CN102611209A - Magnetic coupling resonance type wireless energy transmission device based on panel magnetic core - Google Patents
Magnetic coupling resonance type wireless energy transmission device based on panel magnetic core Download PDFInfo
- Publication number
- CN102611209A CN102611209A CN2012100760941A CN201210076094A CN102611209A CN 102611209 A CN102611209 A CN 102611209A CN 2012100760941 A CN2012100760941 A CN 2012100760941A CN 201210076094 A CN201210076094 A CN 201210076094A CN 102611209 A CN102611209 A CN 102611209A
- Authority
- CN
- China
- Prior art keywords
- energy
- magnetic core
- coil
- subsystem
- receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 135
- 230000005540 biological transmission Effects 0.000 title claims abstract description 103
- 230000008878 coupling Effects 0.000 title claims abstract description 28
- 238000010168 coupling process Methods 0.000 title claims abstract description 28
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 28
- 239000003990 capacitor Substances 0.000 claims abstract description 61
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 230000005294 ferromagnetic effect Effects 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229910001289 Manganese-zinc ferrite Inorganic materials 0.000 claims description 3
- 229910001053 Nickel-zinc ferrite Inorganic materials 0.000 claims description 3
- JIYIUPFAJUGHNL-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] JIYIUPFAJUGHNL-UHFFFAOYSA-N 0.000 claims description 3
- 238000003491 array Methods 0.000 claims description 3
- 239000011104 metalized film Substances 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000005674 electromagnetic induction Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Landscapes
- Near-Field Transmission Systems (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种基于平板磁芯的磁耦合谐振式无线能量传输装置,属于磁耦合谐振式无线能量传输技术领域。The invention relates to a magnetic coupling resonance wireless energy transmission device based on a flat magnetic core, and belongs to the technical field of magnetic coupling resonance wireless energy transmission.
背景技术 Background technique
无线能量传输技术由于具有安全性、便捷性和广阔的应用前景而备受关注,目前已逐步开始替代了传统的导线能量传输方式。Due to its safety, convenience and broad application prospects, wireless energy transmission technology has attracted much attention, and it has gradually replaced the traditional wire energy transmission method.
利用电磁场进行的无线能量传输主要可以分为电磁感应式和磁耦合谐振式。电磁感应式无线能量传输一般采用传统E型或者罐型等传统磁芯,往往体积和重量比较大,并且传输距离较近,大大地限制了它的应用。而无磁芯结构的磁耦合谐振式无线能量传输装置,例如,公开号为CN101316053,公开日为2008年12月3日的中国专利《磁耦合谐振式无线能量传输装置》,存在不能够满足用电设备对大功率的要求的缺陷。The wireless energy transmission using electromagnetic field can be mainly divided into electromagnetic induction type and magnetic coupling resonance type. Electromagnetic induction wireless energy transmission generally uses traditional E-type or pot-type magnetic cores, which are often relatively large in size and weight, and the transmission distance is relatively short, which greatly limits its application. The magnetic coupling resonant wireless energy transmission device without magnetic core structure, for example, the Chinese patent "Magnetic coupling resonant wireless energy transmission device" with the publication number of CN101316053 and the publication date on December 3, 2008, cannot meet the needs of users. Defects in the high power requirements of electrical equipment.
发明内容 Contents of the invention
本发明是为了解决现有磁耦合谐振式无线能量传输装置的只能进行小功率能量传输的问题,提供一种基于平板磁芯的磁耦合谐振式无线能量传输装置。The present invention aims to solve the problem that the existing magnetic coupling resonant wireless energy transmission device can only transmit low-power energy, and provides a magnetic coupling resonant wireless energy transmission device based on a flat magnetic core.
本发明所述基于平板磁芯的磁耦合谐振式无线能量传输装置,它包括能量供给电路,它还包括谐振控制电路、线圈驱动电路、能量发射侧电容器组、能量发射子系统、能量接收子系统、能量接收侧电容器组、接收能量转换电路,The magnetically coupled resonant wireless energy transmission device based on the planar magnetic core of the present invention includes an energy supply circuit, and it also includes a resonance control circuit, a coil drive circuit, an energy transmitting side capacitor bank, an energy transmitting subsystem, and an energy receiving subsystem , energy receiving side capacitor bank, receiving energy conversion circuit,
能量供给电路的输出直流电压作为线圈驱动电路的直流母线电压Vdc,线圈驱动电路在谐振控制电路产生的脉冲驱动信号的控制下,输出频率为f,幅值为正负Vdc的交流方波信号,该交流方波信号施加到由能量发射侧电容器组和能量发射子系统的发射线圈组成的谐振回路上,所述交流方波信号频率与该谐振回路的频率一致,从而产生谐振,使该发射线圈产生磁场能量;The output DC voltage of the energy supply circuit is used as the DC bus voltage V dc of the coil drive circuit. Under the control of the pulse drive signal generated by the resonant control circuit, the coil drive circuit outputs an AC square wave with frequency f and amplitude of positive and negative V dc Signal, the AC square wave signal is applied to the resonant circuit composed of the energy transmitting side capacitor bank and the transmitting coil of the energy transmitting subsystem, the frequency of the AC square wave signal is consistent with the frequency of the resonant circuit, thereby generating resonance, so that the The transmitting coil generates magnetic field energy;
能量接收侧电容器组和能量接收子系统的接收线圈组成的谐振回路与能量发射子系统发射的磁场进行磁耦合谐振,在能量接收子系统的接收线圈上产生电能,该电能发送给接收能量转换电路,由接收能量转换电路将其输入信号转换成负载所需直流电源电压信号。The resonant circuit composed of the capacitor bank on the energy receiving side and the receiving coil of the energy receiving subsystem performs magnetic coupling resonance with the magnetic field emitted by the energy transmitting subsystem, and generates electric energy on the receiving coil of the energy receiving subsystem, which is sent to the receiving energy conversion circuit , the input signal is converted into the DC power supply voltage signal required by the load by the receiving energy conversion circuit.
所述能量发射子系统和能量接收子系统的结构相同,The structure of the energy transmitting subsystem and the energy receiving subsystem is the same,
能量发射子系统由屏蔽铝板、绝缘板、平板磁芯、两个卡板和传输线圈组成,The energy transmitting subsystem consists of a shielded aluminum plate, an insulating plate, a flat magnetic core, two clamps and a transmission coil.
屏蔽铝板上居中设置绝缘板,绝缘板上居中设置平板磁芯,平板磁芯的两端分别通过一个卡板固定在绝缘板上,传输线圈固定在平板磁芯上;An insulating plate is set in the center of the shielding aluminum plate, a flat magnetic core is set in the middle of the insulating plate, the two ends of the flat magnetic core are respectively fixed on the insulating plate by a clamp, and the transmission coil is fixed on the flat magnetic core;
能量发射子系统和能量接收子系统相对设置,且所述能量发射子系统和能量接收子系统之间留有均匀的气隙。The energy emitting subsystem and the energy receiving subsystem are arranged oppositely, and a uniform air gap is left between the energy emitting subsystem and the energy receiving subsystem.
所述传输线圈固定在平板磁芯的气隙侧表面,所述传输线圈是螺旋环形缠绕的平板形线圈,并且所述平板形线圈的外形与平板磁芯的外形相同;或者所述传输线圈螺旋环绕缠绕在平板磁芯上;所述能量发射子系统和能量接收子系统的平板磁芯的气隙侧表面分别为正多边形、圆形或椭圆形。The transmission coil is fixed on the side surface of the air gap of the flat magnetic core, and the transmission coil is a flat coil wound in a helical ring, and the shape of the flat coil is the same as that of the flat magnetic core; or the transmission coil is spiral Wound around the flat magnetic core; the side surfaces of the air gaps of the flat magnetic cores of the energy transmitting subsystem and the energy receiving subsystem are regular polygons, circles or ellipses respectively.
所述平板磁芯的材料为铁磁性的金属氧化物;平板磁芯的厚度范围为1mm至100mm。The material of the flat magnetic core is ferromagnetic metal oxide; the thickness of the flat magnetic core ranges from 1mm to 100mm.
所述平板磁芯的材料为镍锌铁氧体或锰锌铁氧体。The material of the flat magnetic core is nickel zinc ferrite or manganese zinc ferrite.
所述平板磁芯的相对磁导率范围为1000至10000。The relative permeability range of the planar magnetic core is 1000 to 10000.
所述传输线圈采用绞制的相互绝缘的的奇数束极细漆包线或丝包线相互并联制成,每束极细漆包线或丝包线包括两股进线和两股出线。The transmission coil is made of twisted and insulated odd bundles of ultra-fine enameled wires or silk-covered wires connected in parallel with each other, and each bundle of ultra-fine enameled wires or silk-covered wires includes two incoming wires and two outgoing wires.
所述线圈驱动电路为高频全桥逆变电路;所述接收能量转换电路为高频整流及DC/DC变换电路。The coil driving circuit is a high-frequency full-bridge inverter circuit; the receiving energy conversion circuit is a high-frequency rectification and DC/DC conversion circuit.
所述能量发射子系统的平板磁芯的气隙侧表面的面积大于或等于能量接收子系统的平板磁芯的气隙侧表面的面积。The area of the air gap side surface of the planar magnetic core of the energy transmitting subsystem is greater than or equal to the area of the air gap side surface of the planar magnetic core of the energy receiving subsystem.
所述能量发射侧电容器组和能量接收侧电容器组采用的电容均为小体积高频高压金属化薄膜电容,能量发射侧电容器组和能量接收侧电容器组均采用电容阵列的方式构成。The capacitors used in the energy transmitting capacitor bank and the energy receiving capacitor bank are both small-volume high-frequency and high-voltage metallized film capacitors, and both the energy transmitting capacitor bank and the energy receiving capacitor bank are composed of capacitor arrays.
本发明的优点是:本发明的核心部分为由能量发射子系统和能量接收子系统两部分组成能量传输系统,其中能量发射部分在线圈驱动电路的驱动下达到设定频率,向外界发出同一频率的交变磁场,能量接收部分由于振动频率相同从而产生谐振接收磁场能量,实现了能量无线传递。本发明与电磁感应式无线能量传输技术相比,减小了装置体积,大大提升了传输距离和效率;与无磁芯结构的磁耦合谐振式无线能量传输技术相比,降低了工作频率,减少了磁场的辐射,大大提升了传输功率,实现了较远的距离上的大功率高效率传输。The advantages of the present invention are: the core part of the present invention is an energy transmission system composed of two parts, the energy transmitting subsystem and the energy receiving subsystem, wherein the energy transmitting part reaches the set frequency under the drive of the coil drive circuit, and sends out the same frequency to the outside The alternating magnetic field, the energy receiving part generates resonance to receive the magnetic field energy due to the same vibration frequency, and realizes the wireless transmission of energy. Compared with the electromagnetic induction wireless energy transmission technology, the present invention reduces the volume of the device, greatly improves the transmission distance and efficiency; The radiation of the magnetic field is greatly improved, and the transmission power is greatly improved, and high-power and high-efficiency transmission over a long distance is realized.
本发明的传输距离范围为50mm-500mm,谐振频率范围为10KHz-1MHz,传输功率为0.5KW-50KW。The transmission distance range of the present invention is 50mm-500mm, the resonant frequency range is 10KHz-1MHz, and the transmission power is 0.5KW-50KW.
本发明装置体积小,便于安装,并且能量发射子系统与能量接收子系统之间可以承受大范围的错位,能够实现效率达90%以上的高效数千瓦级大功率无线能量传输。The device of the invention is small in size and easy to install, and can withstand a wide range of misalignment between the energy transmitting subsystem and the energy receiving subsystem, and can realize high-efficiency kilowatt-level high-power wireless energy transmission with an efficiency of more than 90%.
附图说明 Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为实施方式三所述的传输线圈固定在磁芯的气隙侧表面的结构示意图;Fig. 2 is a schematic structural view of the transmission coil fixed on the surface of the air gap side of the magnetic core according to the third embodiment;
图3为图2的仰视图;Fig. 3 is the bottom view of Fig. 2;
图4为实施方式三所述的传输线圈螺旋环绕缠绕在磁芯上的结构示意图;Fig. 4 is a schematic structural diagram of the transmission coil wound helically on the magnetic core according to the third embodiment;
图5为图4的仰视图;Fig. 5 is the bottom view of Fig. 4;
图6为线圈驱动电路的电路结构图;Fig. 6 is the circuit structural diagram of coil driving circuit;
图7为接收能量转换电路的电路结构示意图;7 is a schematic diagram of the circuit structure of the receiving energy conversion circuit;
图8为能量发射侧电容器组或能量接收侧电容器组的结构示意图;Fig. 8 is a schematic structural diagram of an energy transmitting side capacitor bank or an energy receiving side capacitor bank;
图9为能量发射侧电容器组或能量接收侧电容器组的电路原理图;Fig. 9 is the circuit schematic diagram of the capacitor bank on the energy transmitting side or the capacitor bank on the energy receiving side;
图10为能量源传递到磁芯上传输线圈的传输线示意图;Fig. 10 is a schematic diagram of a transmission line from an energy source to a transmission coil on a magnetic core;
图11为传输线圈的传输线的横向剖面图;符号“·”和“×”表示电流方向;Figure 11 is a transverse cross-sectional view of the transmission line of the transmission coil; the symbols "·" and "×" indicate the direction of the current;
图12为传输线圈的传输线上的电流分布每一示意图;Fig. 12 is each schematic diagram of the current distribution on the transmission line of the transmission coil;
图13为传输线圈的传输线上的电流分布每二示意图。FIG. 13 is a schematic diagram of the current distribution on the transmission line of the transmission coil.
具体实施方式 Detailed ways
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述基于平板磁芯的磁耦合谐振式无线能量传输装置,它包括能量供给电路1,它还包括谐振控制电路2、线圈驱动电路3、能量发射侧电容器组4、能量发射子系统5、能量接收子系统6、能量接收侧电容器组7、接收能量转换电路8,Specific Embodiment 1: The present embodiment will be described below in conjunction with FIG. 1 . The magnetic coupling resonant wireless energy transmission device based on the planar magnetic core described in the present embodiment includes an
能量供给电路1的输出直流电压作为线圈驱动电路3的直流母线电压Vdc,线圈驱动电路3在谐振控制电路2产生的脉冲驱动信号的控制下,输出频率为f,幅值为正负Vdc的交流方波信号,该交流方波信号施加到由能量发射侧电容器组4和能量发射子系统5的发射线圈组成的谐振回路上,所述交流方波信号频率与该谐振回路的频率一致,从而产生谐振,使该发射线圈产生磁场能量;The output DC voltage of the
能量接收侧电容器组7和能量接收子系统6的接收线圈组成的谐振回路与能量发射子系统5发射的磁场进行磁耦合谐振,在能量接收子系统6的接收线圈上产生电能,该电能发送给接收能量转换电路8,由接收能量转换电路8将其输入信号转换成负载所需直流电源电压信号。The resonant circuit formed by the energy receiving
所述接收能量转换电路8输出的直流电源电压信号直接用于给负载9供电。The DC power supply voltage signal output by the receiving
本实施方式中,能量发射子系统5、能量接收子系统6在进行能量传输时,允许相互之间有大范围的非对齐错位。谐振控制电路2能够从整体上控制无线能量传输装置的运行、停止及能够稳定功率的传输。本发明装置工作在磁耦合谐振状态,能量发射子系统5与能量接收子系统6之间具有高品质因数,由强耦合谐振的磁场传递能量。能量发射子系统5的传输线圈与能量接收子系统6的传输线圈间具有高耦合系数,随着二者之间距离的增加,耦合系数会逐渐减小。当能量发射侧电容器组4、能量发射子系统5、能量接收子系统6和能量接收侧电容器组7工作在磁耦合谐振状态,其电压电流均为标准正弦波,电压电流相位差为零,即,对外表现为纯阻性,并且负载上功率达到最大。所述负载9为移动设备、装置或可充电电池。In this embodiment, when the energy transmitting
谐振控制电路2,首先产生脉宽调制(PWM)驱动信号,其次经过一级推挽互补电路增大信号的驱动电流,最后经过二级专用隔离驱动模块接至MOSFET控制端,PWM驱动信号占空比可调,调节范围5%-95%,频率可调,调节范围0-1MHz。The
能量发射部分,在线圈驱动电路3的驱动下达到设定频率,向外界发出该频率的交变磁场,其能量由能量供给电路1提供,同时谐振控制电路2控制整个设备的运行停止以及功率的稳定传输;The energy transmitting part, driven by the
能量接收部分,接收磁场能量并进行能量转换,最终在负载9上获得所需要的电压电流功率值。The energy receiving part receives magnetic field energy and performs energy conversion, and finally obtains the required voltage and current power value on the
图1中的虚线箭头示意了传输过程中的磁力线分布。The dotted arrows in Figure 1 illustrate the distribution of magnetic force lines during transmission.
具体实施方式二:下面结合图2至图5说明本实施方式,本实施方式为对实施方式一的进一步说明,所述能量发射子系统5和能量接收子系统6的结构相同,Specific embodiment two: The present embodiment is described below in conjunction with Fig. 2 to Fig. 5, and this embodiment is a further description of the first embodiment, the structure of the energy transmitting
能量发射子系统5由屏蔽铝板5-1、绝缘板5-2、平板磁芯5-3、两个卡板5-4和传输线圈5-5组成,The
屏蔽铝板5-1上居中设置绝缘板5-2,绝缘板5-2上居中设置平板磁芯5-3,平板磁芯5-3的两端分别通过一个卡板5-4固定在绝缘板5-2上,传输线圈5-5固定在平板磁芯5-3上;An insulating plate 5-2 is set in the center on the shielding aluminum plate 5-1, a flat magnetic core 5-3 is set in the middle on the insulating plate 5-2, and the two ends of the flat magnetic core 5-3 are respectively fixed on the insulating plate by a clamping plate 5-4 5-2, the transmission coil 5-5 is fixed on the flat magnetic core 5-3;
能量发射子系统5和能量接收子系统6相对设置,且所述能量发射子系统5和能量接收子系统6之间留有均匀的气隙。The
本实施方式中所述平板磁芯5-3的外型为薄型平板状,其两个底面中至少有一面为平整面,由一块完整磁芯或多个小型磁芯部件粘合构成。屏蔽铝板5-1具有屏蔽磁场的作用,防止外界设备的干扰。屏蔽铝板5-1的厚度为0.5mm-5mm。所述平板磁芯5-3背面附有材料为绝缘电木板的绝缘板。In this embodiment, the planar magnetic core 5-3 has a thin planar shape, at least one of its two bottom surfaces is a flat surface, and is composed of a complete magnetic core or a plurality of small magnetic core parts glued together. The shielding aluminum plate 5-1 has the function of shielding the magnetic field and preventing interference from external equipment. The shielding aluminum plate 5-1 has a thickness of 0.5mm-5mm. The back side of the flat magnetic core 5-3 is provided with an insulating board made of insulating bakelite.
绝缘板5-2起到支撑和绝缘的作用;平板磁芯5-3两侧用非金属卡板5-4加以固定,防止应用中产生的振荡;整个能量发射子系统5最后通过非磁性材料的固定螺栓进行安装固定。The insulating plate 5-2 plays the role of support and insulation; the two sides of the flat magnetic core 5-3 are fixed with non-metallic clamping plates 5-4 to prevent the vibration generated in the application; the whole
具体实施方式三:下面结合图2至图5说明本实施方式,本实施方式为对实施方式二的进一步说明,所述传输线圈5-5固定在平板磁芯5-3的气隙侧表面,所述传输线圈5-5是螺旋环形缠绕的平板形线圈,并且所述平板形线圈的外形与平板磁芯5-3的外形相同;或者所述传输线圈5-5螺旋环绕缠绕在平板磁芯5-3上;所述能量发射子系统5和能量接收子系统6的平板磁芯5-3的气隙侧表面分别为正多边形、圆形或椭圆形。Specific Embodiment Three: The present embodiment will be described below in conjunction with FIGS. 2 to 5. This embodiment is a further description of
所述的平板磁芯5-3上传输线圈5-5分为平面螺旋和缠绕螺旋两种方式。The transmission coil 5-5 on the flat magnetic core 5-3 is divided into two types: planar spiral and wound spiral.
平板磁芯5-3可选择为对称形状。The flat magnetic core 5-3 can be selected as a symmetrical shape.
具体实施方式四:本实施方式为对实施方式二或三的进一步说明,所述平板磁芯5-3的材料为铁磁性的金属氧化物;平板磁芯5-3的厚度范围为1mm至100mm。Embodiment 4: This embodiment is a further description of
平板磁芯5-3为铁磁性的金属氧化物指平板磁芯5-3为软磁铁氧体。The flat magnetic core 5-3 is ferromagnetic metal oxide means that the flat magnetic core 5-3 is soft ferrite.
具体实施方式五:本实施方式为对实施方式二或三的进一步说明,所述平板磁芯5-3的材料为镍锌铁氧体或锰锌铁氧体。Embodiment 5: This embodiment is a further description of
具体实施方式六:本实施方式为对实施方式二、三、四或五的进一步说明,所述平板磁芯5-3的相对磁导率范围为1000至10000。Embodiment 6: This embodiment is a further description of
具体实施方式七:下面结合图10至图13说明本实施方式,本实施方式为对实施方式二、三、四、五或六的进一步说明,所述传输线圈5-5采用绞制的相互绝缘的的奇数束极细漆包线或丝包线相互并联制成,每束极细漆包线或丝包线包括两股进线和两股出线。Embodiment 7: The present embodiment will be described below in conjunction with FIGS. 10 to 13. This embodiment is a further description of
所述单根漆包线的线径小于或者等于0.5mm。漆包线束最外层用绝缘管或阻燃丝缠绕。The diameter of the single enameled wire is less than or equal to 0.5mm. The outermost layer of the enameled wire harness is wrapped with an insulating tube or a flame-retardant wire.
所述的传输线圈5-5结构,在最大程度上减小了相邻导线间的不均匀分布电流。The structure of the transmission coil 5-5 reduces the uneven distribution of current between adjacent wires to the greatest extent.
具体实施方式八:下面结合图6和图7说明本实施方式,本实施方式为对实施方式一、二、三、四、五、六或七的进一步说明,所述线圈驱动电路3为高频全桥逆变电路;所述接收能量转换电路8为高频整流及DC/DC变换电路。Embodiment 8: The present embodiment will be described below in conjunction with FIG. 6 and FIG. 7. This embodiment is a further description of
所述接收能量转换电路8将高频交流电变为直流,其次对直流电进行脉宽调制信号控制的DC/DC变换,将电压升压或降压至所需值,从而达到用电设备的要求。接收能量转换电路8的高频整流桥,采用高频薄膜电容作为整流滤波电容。The receiving
线圈驱动电路3为高频全桥逆变电路,为全桥工作模式,所用功率器件为N沟道MOSFET,MOSFET器件采用RCD吸收回路与直流母线电容双吸收的方式,有效的提高了装置的传输功率和效率。The
具体实施方式九:本实施方式为对实施方式二、三、四、五、六、七或八的进一步说明,所述能量发射子系统5的平板磁芯5-3的气隙侧表面的面积大于或等于能量接收子系统6的平板磁芯5-3的气隙侧表面的面积。Specific Embodiment Nine: This embodiment is a further description of
具体实施方式十:下面结合图8和图9说明本实施方式,本实施方式为对实施方式一、二、三、四、五、六、七、八或九的进一步说明,所述能量发射侧电容器组4和能量接收侧电容器组7采用的电容均为小体积高频高压金属化薄膜电容,能量发射侧电容器组4和能量接收侧电容器组7均采用电容阵列的方式构成。Specific Embodiment Ten: The following describes this embodiment in conjunction with Fig. 8 and Fig. 9. This embodiment is a further description of
所述多个电容串并联至所需的谐振电容值,能量发射侧电容器组4与能量接收侧电容器组7采用串联或并联结构。The multiple capacitors are connected in series and parallel to the required resonant capacitance value, and the
本发明利用了磁耦合振式无线能量传输技术,采用一定距离上的两个具有相同的特定谐振频率的电磁系统,其由于振动频率相同而产生谐振,进行能量传递。保持了磁耦合振式无线能量传输技术传输效率高、品质因数高的重要优点。The invention utilizes the magnetic coupling vibration type wireless energy transmission technology, and adopts two electromagnetic systems with the same specific resonance frequency at a certain distance, which generate resonance due to the same vibration frequency, and perform energy transmission. The important advantages of high transmission efficiency and high quality factor of magnetic coupling vibration wireless energy transmission technology are maintained.
本发明的能量发射侧电容器组4与能量发射子系统5的传输线圈5-5构成一个LC振荡电路,其固有频率为f,同样,能量接收侧电容器组7与能量接收子系统6的传输线圈5-5也构成了一个LC振荡电路,其线圈、电容器上的电压电流均为正弦波,其固有频率可通过公式
通过线圈驱动电路3的作用,一个带有能量的高频方波信号施加到能量发射子系统5的传输线圈上,其频率为f。在这一激励下,线圈将向空间内发射频率为f的交变磁场,电能转换为磁场能量。并且由于高磁导率磁芯的加入,磁场被约束在图1中所示,虚线表示的范围内。Through the action of the
能量接收子系统6的传输线圈的振荡频率与空间中磁场频率一致,从而产生磁耦合谐振,在该传输线圈与能量接收侧电容器组7组成的回路中获得电能,磁场能量重新转换为电能,空间进行能量交换的媒介是谐振的交变磁场。这就是本发明装置的能量传输过程,不同于传统的电磁感应无线能量传输方式。由于能量传输是通过与空间中的磁场发生特定频率下的谐振,并且应用了大传输面积的平板磁芯,传输系统能够允许较大范围内的错位和面积体积上的不一致,具有很大的实际应用意义。The oscillation frequency of the transmission coil of the
本发明采用了大传输面积的平板磁芯,相对于无磁芯结构的磁耦合谐振式无线能量传输装置,磁场被约束在了磁芯面积范围之内,减少了磁场的泄漏,提高了磁场密度,降低了同等场强系统所需达到的频率,在很大的程度上降低了能量供给部分、谐振电路部分的难度以及成本。The invention adopts a flat magnetic core with a large transmission area. Compared with the magnetically coupled resonant wireless energy transmission device without a magnetic core structure, the magnetic field is constrained within the area of the magnetic core, which reduces the leakage of the magnetic field and improves the magnetic field density. , which reduces the frequency required by the system with the same field strength, and greatly reduces the difficulty and cost of the energy supply part and the resonant circuit part.
图6所示,首先,线圈驱动电路3中,工频交流电(100V~380V)经过不控整流桥、高频滤波电容滤掉高频谐波分量、大容量滤波电容滤波稳压后变为直流。图6中RCD吸收回路、母线电容的作用是消除开关管开关过程中产生的尖峰,减小对电路的冲击,提高逆变效率与功率。As shown in Figure 6, firstly, in the
图7所示,接收能量转换电路8收到能量之后,首先经过由高频整流二极管组成的高频整流桥,之后经过电容行进滤波稳压,由于较高的频率更容易实现滤波稳压,所以该电容可以选取体积更小的高频薄膜电容,进一步减小了装置的体积。整流滤波输出的直流再经过DC/DC变换电路,将电压升压或降压至用电设备所需要的值,从而完成能量的接收与转化。As shown in Figure 7, after receiving
图8和图9表明了本发明中能量发射侧电容器组4和能量接收侧电容器组7的优选方式。与传统等容值电容相比,该结构大大增加了电容的寿命以及系统的稳定性,并且由于采用PCB安装的方式,电容的更换与调试更加便捷。Fig. 8 and Fig. 9 show the preferred mode of the
图10至图13表明了本发明发射接收以及传输线的原理与结构。Figures 10 to 13 show the principle and structure of the transmitting, receiving and transmission lines of the present invention.
根据麦克斯韦理论,导线中通过电流I时,产生如图13中a-b-c和d-e-f方向的磁场,平面M和N产生感应电动势,这个感应电动势在导体长度方向上产生涡流(图13中虚线所示,主电流和涡流之和在导线表面加强,趋向导线中心减弱,电流出现不均匀分布,称为集肤效应,频率越高这一现象越严重,通常经验计算公式为:导线温度25℃时集肤深度导线温度100℃时集肤深度传输线线径的选取应小于等于2Δ。本发明中采用绞制的多股极细漆包线或丝包线,又称为利兹线,将这种不均匀电流分布在每根互相绝缘的导线上,最大程度的减小了这一现象引起的交流阻抗值,降低了导线交直流阻抗比RAC/RDC,减小了高频状态下线圈上的损耗,降低了线圈温度,提高了能量传输部分的安全性与稳定性。According to Maxwell's theory, when the current I passes through the wire, a magnetic field in the direction of abc and def in Figure 13 is generated, and the planes M and N generate induced electromotive force, and the induced electromotive force generates eddy current in the direction of the conductor length (shown by the dotted line in Figure 13, the main The sum of current and eddy current strengthens on the surface of the wire and tends to weaken toward the center of the wire. The uneven distribution of the current is called the skin effect. The higher the frequency, the more serious this phenomenon is. The usual empirical calculation formula is: skin depth when the wire temperature is 25°C Skin depth at wire temperature 100°C The selection of transmission line diameter should be less than or equal to 2Δ. In the present invention, twisted multi-strand ultra-fine enameled wires or silk-covered wires, also known as Litz wires, are used to distribute this uneven current on each mutually insulated wire, reducing the damage caused by this phenomenon to the greatest extent. The AC impedance value reduces the AC-DC impedance ratio R AC /R DC of the wire, reduces the loss on the coil under high-frequency conditions, reduces the coil temperature, and improves the safety and stability of the energy transmission part.
再者,导线通过相同方向或相反方向电流时由于相邻导线间的磁场作用,电流呈现相互吸引或者排斥的现象,如图12中阴影所示。本发明将传统连接至线圈的两根传输线分为多跟,并按照图11所示的方式进行重新排列,实现了磁场间的相互抵消,减小了上述的不均匀电流。Furthermore, when the wires pass current in the same direction or in opposite directions, due to the magnetic field between adjacent wires, the currents will attract or repel each other, as shown by the shadows in FIG. 12 . The present invention divides the traditional two transmission lines connected to the coil into multiple segments and rearranges them in the manner shown in Figure 11 to realize the mutual cancellation of the magnetic fields and reduce the above-mentioned uneven current.
与现有传统装置或技术相比,本发明具有以下几个优点:1、采用平板磁芯,可实现小体积下的大功率传输,便于安装和实际应用;2、采用磁耦合谐振原理,可以实现较远距离高效的传输;3、应用多种减小损耗的技术,实现了高效率传输;4、可承受大范围错位,有效地提高传输便捷性。4、降低了工作频率,减小了谐振磁场引起的辐射。Compared with the existing traditional devices or technologies, the present invention has the following advantages: 1. Using a flat magnetic core, it can realize high-power transmission in a small volume, which is convenient for installation and practical application; 2. Using the principle of magnetic coupling resonance, it can Realize long-distance and efficient transmission; 3. Apply a variety of loss-reducing technologies to achieve high-efficiency transmission; 4. Can withstand a wide range of misalignment, effectively improving the convenience of transmission. 4. The working frequency is reduced and the radiation caused by the resonant magnetic field is reduced.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100760941A CN102611209A (en) | 2012-03-21 | 2012-03-21 | Magnetic coupling resonance type wireless energy transmission device based on panel magnetic core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100760941A CN102611209A (en) | 2012-03-21 | 2012-03-21 | Magnetic coupling resonance type wireless energy transmission device based on panel magnetic core |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102611209A true CN102611209A (en) | 2012-07-25 |
Family
ID=46528429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100760941A Pending CN102611209A (en) | 2012-03-21 | 2012-03-21 | Magnetic coupling resonance type wireless energy transmission device based on panel magnetic core |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102611209A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103051071A (en) * | 2013-01-09 | 2013-04-17 | 哈尔滨工业大学 | Desktop load power supply device based on wireless energy transmission |
CN104167830A (en) * | 2014-08-26 | 2014-11-26 | 哈尔滨工业大学 | Wireless energy transmission device capable of shielding electromagnetic radiation in no-load process |
CN105474506A (en) * | 2013-12-05 | 2016-04-06 | 株式会社村田制作所 | Power receiving device and power transmission system |
CN106611985A (en) * | 2015-10-20 | 2017-05-03 | 沈阳新松机器人自动化股份有限公司 | Wireless charging system based on tailless service robot |
CN106663966A (en) * | 2014-06-10 | 2017-05-10 | 联发科技(新加坡)私人有限公司 | Multi-mode wireless power transmitter |
CN107147221A (en) * | 2017-07-05 | 2017-09-08 | 广东电网有限责任公司电力科学研究院 | The spiral LHM in hexagon concave surface and transmission line of electricity energy transmission system |
CN107627887A (en) * | 2017-09-27 | 2018-01-26 | 哈尔滨工业大学 | Magnetic coupling applied to wireless charging system for electric automobile |
CN107665767A (en) * | 2016-07-29 | 2018-02-06 | 三星电机株式会社 | Magnetic material and the device for being used to send data using magnetic material |
CN107925271A (en) * | 2015-08-26 | 2018-04-17 | 高通股份有限公司 | Compensated using the ferritic receiver off resonance of transmitter |
CN108701533A (en) * | 2015-11-18 | 2018-10-23 | 香港大学 | wireless power transfer system |
CN110098667A (en) * | 2019-06-04 | 2019-08-06 | 安徽工程大学 | A kind of wireless charging system based on magnetic structure |
CN110137646A (en) * | 2019-06-19 | 2019-08-16 | 西南应用磁学研究所 | A kind of bandpass filter and modulator approach of centre frequency and the double tune of bandwidth |
CN110350943A (en) * | 2018-09-28 | 2019-10-18 | 深圳市速腾聚创科技有限公司 | Wireless communication apparatus with energy transmission and the wireless communication method with energy transmission |
CN111541309A (en) * | 2019-08-26 | 2020-08-14 | 上海交通大学 | Wireless energy transmitting device for gastrointestinal tract micro-robot |
CN112821574A (en) * | 2021-01-13 | 2021-05-18 | 上海交通大学 | Spiral square transmitting coil for gastrointestinal tract micro-robot |
CN113644755A (en) * | 2020-05-11 | 2021-11-12 | 丸荣机械股份有限公司 | Vibration processing device and its power supply system and wireless power transmitter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006042519A (en) * | 2004-07-28 | 2006-02-09 | Seiko Epson Corp | Contactless power transmission device |
CN101147308A (en) * | 2006-10-24 | 2008-03-19 | 翰林Postech株式会社 | Non-contact charger available of wireless data and power transmission, charging battery-pack and mobile divice using non-contact charger |
CN101316053A (en) * | 2008-06-04 | 2008-12-03 | 哈尔滨工业大学 | Magnetic coupling resonant wireless energy transmission device |
CN201839103U (en) * | 2010-09-12 | 2011-05-18 | 朱斯忠 | Wireless power supply antenna module with one-way transmission function |
-
2012
- 2012-03-21 CN CN2012100760941A patent/CN102611209A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006042519A (en) * | 2004-07-28 | 2006-02-09 | Seiko Epson Corp | Contactless power transmission device |
CN101147308A (en) * | 2006-10-24 | 2008-03-19 | 翰林Postech株式会社 | Non-contact charger available of wireless data and power transmission, charging battery-pack and mobile divice using non-contact charger |
CN101316053A (en) * | 2008-06-04 | 2008-12-03 | 哈尔滨工业大学 | Magnetic coupling resonant wireless energy transmission device |
CN201839103U (en) * | 2010-09-12 | 2011-05-18 | 朱斯忠 | Wireless power supply antenna module with one-way transmission function |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103051071A (en) * | 2013-01-09 | 2013-04-17 | 哈尔滨工业大学 | Desktop load power supply device based on wireless energy transmission |
CN105474506A (en) * | 2013-12-05 | 2016-04-06 | 株式会社村田制作所 | Power receiving device and power transmission system |
CN105474506B (en) * | 2013-12-05 | 2018-05-25 | 株式会社村田制作所 | Current-collecting device and electrical power transmission system |
CN106663966B (en) * | 2014-06-10 | 2020-04-24 | 联发科技(新加坡)私人有限公司 | Multi-mode wireless power transmitter |
CN106663966A (en) * | 2014-06-10 | 2017-05-10 | 联发科技(新加坡)私人有限公司 | Multi-mode wireless power transmitter |
CN104167830A (en) * | 2014-08-26 | 2014-11-26 | 哈尔滨工业大学 | Wireless energy transmission device capable of shielding electromagnetic radiation in no-load process |
CN107925271A (en) * | 2015-08-26 | 2018-04-17 | 高通股份有限公司 | Compensated using the ferritic receiver off resonance of transmitter |
CN106611985A (en) * | 2015-10-20 | 2017-05-03 | 沈阳新松机器人自动化股份有限公司 | Wireless charging system based on tailless service robot |
CN108701533B (en) * | 2015-11-18 | 2020-12-01 | 香港大学 | wireless power transfer system |
CN108701533A (en) * | 2015-11-18 | 2018-10-23 | 香港大学 | wireless power transfer system |
CN107665767A (en) * | 2016-07-29 | 2018-02-06 | 三星电机株式会社 | Magnetic material and the device for being used to send data using magnetic material |
CN107147221A (en) * | 2017-07-05 | 2017-09-08 | 广东电网有限责任公司电力科学研究院 | The spiral LHM in hexagon concave surface and transmission line of electricity energy transmission system |
CN107147221B (en) * | 2017-07-05 | 2023-04-25 | 广东电网有限责任公司电力科学研究院 | Hexagonal concave spiral left-handed material and power transmission line energy transmission system |
CN107627887A (en) * | 2017-09-27 | 2018-01-26 | 哈尔滨工业大学 | Magnetic coupling applied to wireless charging system for electric automobile |
CN110350943A (en) * | 2018-09-28 | 2019-10-18 | 深圳市速腾聚创科技有限公司 | Wireless communication apparatus with energy transmission and the wireless communication method with energy transmission |
CN110350943B (en) * | 2018-09-28 | 2023-09-15 | 深圳市速腾聚创科技有限公司 | Wireless communication device with energy transmission and wireless communication method with energy transmission |
CN110098667A (en) * | 2019-06-04 | 2019-08-06 | 安徽工程大学 | A kind of wireless charging system based on magnetic structure |
CN110137646A (en) * | 2019-06-19 | 2019-08-16 | 西南应用磁学研究所 | A kind of bandpass filter and modulator approach of centre frequency and the double tune of bandwidth |
CN110137646B (en) * | 2019-06-19 | 2024-01-16 | 西南应用磁学研究所 | Band-pass filter with double-modulation center frequency and bandwidth and modulation method |
CN111541309A (en) * | 2019-08-26 | 2020-08-14 | 上海交通大学 | Wireless energy transmitting device for gastrointestinal tract micro-robot |
CN113644755A (en) * | 2020-05-11 | 2021-11-12 | 丸荣机械股份有限公司 | Vibration processing device and its power supply system and wireless power transmitter |
CN112821574A (en) * | 2021-01-13 | 2021-05-18 | 上海交通大学 | Spiral square transmitting coil for gastrointestinal tract micro-robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102611209A (en) | Magnetic coupling resonance type wireless energy transmission device based on panel magnetic core | |
CN106849372B (en) | ECPT system and its Parameters design based on bilateral F-LCLC resonant network | |
CN106887902B (en) | The electromagnetic coupling mechanisms of electric vehicle wireless power | |
CN101316053A (en) | Magnetic coupling resonant wireless energy transmission device | |
CN105720582B (en) | A kind of particular harmonic eliminates radio energy transmission system and its design method | |
CN102593958A (en) | Non-contact power feeding apparatus of magnetic resonance method | |
CN103474213A (en) | Non-contact transformer with mixed wound windings | |
CN106876116A (en) | New double square structure wireless charge coil | |
CN101814775A (en) | Parameter matching method for induction power-taking device for overhead high-voltage transmission line | |
CN107370245A (en) | A kind of Integral wireless charge coil and its electric energy transmission system | |
CN210724332U (en) | Multi-load wireless charging device | |
CN103312051B (en) | A kind of system and method utilizing ferromagnetic resonance to realize wireless power transmission | |
JP2011234571A (en) | Contactless power supply system | |
CN210839080U (en) | High-voltage ultra-thin wireless power transmission system | |
CN204992793U (en) | A device for wireless power transmission | |
CN106787240A (en) | The method of work of composite LCL structures and the structure based on array lines ring type wireless energy transfer | |
CN207353910U (en) | A kind of capacitive coupling resonance type wireless energy transmission system | |
CN111816425B (en) | Asymmetric wireless power transmission coil with three rectangular structures and application thereof | |
CN112688437A (en) | Single-capacitor coupled wireless electric energy transmission device | |
CN205693449U (en) | A kind of wireless charging expanded electrical pad with multi load isolation characteristic | |
CN103545941A (en) | Point-to-point collaborative wireless charging coupler | |
CN109347215A (en) | A kind of UI type electromagnetic coil structure and biography energy method for high-power long distance radio energy-transmitting | |
CN206210558U (en) | Anti-interference high frequency transformer | |
CN105958666B (en) | It is a kind of to expand wireless charging electrical pad with multi-load isolation characteristic | |
CN1440106A (en) | Wireless power supply devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120725 |