises the 3rd power switch pipe S 3, the 3rd power diode D 3, the 4th power switch pipe S 4, the 4th power diode D 4, first inductance L 1, first electric capacity C 1, second electric capacity C 2;The 3rd power switch pipe S 3Collector electrode and the 3rd power diode D 3Negative electrode, first electric capacity C 1One end is connected, the 3rd power switch pipe S 3Emitter and the 3rd power diode D 3Anode, first inductance L 1One end is connected, the 4th power switch pipe S 4The collector electrode and first inductance L 1One end, the 4th power diode D 4Negative electrode is connected, the 4th power switch pipe S 4Emitter and the 4th power diode D 4Anode, second electric capacity C 2One end, input voltage source negative pole are connected, first inductance L 1The other end and first electric capacity C 1The other end, second electric capacity C 2The other end is connected.
CN2012100562673A 2012-03-06 2012-03-06 Buck-Boost voltage-regulating type voltage balance converter Pending CN102611302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100562673A CN102611302A (en) 2012-03-06 2012-03-06 Buck-Boost voltage-regulating type voltage balance converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100562673A CN102611302A (en) 2012-03-06 2012-03-06 Buck-Boost voltage-regulating type voltage balance converter

Publications (1)

Publication Number Publication Date
CN102611302A true CN102611302A (en) 2012-07-25

Family

ID=46528512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100562673A Pending CN102611302A (en) 2012-03-06 2012-03-06 Buck-Boost voltage-regulating type voltage balance converter

Country Status (1)

Country Link
CN (1) CN102611302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078495A (en) * 2013-01-29 2013-05-01 矽力杰半导体技术(杭州)有限公司 High-efficient buck-boost converter and control method thereof
CN103345155A (en) * 2013-06-19 2013-10-09 河海大学常州校区 Self-adaptive inversion control system and method of micro gyroscope
CN106405307A (en) * 2016-08-29 2017-02-15 西北工业大学 Floating ground interleaved converter single tube open circuit fault detection method
CN109193895A (en) * 2018-11-22 2019-01-11 广东工业大学 A kind of charge-discharge circuit and method of UPS battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014171A (en) * 1998-06-26 2000-01-14 Yuasa Corp Half-bridge type inverter circuit
CN101499718A (en) * 2008-02-02 2009-08-05 晶镁电子股份有限公司 Control circuit and method for high efficiency switching type voltage stabilizer
CN101552555A (en) * 2009-04-30 2009-10-07 淮海工学院 Buck voltage balance converter
US20100026263A1 (en) * 2008-07-30 2010-02-04 Intersil Americas Inc. Buck controller having integrated boost control and driver
US20120051097A1 (en) * 2010-08-27 2012-03-01 Flextronics Ap, Llc Power converter with boost-buck-buck configuration
CN202455266U (en) * 2012-03-06 2012-09-26 浙江大学 Buck-Boost voltage-regulating voltage balance converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014171A (en) * 1998-06-26 2000-01-14 Yuasa Corp Half-bridge type inverter circuit
CN101499718A (en) * 2008-02-02 2009-08-05 晶镁电子股份有限公司 Control circuit and method for high efficiency switching type voltage stabilizer
US20100026263A1 (en) * 2008-07-30 2010-02-04 Intersil Americas Inc. Buck controller having integrated boost control and driver
CN101552555A (en) * 2009-04-30 2009-10-07 淮海工学院 Buck voltage balance converter
US20120051097A1 (en) * 2010-08-27 2012-03-01 Flextronics Ap, Llc Power converter with boost-buck-buck configuration
CN202455266U (en) * 2012-03-06 2012-09-26 浙江大学 Buck-Boost voltage-regulating voltage balance converter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘晓东等: "Boost变换器电容电荷平衡动态最优控制", 《电力自动化设备》, vol. 31, no. 5, 31 May 2011 (2011-05-31), pages 63 - 66 *
许津铭等: "Boost-Buck级联光伏并网逆变器研究", 《中国电源学会第18届全国电源技术年会论文集》, 30 November 2009 (2009-11-30) *
陈乐柱等: "基于电容电荷平衡的DC/DC变换器的数字控制算法", 《电工技术学报》, vol. 24, no. 5, 31 May 2009 (2009-05-31), pages 80 - 85 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078495A (en) * 2013-01-29 2013-05-01 矽力杰半导体技术(杭州)有限公司 High-efficient buck-boost converter and control method thereof
CN103078495B (en) * 2013-01-29 2016-06-01 矽力杰半导体技术(杭州)有限公司 A kind of high efficiency type of voltage step-up/down converter and control method thereof
CN103345155A (en) * 2013-06-19 2013-10-09 河海大学常州校区 Self-adaptive inversion control system and method of micro gyroscope
CN103345155B (en) * 2013-06-19 2015-12-09 河海大学常州校区 The self-adaptation back stepping control system and method for gyroscope
CN106405307A (en) * 2016-08-29 2017-02-15 西北工业大学 Floating ground interleaved converter single tube open circuit fault detection method
CN106405307B (en) * 2016-08-29 2019-02-26 西北工业大学 One kind floating ground interleaved converter single tube open-circuit fault detection method
CN109193895A (en) * 2018-11-22 2019-01-11 广东工业大学 A kind of charge-discharge circuit and method of UPS battery

Similar Documents

Publication Publication Date Title
CN101951011B (en) Solar photovoltaic and commercial power combined power supply system and control method thereof
CN100536306C (en) Wide region input and continuously adjustable non-bridge Buck-Boost PFC converter
CN101895223B (en) Double-Cuk buck-boost output parallel-type converter
CN105262362B (en) High-gain Buck Boost integrated forms inverters and control method
CN103108470A (en) Dynamic linear control light emitting diode (LED) driver circuit
CN204633600U (en) A kind of novel crisscross parallel topology structure of stepping-up/stepping-down chopper circuit
CN103490632B (en) Step-up step-down type output voltage balancing circuit
CN102369496A (en) Stabilized DC power source device
CN102148566B (en) Boost-type voltage balance converter
CN103151932A (en) Buck / Boost integration type three-port direct current converter and control method thereof
CN107404232B (en) A kind of bidirectional DC-DC converter
CN106716775B (en) Uninterruptible power system with preliminary filling electric transducer
CN102348319A (en) Light-emitting diode lamp drive power supply
CN103269157A (en) Bi-directional dual-input SEPIC direct-current converter and power distribution method thereof
CN106026678B (en) A kind of reversible transducer
CN203072226U (en) Dynamic-linear-control LED driving circuit
CN102611302A (en) Buck-Boost voltage-regulating type voltage balance converter
CN103856034A (en) Two-stage phase shift-driven power factor corrector
CN202455266U (en) Buck-Boost voltage-regulating voltage balance converter
CN106712523B (en) A kind of three levels full-bridge converters of boosting and its control method
CN105680699A (en) Efficient DC converter suitable for new energy DC grid connection and control method of efficient DC converter
CN202150803U (en) Voltage regulating and stabilizing device
CN202310215U (en) LED lamp driving power supply
CN105897024B (en) Single-phase Cuk integrated form buck-boost inverter and control method, control system
CN209767386U (en) Four-port converter with bipolar output

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120725