CN102610531A - Method for preparing diamond-silicon composite package material - Google Patents
Method for preparing diamond-silicon composite package material Download PDFInfo
- Publication number
- CN102610531A CN102610531A CN2012100636253A CN201210063625A CN102610531A CN 102610531 A CN102610531 A CN 102610531A CN 2012100636253 A CN2012100636253 A CN 2012100636253A CN 201210063625 A CN201210063625 A CN 201210063625A CN 102610531 A CN102610531 A CN 102610531A
- Authority
- CN
- China
- Prior art keywords
- sintering
- diamond
- silicon
- powder
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 42
- 239000010703 silicon Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000002131 composite material Substances 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 title claims description 10
- 238000005245 sintering Methods 0.000 claims abstract description 69
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 48
- 239000010432 diamond Substances 0.000 claims abstract description 48
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 11
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 11
- 239000011091 composite packaging material Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 3
- 239000010439 graphite Substances 0.000 claims abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000002490 spark plasma sintering Methods 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 238000005538 encapsulation Methods 0.000 claims 1
- 238000004100 electronic packaging Methods 0.000 abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 6
- 239000011159 matrix material Substances 0.000 abstract description 5
- 239000005022 packaging material Substances 0.000 abstract description 5
- 229910052719 titanium Inorganic materials 0.000 abstract description 4
- 238000005087 graphitization Methods 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 12
- 229910010271 silicon carbide Inorganic materials 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 229910003465 moissanite Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 5
- 101100456212 Arabidopsis thaliana MBD8 gene Proteins 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910008479 TiSi2 Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000009715 pressure infiltration Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
本发明涉及一种高导热、低膨胀金刚石-硅复合封装材料的制备方法,属于电子封装材料领域。步骤为:①将金刚石微粒和体积分数40~70%硅粉与微量烧结助剂均匀混合,烧结助剂为Al或Ti粉;②将装有混合物的石墨模具放入SPS,加压20~30MPa并抽真空;③快速烧结,烧结时保温温度设定为1250~1370℃,烧结过程中采用惰性气体或真空,烧结压力为40~60MPa;④烧结结束后进行随炉冷却并在1000℃以下卸掉压力,获得致密无微裂纹的复合材料。本发明避免了烧结时间过长造成的金刚石石墨化及硅基体氧化等问题;可以通过改变原料的配比得到各种不同金刚石含量的复合材料,可操作性强,工艺简单。并且所制得的复合材料热导率高达515W/mK,热膨胀低于1.5×10-6/K,致密度达99.6%以上,可用于电子封装等领域。
The invention relates to a preparation method of a diamond-silicon composite packaging material with high thermal conductivity and low expansion, belonging to the field of electronic packaging materials. The steps are: ① uniformly mix diamond particles and silicon powder with a volume fraction of 40-70% and a small amount of sintering aid, and the sintering aid is Al or Ti powder; ② put the graphite mold containing the mixture into SPS, and pressurize at 20-30MPa and vacuum; ③ rapid sintering, the holding temperature is set at 1250~1370℃ during sintering, inert gas or vacuum is used during the sintering process, and the sintering pressure is 40~60MPa; The pressure is dropped to obtain a dense composite material without microcracks. The invention avoids problems such as diamond graphitization and silicon matrix oxidation caused by too long sintering time; various composite materials with different diamond contents can be obtained by changing the ratio of raw materials, and has strong operability and simple process. Moreover, the thermal conductivity of the prepared composite material is as high as 515W/mK, the thermal expansion is lower than 1.5×10 -6 /K, and the density is over 99.6%, which can be used in electronic packaging and other fields.
Description
技术领域 technical field
本发明属于电子封装领域,涉及一种金刚石-硅复合封装材料新型制备方法,具体涉及一种采用放电等离子烧结及添加烧结助剂制备致密度高、导热率高及热膨胀系数低的金刚石-硅复合封装材料方法。The invention belongs to the field of electronic packaging, and relates to a new preparation method of a diamond-silicon composite packaging material, in particular to a diamond-silicon composite with high density, high thermal conductivity and low thermal expansion coefficient prepared by spark plasma sintering and adding sintering aids. Packaging material method.
背景技术 Background technique
随着现代电子与信息技术的飞速发展,对基体材料的散热性能要求也越来越高,研究具有综合性能良好的电子封装材料具有很大的实际意义。芯片集成度的不断提高,电子封装向小型化、轻量化和高性能的方向发展,使得电路的工作温度不断上升,系统单位体积发热率不断增大。为了获得稳定的性能,必须改善散热条件,电子封装在微电子领域的重要性不断提升,伴随着新型电子封装材料的需求也在不断增加。With the rapid development of modern electronics and information technology, the heat dissipation performance requirements of base materials are also getting higher and higher, so it is of great practical significance to study electronic packaging materials with good comprehensive performance. With the continuous improvement of chip integration and the development of electronic packaging in the direction of miniaturization, light weight and high performance, the operating temperature of the circuit continues to rise, and the heating rate per unit volume of the system continues to increase. In order to obtain stable performance, heat dissipation conditions must be improved, and the importance of electronic packaging in the field of microelectronics is increasing, and the demand for new electronic packaging materials is also increasing.
高品质金刚石具有最高的热导率及较低的热膨胀系数,热导率可达到2000W/mK,另外金刚石具有电绝缘、低介电常数等特点;单一的金刚石不易制作成封装材料,较理想的是用金刚石颗粒作为增强体制备复合材料。目前研究较多的是铜、铝、银及硅作为基体材料制备金刚石复合材料,其中铜或银作为基体材料均存在润湿性低、热膨胀系数及密度均较高等问题;铝金刚石复合材料热膨胀系数太大,难于应用。高纯硅材料具有较低的密度、较高的导热性能和较低的热膨胀系数,密度为2.33g/cm3,热导率(thermalconductivity,TC)为160W/mK,热膨胀系数(coefficients of thermal expansion,CTE)为3.6×10-6/K;硅与金刚石润湿性良好,烧结过程中在硅和金刚石界面处生成碳化硅,降低了界面热阻。因此,对于金刚石-硅复合材料的研究对该材料的发展应用具有重要意义。High-quality diamond has the highest thermal conductivity and low thermal expansion coefficient, and the thermal conductivity can reach 2000W/mK. In addition, diamond has the characteristics of electrical insulation and low dielectric constant; a single diamond is not easy to be made into packaging materials, which is ideal Composite materials are prepared by using diamond particles as reinforcements. At present, there are more studies on copper, aluminum, silver and silicon as matrix materials to prepare diamond composite materials. Among them, copper or silver as matrix materials have problems such as low wettability, high thermal expansion coefficient and high density; Too large to apply. High-purity silicon material has low density, high thermal conductivity and low thermal expansion coefficient. The density is 2.33g/cm 3 , the thermal conductivity (TC) is 160W/mK, and the coefficients of thermal expansion , CTE) is 3.6×10 -6 /K; the wettability of silicon and diamond is good, and silicon carbide is formed at the interface of silicon and diamond during sintering, which reduces the interface thermal resistance. Therefore, the research on diamond-silicon composite materials is of great significance to the development and application of this material.
制备金刚石-硅复合封装材料存在的问题主要包括:(1)难以采用一般的制备方法制备致密的金刚石-硅复合封装材料,采用无压或热等静压烧结制备的金刚石-硅复合材料致密度均很低。通过在复合材料中添加烧结助剂可以提高烧结致密度,但致密度仍然不高;(2)金刚石在高温条件下极易石墨化,烧结时间过长使得金刚石表面石墨化,降低复合材料性能。The problems in the preparation of diamond-silicon composite packaging materials mainly include: (1) It is difficult to prepare dense diamond-silicon composite packaging materials by general preparation methods, and the density of diamond-silicon composite materials prepared by pressureless or hot isostatic sintering are very low. The sintering density can be improved by adding sintering aids to the composite material, but the density is still not high; (2) Diamond is very easy to graphitize under high temperature conditions, and the sintering time is too long to make the diamond surface graphitize, reducing the performance of the composite material.
近年来,仅有采用压力熔渗法制备金刚石-硅复合材料。采用这种方法制备金刚石/硅复合材料,由于制备过程需要极高的真空度及超高的压力,对设备要求极高,制造成本及其昂贵,很大程度上限制了金刚石/硅复合电子封装材料在电子工程中的应用。In recent years, diamond-silicon composites have only been prepared by pressure infiltration. Using this method to prepare diamond/silicon composite materials, because the preparation process requires extremely high vacuum and ultra-high pressure, the requirements for equipment are extremely high, and the manufacturing cost is extremely expensive, which largely limits the diamond/silicon composite electronic packaging. Applications of materials in electrical engineering.
发明内容 Contents of the invention
本发明的目的在于提供一种金刚石-硅复合封装材料的制备方法,该方法所制备的复合材料界面接触牢固,制备工艺简单,致密度及热学性能均显著提高。The purpose of the present invention is to provide a method for preparing a diamond-silicon composite packaging material. The composite material prepared by the method has a firm interface contact, a simple preparation process, and significantly improved density and thermal performance.
为了实现上述目的,本发明采用的技术方是:一种金刚石-硅复合封装材料的制备方法,其特征在于,该方法包括下述步骤:In order to achieve the above object, the technical side that the present invention adopts is: a kind of preparation method of diamond-silicon composite packaging material, it is characterized in that, this method comprises the following steps:
(1)将金刚石微粒、硅粉与烧结助剂均匀混合,其中,硅粉的体积分数为40%~70%,烧结助剂的体积分数为0~10%;(1) uniformly mixing diamond particles, silicon powder and sintering aid, wherein the volume fraction of silicon powder is 40% to 70%, and the volume fraction of sintering aid is 0 to 10%;
(2)将装有上述混合物的石墨模具放入放电等离子烧结炉,加压20~30MPa并抽真空;(2) Put the graphite mold containing the above mixture into the discharge plasma sintering furnace, pressurize 20-30MPa and vacuumize;
(3)快速烧结,烧结时保温温度设定为1250~1370℃,烧结过程中采用惰性气体或真空,烧结压力为40~60MPa;(3) Rapid sintering, the holding temperature is set at 1250-1370°C during sintering, inert gas or vacuum is used in the sintering process, and the sintering pressure is 40-60MPa;
(4)烧结结束后对样品进行随炉冷却并在1000℃以下卸掉压力,以获得致密的没有微裂纹的复合材料。(4) After sintering, the sample is cooled with the furnace and the pressure is released below 1000°C to obtain a dense composite material without microcracks.
作为上述技术方案的改进,步骤(3)中,烧结过程中的保温时间3~5min,升温速率为50~150℃/min。As an improvement of the above technical solution, in step (3), the holding time during the sintering process is 3-5 minutes, and the heating rate is 50-150° C./min.
作为上述技术方案的进一步改进,惰性气体为氩气,真空度小于10Pa。As a further improvement of the above technical solution, the inert gas is argon, and the vacuum degree is less than 10Pa.
所述烧结助剂可以优选Al粉或Ti粉。The sintering aid may preferably be Al powder or Ti powder.
本发明将放电等离子烧结炉(spark plasma sintering,SPS)快速烧结和粉末冶金法相结合,通过成份和过程的控制,优化工艺参数并提高样品综合性能。硅和金刚石界面形成碳化硅过渡层,显著降低了界面热阻;添加微量烧结助剂有效提高样品致密度。具体而言,本发明的技术效果如下:The invention combines rapid sintering in a spark plasma sintering (SPS) furnace with powder metallurgy, optimizes process parameters and improves comprehensive performance of samples through component and process control. A silicon carbide transition layer is formed at the interface between silicon and diamond, which significantly reduces the interface thermal resistance; adding a small amount of sintering aid effectively improves the density of the sample. Specifically, technical effect of the present invention is as follows:
1)金刚石颗粒分布均匀,且与硅基体间界面清洁牢固1) The diamond particles are evenly distributed, and the interface with the silicon matrix is clean and firm
本发明中采用了SPS快速烧结法,使金刚石微粒与硅粉之间发生原位化学反应生成碳化硅过渡层,然后通过对升温速度及保温时间的调控提高样品致密度。添加微量烧结助剂,有利于降低烧结温度及减少烧结时间;选择烧结结束后对样品进行随炉冷却并在1000℃以下卸掉压力,有利于烧结致密减少微裂纹。经工艺优化后制得样品界面连接强度高,无显微缺陷存在。In the present invention, the SPS rapid sintering method is adopted to make an in-situ chemical reaction between the diamond particles and the silicon powder to form a silicon carbide transition layer, and then the density of the sample is improved by adjusting the heating rate and the holding time. Adding a small amount of sintering aid is beneficial to reduce the sintering temperature and time; after sintering, the sample is cooled with the furnace and the pressure is released below 1000°C, which is conducive to sintering compactness and reducing microcracks. After process optimization, the samples obtained have high interfacial connection strength and no microscopic defects.
2)合成温度低、工艺和设备简单,综合性能良好2) The synthesis temperature is low, the process and equipment are simple, and the comprehensive performance is good
该工艺中烧结最高温度为1370℃,在真空(小于10Pa)或氩气气氛下,升温速率快且保温时间短,能在极短时间使样品致密化,有效阻止了金刚石石墨化。总的合成过程具有设备和工艺简单、合成温度低等优点,并且所制得的复合材料热导率高达515W/mK,热膨胀低于1.5×10-6/K,致密度达99.6%以上。In this process, the highest sintering temperature is 1370°C. Under vacuum (less than 10Pa) or argon atmosphere, the heating rate is fast and the holding time is short, which can densify the sample in a very short time and effectively prevent diamond graphitization. The overall synthesis process has the advantages of simple equipment and process, low synthesis temperature, etc., and the thermal conductivity of the prepared composite material is as high as 515W/mK, the thermal expansion is lower than 1.5×10 -6 /K, and the density is over 99.6%.
本发明所使用的主要设备为:放电等离子烧结炉(SPS)。The main equipment used in the present invention is: spark plasma sintering furnace (SPS).
3)优化产品性能3) Optimize product performance
采用快速烧结法和添加烧结助剂相结合,可获得密度低、导热率高及热膨胀系数低的金刚石-硅复合封装材料。其中,可以通过调节金刚石微粒的含量调节材料的热导率和热膨胀系数,随着金刚石含量的提高热导率随之增加,热膨胀系数随之降低;金刚石微粒的品级越高得到的复合材料热导率越高;通过调节金刚石颗粒大小也可以调节材料性能,但随着金刚石粒径增大热导率增加不明显。Combining the rapid sintering method and adding sintering aids, a diamond-silicon composite packaging material with low density, high thermal conductivity and low thermal expansion coefficient can be obtained. Among them, the thermal conductivity and thermal expansion coefficient of the material can be adjusted by adjusting the content of diamond particles. As the diamond content increases, the thermal conductivity increases and the thermal expansion coefficient decreases; the higher the grade of diamond particles, the higher the thermal conductivity of the composite material. The higher the ratio is; the material properties can also be adjusted by adjusting the size of diamond particles, but the increase in thermal conductivity is not obvious with the increase of diamond particle size.
附图说明 Description of drawings
图1为样品的断面SEM图,其中a)为实例2样品断面图;b)为实例1样品断面图;c)为实例5样品断面图。Fig. 1 is the cross-sectional SEM picture of the sample, wherein a) is the cross-sectional view of the sample of Example 2; b) is the cross-sectional view of the sample of Example 1; and c) is the cross-sectional view of the sample of Example 5.
图2为实例2样品表面,其中a)为放大20倍,b)为放大300倍。Fig. 2 is the sample surface of Example 2, wherein a) is enlarged by 20 times, and b) is enlarged by 300 times.
图3为实例1样品断面线扫描能谱图,其中a)为断面图,b)为点A到点B线能谱图。Fig. 3 is the line scanning energy spectrum of the sample of Example 1, wherein a) is the cross section, and b) is the line energy spectrum from point A to point B.
图4为实例2样品断面线扫描能谱图,a)为断面图,b)为点A到点B线能谱图。Fig. 4 is the line scanning energy spectrum of the sample of Example 2, a) is the cross section, and b) is the line energy spectrum from point A to point B.
图5为实例3样品断面SEM图。Fig. 5 is the SEM picture of the sample section of Example 3.
图6为实例4样品断面SEM图。Fig. 6 is the SEM picture of the cross-section of the sample of Example 4.
图7为实例5样品断面线扫描能谱图,其中a)为断面图,b)为点A到点B线能谱图。Fig. 7 is the cross-sectional line scanning energy spectrum of the sample of Example 5, wherein a) is a cross-sectional view, and b) is a line energy spectrum from point A to point B.
图8为实例6样品断面SEM图。Fig. 8 is the SEM image of the cross-section of the sample of Example 6.
图9为实例5样品断面微区EDS能谱图,其中a)为断面图,b)为黑色方框微区能谱图。Fig. 9 is the EDS energy spectrum of the cross-sectional micro-area of the sample of Example 5, wherein a) is a cross-sectional view, and b) is a black square micro-area energy spectrum.
具体实施方式 Detailed ways
本发明方法的工作原理是:利用放电等离子快速烧结,使硅基体颗粒在烧结过程与金刚石颗粒在硅熔点之下发生原位化学反应,生成界面碳化硅层,并通过添加微量烧结助剂和降温时压力的控制得到致密的金刚石-硅复合材料。The working principle of the method of the present invention is: rapid sintering by discharge plasma, so that silicon matrix particles and diamond particles undergo an in-situ chemical reaction under the melting point of silicon during the sintering process to form an interfacial silicon carbide layer, and by adding a small amount of sintering aid and cooling When the pressure is controlled, a dense diamond-silicon composite material is obtained.
条件及工艺:Conditions and process:
1)制备条件和设备1) Preparation conditions and equipment
烧结采用放电等离子烧结炉(SPS),物相鉴定采用X射线衍射仪(XRD),显微组织观察与分析采用环境电子显微镜(SEM;LEO 1450VP),热导率测试采用L457热常数测试仪,热膨胀系数采用NETZSCH DIL402PC。Spark plasma sintering furnace (SPS) was used for sintering, X-ray diffractometer (XRD) was used for phase identification, environmental electron microscope (SEM; LEO 1450VP) was used for microstructure observation and analysis, and L457 thermal constant tester was used for thermal conductivity test. The coefficient of thermal expansion adopts NETZSCH DIL402PC.
2)烧结工艺的选择2) Selection of sintering process
烧结温度为1250~1370℃,根据不同材料体系选择不同的烧结温度,并保温3~5min,随后使样品进行随炉冷却并在1000℃以下卸掉压力,具体参数见各实例中。The sintering temperature is 1250-1370°C, select different sintering temperatures according to different material systems, and keep it warm for 3-5 minutes, then cool the sample with the furnace and release the pressure below 1000°C, see the specific parameters in each example.
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
本发明所使用的原料如表1所示:The raw materials used in the present invention are as shown in table 1:
表1Table 1
其中FDP型金刚石为较低品级金刚石,MBD8为高品级金刚石。Among them, FDP diamond is a lower-grade diamond, and MBD8 is a high-grade diamond.
实例1:Example 1:
表2为所选的材料体系与成分配比:Table 2 shows the selected material system and composition ratio:
表2原料的配比The proportioning of table 2 raw materials
将平均粒径为100μm左右的FDP型金刚石微粉与高纯硅粉混合均匀,混合后的粉料在放电等离子体烧结炉模具中,当真空度达到10Pa一下开始烧结,以升温速率50℃/min加热至1370℃,保温时间为3min,烧结压力为30~60MPa,然后随炉冷却并在1000℃以下卸掉压力。得到金刚石-硅复合材料,其密度为2.96g/cm3,导热率为302W/mK,热膨胀系数为1.627×10-6/K。Mix FDP-type diamond powder with an average particle size of about 100 μm and high-purity silicon powder evenly. The mixed powder is placed in the mold of the discharge plasma sintering furnace. When the vacuum degree reaches 10Pa, it starts to sinter at a heating rate of 50°C/min. Heating to 1370°C, the holding time is 3min, the sintering pressure is 30-60MPa, then cool with the furnace and release the pressure below 1000°C. The obtained diamond-silicon composite material has a density of 2.96 g/cm 3 , a thermal conductivity of 302 W/mK, and a thermal expansion coefficient of 1.627×10 -6 /K.
经XRD物相分析发现烧结后样品中包含Diamond、SiC和Si三种物相;样品烧结致密,样品断面(图1(b))均无孔洞;结合XRD物相分析及样品断面线扫描(图3),碳化硅层在金刚石和硅的界面处。Through XRD phase analysis, it was found that the sintered sample contained three phases of Diamond, SiC and Si; the sample was sintered densely, and there was no hole in the sample cross section (Fig. 3), the silicon carbide layer is at the interface of diamond and silicon.
实例2:Example 2:
本实例和实例1采用相同的混合原料,混合后的粉料在放电等离子体烧结炉模具中,当真空度达到10Pa一下停止真空泵,充入氩气,当气体压力0.03MPa时为以升温速率50℃/min加热至1370℃,保温时间为3min,烧结压力为30~60MPa,然后随炉冷却并在1000℃以下卸掉压力。得到金刚石-硅复合材料,其密度为2.97g/cm3,导热率为346W/mK,热膨胀系数为1.553×10-6/K。This example and example 1 adopt the same mixed raw material, the mixed powder is in the discharge plasma sintering furnace mould, when the vacuum degree reaches 10Pa, stop the vacuum pump, fill it with argon, and when the gas pressure is 0.03MPa, it is at a heating rate of 50 ℃/min heating to 1370℃, holding time is 3min, sintering pressure is 30-60MPa, then cool with the furnace and release the pressure below 1000℃. The obtained diamond-silicon composite material has a density of 2.97g/cm 3 , a thermal conductivity of 346W/mK, and a thermal expansion coefficient of 1.553×10 -6 /K.
该烧结样品经XRD物相分析包含Diamond、SiC和Si三种物相;样品烧结致密,样品表面(图2)及断面(图1(a))均无孔洞;结合XRD物相分析及样品断面线扫描(图4),碳化硅层在金刚石和硅的界面处。The sintered sample contains three phases of Diamond, SiC and Si through XRD phase analysis; the sample is densely sintered, and the sample surface (Figure 2) and section (Figure 1(a)) have no holes; combined with XRD phase analysis and sample section Line scan (Fig. 4), silicon carbide layer at the interface of diamond and silicon.
不同烧结条件(真空,氩气)在烧结后样品显微组织并无区别,但在氩气条件下烧结制备的样品具有较高的热导率和较低的热膨胀系数。There is no difference in the microstructure of samples after sintering under different sintering conditions (vacuum, argon), but the samples prepared by sintering under argon have higher thermal conductivity and lower thermal expansion coefficient.
实例3:Example 3:
表2为所选的材料体系与成分配比:Table 2 shows the selected material system and composition ratio:
表3原料的配比Table 3 Ratio of Raw Materials
将平均粒径为100μm左右的MBD8型金刚石微粉与高纯硅粉混合均匀,混合后的粉料在放电等离子体烧结炉模具中,烧结工艺和实例2相同。得到金刚石-硅复合材料,其密度为2.972g/cm3,导热率为497W/mK,热膨胀系数为1.517×10-6/K。The MBD8 type diamond powder with an average particle size of about 100 μm is mixed evenly with high-purity silicon powder, and the mixed powder is placed in a discharge plasma sintering furnace mold, and the sintering process is the same as that of Example 2. The obtained diamond-silicon composite material has a density of 2.972 g/cm 3 , a thermal conductivity of 497 W/mK, and a thermal expansion coefficient of 1.517×10 -6 /K.
该烧结样品经XRD物相分析包含Diamond、SiC和Si三种物相;样品烧结致密,样品断面(图5)无孔洞;The sintered sample contains three phases of Diamond, SiC and Si through XRD phase analysis; the sample is sintered densely, and the sample section (Figure 5) has no holes;
相同条件下,采用不同品级金刚石微粒作为增强体,得到复合材料热导率显著提高。Under the same conditions, different grades of diamond particles are used as reinforcements, and the thermal conductivity of the composite material is significantly improved.
实例4:Example 4:
本实例和实例3采用相同的原料配比,将平均粒径为300μm左右的MBD8型金刚石微粉与高纯硅粉混合均匀,混合后的粉料在放电等离子体烧结炉模具中,烧结工艺和实例2相同。得到金刚石-硅复合材料,其密度为2.975g/cm3,导热率为515W/mK,热膨胀系数为1.479×10-6/K。This example and Example 3 use the same raw material ratio, mix MBD8 type diamond micropowder with an average particle size of about 300 μm and high-purity silicon powder evenly, and mix the powder in the discharge plasma sintering furnace mold, sintering process and example 2 is the same. The obtained diamond-silicon composite material has a density of 2.975 g/cm 3 , a thermal conductivity of 515 W/mK, and a thermal expansion coefficient of 1.479×10 -6 /K.
该烧结样品经XRD物相分析包含Diamond、SiC和Si三种物相;样品烧结致密,样品断面(图6)无孔洞;The sintered sample contains three phases of Diamond, SiC and Si through XRD phase analysis; the sample is sintered densely, and the sample section (Figure 6) has no holes;
相同条件下,采用不同粒径的金刚石微粒作为增强体,随着金刚石颗粒增大复合材料热导率有一定提高。Under the same conditions, diamond particles with different particle sizes are used as reinforcements, and the thermal conductivity of the composite material increases with the increase of diamond particles.
实例5:Example 5:
表4Diamond-Si的配比Table 4 The ratio of Diamond-Si
将平均粒径为100μm左右的FDP型金刚石微粉与高纯硅粉及微量铝粉混合均匀,混合后的粉料在放电等离子体烧结炉模具中,烧结工艺和实例2相同。得到金刚石-硅复合材料,其密度为2.975g/cm3,导热率为264W/mK,热膨胀系数为1.559×10-6/K。The FDP type diamond powder with an average particle size of about 100 μm is mixed with high-purity silicon powder and a small amount of aluminum powder evenly, and the mixed powder is placed in a discharge plasma sintering furnace mold, and the sintering process is the same as in Example 2. The obtained diamond-silicon composite material has a density of 2.975 g/cm 3 , a thermal conductivity of 264 W/mK, and a thermal expansion coefficient of 1.559×10 -6 /K.
该烧结样品经XRD物相分析包含Diamond、SiC、Al和Si四种物相;样品烧结致密,样品的断口形貌SEM图(图1(c))及EDS能谱分析(图7),从图中可以看出加入的少量金属Al主要分布在硅与金刚石的界面处。The sintered sample contains four phases of Diamond, SiC, Al and Si through XRD phase analysis; the sample is densely sintered, and the SEM image of the fracture surface of the sample (Figure 1(c)) and EDS energy spectrum analysis (Figure 7), from It can be seen from the figure that a small amount of metal Al added is mainly distributed at the interface between silicon and diamond.
同实例2相比,相同工艺条件下,加入的少量金属Al主要分布在硅与金刚石的界面处,由于加入金属铝降低了硅的熔点,从而降低了烧结温度提高了烧结致密度,由于高温条件下铝全都溶化为液体,扩散系数比较大,铝全部扩散到硅与金刚石的界面处,但由于加入的金属铝以第二相杂质形式在与界面出,对热导率具有较大阻碍作用,因此加入金属铝后热导率相应降低。Compared with Example 2, under the same process conditions, the added small amount of metal Al is mainly distributed at the interface between silicon and diamond, because the addition of metal aluminum reduces the melting point of silicon, thereby reducing the sintering temperature and improving the sintering density. The lower aluminum is all melted into liquid, the diffusion coefficient is relatively large, and all the aluminum diffuses to the interface between silicon and diamond, but because the added metal aluminum exits the interface in the form of second-phase impurities, it has a great hindering effect on thermal conductivity. Therefore, the thermal conductivity decreases correspondingly after adding metallic aluminum.
实例6:Example 6:
表4Diamond-Si的配比Table 4 Ratio of Diamond-Si
将平均粒径为100μm左右的MBD8型金刚石微粉与高纯硅粉及微量钛粉混合均匀,混合后的粉料在放电等离子体烧结炉模具中,烧结工艺和实例2相同。得到金刚石-硅复合材料,其密度为2.99g/cm3,导热率为505W/mK,热膨胀系数为1.459×10-6/K。The MBD8 type diamond powder with an average particle size of about 100 μm is mixed evenly with high-purity silicon powder and a small amount of titanium powder, and the mixed powder is placed in a spark plasma sintering furnace mold, and the sintering process is the same as in Example 2. The obtained diamond-silicon composite material has a density of 2.99 g/cm 3 , a thermal conductivity of 505 W/mK, and a thermal expansion coefficient of 1.459×10 -6 /K.
该烧结样品经XRD物相分析包含Diamond、SiC、TiSi2和Si四种物相;样品烧结致密,样品的断口形貌SEM图(图8)及EDS能谱分析(见图9(a),(b)),其中,图9(a)中,小方框微区域内的成分含量为:Si,质量分数为87.17Wt%,原子分数92.05At%,Ti,质量分数为12.83Wt%,原子分数07.95At%。从图中可以看出加入的少量金属Ti主要弥散分布在复合材料中。The sintered sample contains four phases of Diamond, SiC, TiSi2 and Si through XRD phase analysis; the sample is densely sintered, and the fracture morphology SEM image of the sample (Figure 8) and EDS energy spectrum analysis (see Figure 9 (a), ( b)), wherein, in Fig. 9 (a), the composition content in the small box micro region is: Si, the mass fraction is 87.17Wt%, the atomic fraction is 92.05At%, Ti, the mass fraction is 12.83Wt%, the atomic fraction 07.95 At%. It can be seen from the figure that the added small amount of metal Ti is mainly dispersed in the composite material.
同实例3相比,相同工艺条件下,加入的少量金属Ti粉,由于加入金属钛降低了硅的熔点,从而降低了烧结温度提高了烧结致密度,因此加入金属钛后热导率相应提高。Compared with Example 3, under the same process conditions, a small amount of metal Ti powder added, because the addition of metal titanium reduces the melting point of silicon, thereby reducing the sintering temperature and improving the sintering density, so the thermal conductivity increases correspondingly after adding metal titanium.
实例7:Example 7:
表5Diamond-Si的配比Table 5 Ratio of Diamond-Si
本实例在真空度达到10Pa以下停止真空泵,充入氩气,当气体压力0.03MPa时为以升温速率150℃/min加热至1250℃,保温时间为3min,烧结压力为30MPa,然后随炉冷却并在1000℃以下卸掉压力。得到金刚石-硅复合材料,其密度为2.78g/cm3,导热率为235W/mK,热膨胀系数为2.079×10-6/K。In this example, when the vacuum degree reaches below 10Pa, stop the vacuum pump and fill it with argon. When the gas pressure is 0.03MPa, it is heated to 1250℃ at a heating rate of 150℃/min, the holding time is 3min, and the sintering pressure is 30MPa. Release the pressure below 1000°C. The obtained diamond-silicon composite material has a density of 2.78 g/cm 3 , a thermal conductivity of 235 W/mK, and a thermal expansion coefficient of 2.079×10 -6 /K.
实例8:Example 8:
表4Diamond-Si的配比Table 4 The ratio of Diamond-Si
本实例在真空度达到10Pa以下停止真空泵,充入氩气,当气体压力0.03MPa时为以升温速率150℃/min加热至1250℃,保温时间为3min,烧结压力为30MPa,然后随炉冷却并在1000℃以下卸掉压力。得到金刚石-硅复合材料,其密度为2.6g/cm3,导热率为206W/mK,热膨胀系数为2.153×10-6/K。In this example, when the vacuum degree reaches below 10Pa, stop the vacuum pump and fill it with argon. When the gas pressure is 0.03MPa, it is heated to 1250℃ at a heating rate of 150℃/min, the holding time is 3min, and the sintering pressure is 30MPa. Release the pressure below 1000°C. The obtained diamond-silicon composite material has a density of 2.6 g/cm 3 , a thermal conductivity of 206 W/mK, and a thermal expansion coefficient of 2.153×10 -6 /K.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100636253A CN102610531A (en) | 2012-03-12 | 2012-03-12 | Method for preparing diamond-silicon composite package material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100636253A CN102610531A (en) | 2012-03-12 | 2012-03-12 | Method for preparing diamond-silicon composite package material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102610531A true CN102610531A (en) | 2012-07-25 |
Family
ID=46527819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100636253A Pending CN102610531A (en) | 2012-03-12 | 2012-03-12 | Method for preparing diamond-silicon composite package material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102610531A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107200586A (en) * | 2017-07-04 | 2017-09-26 | 北京理工大学 | A kind of TiB2The fast preparation method of ceramic block |
CN111320476A (en) * | 2020-04-13 | 2020-06-23 | 北京科技大学广州新材料研究院 | Diamond-silicon carbide composite material, preparation method thereof and electronic equipment |
CN111730054A (en) * | 2020-06-30 | 2020-10-02 | 湖南大学 | A low-temperature synthesis method and application of silicon carbide-coated diamond composite powder |
CN112142440A (en) * | 2020-09-15 | 2020-12-29 | 江汉大学 | A kind of diamond film heat sink and preparation method thereof |
CN112625657A (en) * | 2019-09-24 | 2021-04-09 | 华为技术有限公司 | Packaging structure of heat conductor, heat conduction material and semiconductor device |
CN112723902A (en) * | 2020-12-28 | 2021-04-30 | 华侨大学 | Slurry direct-writing forming method of diamond tool |
CN114315354A (en) * | 2021-12-29 | 2022-04-12 | 武汉理工大学 | Two-step sintering method of diamond-B4C-SiC three-phase composite ceramics |
CN116393677A (en) * | 2023-04-07 | 2023-07-07 | 哈尔滨工业大学 | Method for preparing diamond/aluminum composite material by high-flux near-net forming |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040242399A1 (en) * | 2003-05-30 | 2004-12-02 | Jiang Qian | Diamond-silicon carbide composite and method for preparation thereof |
CN101728279A (en) * | 2009-11-27 | 2010-06-09 | 北京科技大学 | Preparation method of high-performance diamond reinforced Al-matrix electronic packaging composite material |
CN102176436A (en) * | 2011-03-17 | 2011-09-07 | 北京科技大学 | Process for preparing high-performance Diamond/SiC electronic packaging material |
-
2012
- 2012-03-12 CN CN2012100636253A patent/CN102610531A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040242399A1 (en) * | 2003-05-30 | 2004-12-02 | Jiang Qian | Diamond-silicon carbide composite and method for preparation thereof |
CN101728279A (en) * | 2009-11-27 | 2010-06-09 | 北京科技大学 | Preparation method of high-performance diamond reinforced Al-matrix electronic packaging composite material |
CN102176436A (en) * | 2011-03-17 | 2011-09-07 | 北京科技大学 | Process for preparing high-performance Diamond/SiC electronic packaging material |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107200586A (en) * | 2017-07-04 | 2017-09-26 | 北京理工大学 | A kind of TiB2The fast preparation method of ceramic block |
CN107200586B (en) * | 2017-07-04 | 2020-08-07 | 北京理工大学 | A kind of rapid preparation method of TiB2 ceramic block |
CN112625657A (en) * | 2019-09-24 | 2021-04-09 | 华为技术有限公司 | Packaging structure of heat conductor, heat conduction material and semiconductor device |
CN111320476A (en) * | 2020-04-13 | 2020-06-23 | 北京科技大学广州新材料研究院 | Diamond-silicon carbide composite material, preparation method thereof and electronic equipment |
CN111730054A (en) * | 2020-06-30 | 2020-10-02 | 湖南大学 | A low-temperature synthesis method and application of silicon carbide-coated diamond composite powder |
CN112142440A (en) * | 2020-09-15 | 2020-12-29 | 江汉大学 | A kind of diamond film heat sink and preparation method thereof |
CN112723902A (en) * | 2020-12-28 | 2021-04-30 | 华侨大学 | Slurry direct-writing forming method of diamond tool |
CN112723902B (en) * | 2020-12-28 | 2022-07-29 | 华侨大学 | A kind of slurry direct writing forming method of diamond tool |
CN114315354A (en) * | 2021-12-29 | 2022-04-12 | 武汉理工大学 | Two-step sintering method of diamond-B4C-SiC three-phase composite ceramics |
CN116393677A (en) * | 2023-04-07 | 2023-07-07 | 哈尔滨工业大学 | Method for preparing diamond/aluminum composite material by high-flux near-net forming |
CN116393677B (en) * | 2023-04-07 | 2023-11-03 | 哈尔滨工业大学 | Method for preparing diamond/aluminum composite material by high-flux near-net forming |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102610531A (en) | Method for preparing diamond-silicon composite package material | |
EP2213756B1 (en) | Metal-graphite composite material having high thermal conductivity and method for producing the same | |
Prieto et al. | Fabrication and properties of graphite flakes/metal composites for thermal management applications | |
CN102383014B (en) | Method for preparing diamond-copper composite material by virtue of metallization of high-temperature blending surface | |
CN108746637B (en) | Aluminum silicon/aluminum silicon carbide gradient composite material and preparation method thereof | |
CN104962771B (en) | Preparation method of directional porous SiC and diamond reinforced Al base composite material | |
CN103981382A (en) | Preparation method of high heat-conducting diamond/copper-based composite material | |
Yang et al. | Fabrication of diamond/SiC composites by Si-vapor vacuum reactive infiltration | |
JP2014198662A (en) | Dense composite material, its manufacturing method and component for semiconductor manufacturing apparatus | |
CN104630527B (en) | A kind of method preparing copper base diamond composite | |
CN112981164B (en) | Preparation method of diamond reinforced metal matrix composite material with high reliability and high thermal conductivity | |
CN108774699A (en) | Aluminium silicon/aluminium gold hard rock gradient composites and preparation method thereof | |
CN103343266A (en) | High-thermal-conductivity graphite-high silicon aluminium-based composite material and preparation process for same | |
CN112981205A (en) | Low-cost preparation method of high-thermal-conductivity diamond-reinforced metal-based composite material | |
JP2010064954A (en) | Sic/al-based composite material and method for producing the same | |
CN104775045B (en) | A kind of preparation method of the Cu based composites based on negative expansion granule | |
CN108677052B (en) | A kind of particle reinforced aluminum matrix composite material and preparation method thereof | |
KR102660216B1 (en) | Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device | |
CN111636006B (en) | Aluminum-silicon alloy graphite composite heat conduction material and preparation and application thereof | |
Fu et al. | Effects of diamond particle size on microstructure and properties of diamond/Al-12Si composites prepared by vacuum-assisted pressure infiltration | |
Xiao et al. | Realization of high thermal conductivity and tunable thermal expansion in the ScF3@ Cu core-shell composites | |
CN102709258A (en) | Diamond-silicon composite material | |
Wang et al. | Thermal conducting property of SiCp-reinforced copper matrix composites by hot pressing | |
Ciupiński et al. | Heat sink materials processing by pulse plasma sintering | |
CN105921721B (en) | A kind of method for preparing three-dimensional interpenetrating structure 3D SiC/Al composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120725 |