CN102610093A - Method for arranging special left-turning lane for separating type truck - Google Patents

Method for arranging special left-turning lane for separating type truck Download PDF

Info

Publication number
CN102610093A
CN102610093A CN2012101049054A CN201210104905A CN102610093A CN 102610093 A CN102610093 A CN 102610093A CN 2012101049054 A CN2012101049054 A CN 2012101049054A CN 201210104905 A CN201210104905 A CN 201210104905A CN 102610093 A CN102610093 A CN 102610093A
Authority
CN
China
Prior art keywords
msubsup
mrow
truck
msub
epsiv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101049054A
Other languages
Chinese (zh)
Inventor
王晓华
白子建
徐建平
陈永恒
王新歧
刘润有
朱自博
赵巍
王新慧
郑利
王海燕
邢锦
李明剑
张春生
周骊巍
段绪斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Municipal Engineering Design and Research Institute
Original Assignee
Tianjin Municipal Engineering Design and Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Municipal Engineering Design and Research Institute filed Critical Tianjin Municipal Engineering Design and Research Institute
Priority to CN2012101049054A priority Critical patent/CN102610093A/en
Publication of CN102610093A publication Critical patent/CN102610093A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The invention belongs to the technical field of intersection canalization design. In order to make up the blank of the research field of a special left-turning lane for a truck and provide a basis for arranging the special left-turning lane for the truck at intersection, the invention adopts the technical scheme that a method for arranging the special left-turning lane for a separating type truck comprises the following steps of: (1) judging if arranging the special left-turning lane for the truck according to the calculation for a critical condition for arranging the special left-turning lane for the truck; (2) analyzing a right arranging condition for the special left-turning lane for the truck; (3) analyzing an auxiliary condition for a separating type left-turning lane; and (4) performing intersection signal timing on the special left-turning lane for the separating type truck. The method provided by the invention is mainly applied to the intersection canalization design.

Description

Method for setting left-turn lane special for separate truck
Technical Field
The invention belongs to the technical field of channelized design of plane intersections, and relates to a method for setting a left-turn lane special for a signal control intersection for a separate truck, in particular to a method for setting a left-turn lane special for a separate truck.
Background
Aiming at a plane intersection of a city peripheral city-surrounding road and an urban road, the city-surrounding road is a main channel for a truck to enter a highway, a large number of trucks can turn left on the urban trunk road to enter the city-surrounding road, and the types of the trucks mainly comprise large trucks, container trucks, trailers and the like. Compared with a passenger car, the truck has the characteristics of large volume, low speed, poor maneuvering performance and the like. The interference among the passenger vehicles and the freight vehicles is intensified along with the increase of the proportion of the freight vehicles, and the left turn release efficiency of the intersection under the condition of mixed passenger and freight is inevitably greatly influenced. Meanwhile, since a truck needs a larger turning radius for left turning, the conventional innermost left-turning lane arrangement may cause an insufficient turning radius of the truck, thereby limiting the release efficiency.
In order to reduce the interference generated under the condition of mixed passenger and cargo, the interference of mixed passenger and cargo can be reduced by arranging a special left-turning lane for a separate truck, namely, the original two left-turning lanes are separated, and the special left-turning lane for the truck is arranged on the outer side of an intersection. From the current research situation, no research is carried out on the setting method of the special left-turn lane for the separated truck, and no related canalization design method exists in the actual engineering, so that the invention establishes the setting condition model of the special left-turn lane for the truck and the right condition analysis of the special left-turn lane for the truck through deep theoretical analysis and research, thereby obtaining the simple and easy-to-operate determination method of the setting of the special left-turn lane for the separated truck.
Disclosure of Invention
The invention aims to overcome the defects of the prior art, make up the blank of the research field of the left-turn lane of the special truck and provide a basis for the arrangement of the left-turn lane special for the truck at the plane intersection. In order to achieve the purpose, the invention adopts the technical scheme that the method for setting the left-turn lane special for the separate truck comprises the following steps:
(1) judging whether a special left-turn lane of the truck is set according to the calculation of the setting critical condition of the special left-turn lane of the truck:
when inequality is satisfied
Figure BDA0000152366850000011
When the left-turn lane is set, the left-turn lane is not set; wherein: comprehensive correction coefficient of mixed road
Figure BDA0000152366850000012
The calculation formula is as follows:
Figure BDA0000152366850000013
Figure BDA0000152366850000014
to correspond to the radius r of the truck1、r2、r3Ratio p of freight car1、p2、p3Truck correction factor under conditions;
comprehensive correction coefficient of truck laneThe calculation formula is as follows: <math> <mrow> <msup> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&epsiv;</mi> <mn>1</mn> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>2</mn> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>3</mn> <mrow> <msub> <mi>r</mi> <mn>3</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>3</mn> </msub> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <msub> <mi>&eta;</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
Figure BDA0000152366850000021
to correspond to the radius r of the truck1、r2、r3And the correction coefficient under the condition of 100% of the truck proportion;
(2) analyzing the right-hand condition of the left-hand lane special for the truck:
calculating a right-side critical condition, and judging whether the left-turn lane special for the truck is arranged on the right side: the critical condition for right arrangement of the left-turn lane special for the truck is that the distance between truck running curves of the left-turn lane special for the opposite truck is met
Figure BDA0000152366850000022
Wherein
Figure BDA0000152366850000023
Is the minimum safe distance; delta d is the minimum distance between the freight car running curves of the special left-turn lanes for the opposite freight cars; with the vehicle driving side clearance δ as the minimum safe distance, the calculation formula is as follows:
δ=0.7+0.02(v1+v2) (ii) a Wherein v is1、v2The running speed of the vehicle is the running speed of the vehicle;
assuming that the arrangement form of the opposite approach lane at the intersection has symmetry, i.e. v1=v2(ii) a The method is simplified as follows:
δ is 0.7+0.04 v; wherein v is the running average speed of the left-turn truck;
the relationship between the turning radius r of the intersection and the turning running vehicle speed v is as follows:
Figure BDA0000152366850000024
wherein,
Figure BDA0000152366850000025
is a vehicle type coefficient; alpha is the slope of the turning road; when the vehicle type is large-sized vehicleThe level of the intersection plane, namely alpha is 0; then there are: <math> <mrow> <msubsup> <mi>d</mi> <mi>s</mi> <mi>min</mi> </msubsup> <mo>=</mo> <mi>&delta;</mi> <mo>=</mo> <mn>0.7</mn> <mo>+</mo> <mn>0.04</mn> <msqrt> <mi>r</mi> <mo>&times;</mo> <mn>19.5</mn> </msqrt> <mo>;</mo> </mrow> </math>
(3) analyzing the separated left-turn lane auxiliary condition:
the left-turn lane of the right truck is not provided with a left-turn waiting area, and the original left-turn waiting area is still reserved for the special left-turn lane of the truck which is not arranged on the right;
(4) and (3) signal timing of an intersection of a left-turn lane special for the separated truck:
'Wei' and separated left-turn lane traffic conflict analysis
The following conditions are satisfied for the green light interval time between i-1 and i phases and between i and i +1 phases, where i phase is the local phase, i.e. the split left-turn phase:
I. green lamp interval time between i-1 and i phase
For the meeting condition of the green light interval time between the i-1 phase and the i phase, the conflict point of the vehicle with the inner left-turn lane and the opposite straight-going vehicle is set as a conflict point 71, the conflict point of the vehicle with the outer left-turn lane and the opposite straight-going vehicle is set as a conflict point 72, and the time of the last straight-going vehicle at the last stage of the i-1 phase green light reaching the conflict points 71 and 72 is respectively set as
Figure BDA0000152366850000028
The time of the first left-turn car reaching the conflict points 71 and 72 in the initial stage of i-phase green light is respectively
Figure BDA0000152366850000029
Only the following requirements are met:
Figure BDA00001523668500000210
wherein, tsFor the safety interval, in seconds,between green lamps in the i-1 th phase and the i-th phase under the split conditionInterval, unit of second;
II. Green lamp interval time between i and i +1 phase
For the meeting condition of the green light interval time between the i phase and the i +1 phase, the conflict point of the outside left-turn lane vehicle and the right-left straight-driving vehicle is conflict point 1, the conflict point of the inside left-turn lane vehicle and the right-left straight-driving vehicle is conflict point 2, the conflict point of the inside left-turn lane vehicle and the left-right straight-driving vehicle is conflict point 3, the conflict point of the outside left-turn lane vehicle and the left-right straight-driving vehicle is conflict point 4, and the time for the i phase green light terminal left-turn end vehicle to reach the conflict points 1, 2, 3 and 4 is respectively
Figure BDA00001523668500000212
Figure BDA00001523668500000213
The time when the initial straight-ahead first vehicle of the i +1 phase green light reaches the conflict point 1, 2, 3 and 4 is respectively
Figure BDA00001523668500000215
Only the following requirements are met: <math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>1</mn> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&GreaterEqual;</mo> <msubsup> <mi>t</mi> <mn>1</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>outer</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>3</mn> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mn>2</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&GreaterEqual;</mo> <msubsup> <mi>t</mi> <mn>3</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>inner</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math> then the green interval between the ith phase and the (i +1) th phase is
Figure BDA0000152366850000031
Wherein,the green light interval time alternative value of the conflict between the left-side direct driving and the left-turning vehicle,
Figure BDA0000152366850000033
selecting a value for the green light interval time of the right-side straight-driving vehicle and the left-turning vehicle;
② intersection signal timing
Specially adapted forTotal signal loss time L under passenger-cargo lane conditionstThe calculation formula is as follows:
Figure BDA0000152366850000034
wherein L issThe initial loss time of the green light is unit of second;
Figure BDA0000152366850000035
the green light interval time between the ith phase and the (i +1) th phase is unit of second; a is the duration of a yellow light and is unit second; i is the phase number;
optimum signal period C under special truck left-turn lane conditiont0The calculation formula is as follows:
Figure BDA0000152366850000036
wherein Y istIs the sum of the maximum flow ratios of the phases.
Correcting coefficients of various typical trucks respectively according to different turning radii and mixed-running proportion conditionsThe calculation method of (a) is as follows:
I. when in use
Figure BDA0000152366850000038
Figure BDA0000152366850000039
In time, the correction coefficients of the corresponding types of trucks can be obtained by inquiring the table 1, the table 2 and the table 3; table 1 shows the correction coefficient of the saturation flow rate of the large truck; table 2 shows the container vehicle saturation flow rate correction factor; table 3 is trailer saturation flow rate correction factor; wherein r iskThe turning radius of a k-type truck under the actual condition;
Figure BDA00001523668500000310
for the ith radius in the class k truck correction coefficient table,
Figure BDA00001523668500000311
pkthe proportion of k types of left-turning trucks to the total number of left-turning vehicles under the actual condition is called mixed-driving proportion for short;
Figure BDA00001523668500000312
for the jth mixing proportion in the correction coefficient table of the k-type truck,
Figure BDA00001523668500000313
TABLE 1 Large truck saturated flow Rate correction factor
5m 10m 15m 20m 25m 30m 35m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9375 0.9279 0.9279 0.9267 0.9220 0.9271 0.9417
20% 0.8586 0.8758 0.8667 0.8712 0.8550 0.8710 0.8787
30% 0.8304 0.8315 0.8072 0.8301 0.8227 0.8289 0.8374
40% 0.7634 0.7871 0.7676 0.7874 0.7734 0.7854 0.8028
50% 0.7247 0.7273 0.7252 0.7480 0.7366 0.7496 0.7615
60% 0.6905 0.7073 0.6910 0.7077 0.7005 0.7104 0.7236
40m 45m 50m 55m 60m 65m 70m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9348 0.9398 0.9307 0.9442 0.9397 0.9319 0.9324
20% 0.8871 0.8935 0.8841 0.8921 0.8883 0.8831 0.8827
30% 0.8441 0.8427 0.8443 0.8526 0.8548 0.8441 0.8440
40% 0.8108 0.8072 0.8007 0.8096 0.8088 0.8045 0.8157
50% 0.7658 0.7698 0.7603 0.7762 0.7658 0.7737 0.7707
60% 0.7345 0.7356 0.7247 0.7338 0.7336 0.7301 0.7383
TABLE 2 correction coefficient for saturated flow rate of container vehicle
5m 10m 15m 20m 25m 30m 35m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9107 0.9268 0.9008 0.9155 0.9184 0.9228 0.9194
20% 0.8408 0.8614 0.8365 0.8615 0.8463 0.8525 0.8664
30% 0.8006 0.7949 0.7864 0.8019 0.8015 0.8174 0.8113
40% 0.7336 0.7616 0.7337 0.7585 0.7515 0.7619 0.7737
50% 0.6920 0.7129 0.6953 0.7109 0.7059 0.7170 0.7327
60% 0.6458 0.6696 0.6470 0.6812 0.6684 0.6819 0.6924
40m 45m 50m 55m 60m 65m 70m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9250 0.9352 0.9242 0.9214 0.9309 0.9272 0.9304
20% 0.8669 0.8774 0.8668 0.8736 0.8775 0.8654 0.8783
30% 0.8258 0.8272 0.8200 0.8265 0.8408 0.8252 0.8354
40% 0.7782 0.7910 0.7793 0.7836 0.7916 0.7867 0.7884
50% 0.7423 0.7408 0.7423 0.7467 0.7532 0.7500 0.7414
60% 0.7012 0.7058 0.6973 0.7001 0.7117 0.6987 0.7090
TABLE 3 trailer saturation flow correction factor
5m 10m 15m 20m 25m 30m 35m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.8735 0.9002 0.8731 0.8905 0.8846 0.8912 0.8932
20% 0.8095 0.8071 0.7846 0.8052 0.7897 0.8125 0.8146
30% 0.7262 0.7550 0.7221 0.7391 0.7426 0.7423 0.7468
40% 0.6607 0.6851 0.6640 0.6916 0.6743 0.6798 0.6917
50% 0.6116 0.6208 0.6113 0.6353 0.6221 0.6341 0.6447
60% 0.5699 0.5854 0.5559 0.5918 0.5809 0.6004 0.5923
40m 45m 50m 55m 60m 65m 70m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9022 0.8977 0.8970 0.8948 0.9051 0.9056 0.9049
20% 0.8167 0.8253 0.8107 0.8253 0.8312 0.8234 0.8336
30% 0.7580 0.7630 0.7546 0.7557 0.7718 0.7698 0.7768
40% 0.7032 0.7097 0.7035 0.7056 0.7165 0.7104 0.7177
50% 0.6491 0.6531 0.6535 0.6554 0.6625 0.6620 0.6684
60% 0.6040 0.6093 0.6067 0.6094 0.6174 0.6200 0.6197
II. When in use
Figure BDA0000152366850000041
Figure BDA0000152366850000042
Then, the calculation formula is: <math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> wherein,
Figure BDA0000152366850000044
for class k trucks, i.e. relative coefficient of mixing ratio
Figure BDA0000152366850000045
Figure BDA0000152366850000046
Correction system for k-type truck under condition of ith radius and jth mixing proportionThe number of the first and second groups is,the correction coefficient of the k-type truck under the condition of the ith radius and the (j +1) th mixed row proportion is obtained;
III when
Figure BDA0000152366850000052
Figure BDA0000152366850000053
Then, the calculation formula is:
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <mo>|</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>|</mo> <mo>+</mo> <mi>min</mi> <mo>{</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>}</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> wherein,
Figure BDA0000152366850000055
as a coefficient of radius of class k trucks, i.e.
Figure BDA0000152366850000056
The correction coefficient of the k-type truck under the condition of the ith radius and the jth mixing proportion,the correction coefficient of the k-type truck under the conditions of i +1 radius and j mixed row proportion;
IV when
Figure BDA0000152366850000059
Figure BDA00001523668500000510
Then, the calculation formula is:
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>|</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>min</mi> <mo>{</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>}</mo> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
the minimum safe distance track curve interval calculation method comprises the following steps:
let AC and BD be an intersection, and the width of the B, D opening is l1A, C mouth width l2(ii) a Taking an intersection B entrance lane as an example, the left-turn lane 2 is a special left-turn lane for trucks, and the entrance radius of the left-turn lane is y1Exit radius x1Then average radius of left turn of truck
Figure BDA00001523668500000512
Because of the symmetry of the opposite approach path at the intersection, the average radius of the left turn of the opposite truck is also d1
From the geometric relationship, it is known that when d1When the sum delta d and the delta l are on the same straight line, the distance between the freight car running curves of the special left-turn lanes for the opposite freight cars is the minimum, wherein the delta l is the distance between the rectangular diagonals of the intersection; then the minimum distance between the freight car running curves of the special left-turn lanes of the opposite freight cars is calculated according to the formula:
the invention has the technical characteristics and effects that:
1. the invention provides a novel canalization form of a special left-turn lane for a separate truck, which not only eliminates the mutual interference between a left-turn passenger car and the left-turn truck, but also properly increases the turning radius of the left-turn truck, thereby improving the release efficiency of the vehicle, specifically obtains the special left-turn lane setting condition for the truck through theoretical analysis, obtains a typical type truck saturation flow rate correction coefficient by utilizing a simulation experiment, establishes a special left-turn lane setting critical condition model for the truck, and provides a calculation method of the special left-turn lane setting condition for the truck;
2. according to the method, the right setting condition of the left-turning lane special for the truck is given through deep analysis of the right dominant condition and the right critical condition;
3. the invention designs a left-turn lane mark special for a truck, and indicates that a left-turn waiting area is not set under the condition that the left-turn lane is arranged at the right, and the original left-turn waiting area is reserved under the condition that the left-turn lane is not arranged at the right;
4. the invention also provides an intersection signal timing method under the condition of adapting to the left-turn lane special for the separate truck, so that the control effect of the straight lane special for the truck is optimal.
Drawings
FIG. 1: the left-turn lane setting mode and the passing mode are available. 11. The 12 lanes are the left-turn lanes for mixed traffic of passengers and goods.
FIG. 2: the novel truck special left-turn lane setting form and the passing mode. The 21 lanes are special lanes for left turning of the passenger car, and the 22 lanes are special lanes for left turning of the truck.
FIG. 3: the saturated flow rate of the truck is along the curve of the turning radius.
FIG. 4: the right side of the left-turn lane is the geometric condition of the truck. And a left-turn lane passing mode special for the split truck.
FIG. 5: the optimal position schematic diagram is arranged at the right side of the left-turn lane. And a separated type special lane passing mode for the truck.
FIG. 6: the truck is a left-turn lane marker.
FIG. 7: and (4) analyzing conflict between the split type double left-turn i 1 phases and the i phases. The last direct vehicle at the last stage of the i 1 th phase green light conflicts with the left-turning first vehicle at the early stage of the i 1 th phase green light.
FIG. 8: and (4) analyzing conflict between the split type double left-turn i phases and the i +1 phases. The last left-turn vehicle at the last stage of the i-th phase green light conflicts with the first straight-ahead vehicle at the initial stage of the i + 1-th phase green light.
Detailed Description
Aiming at a plane intersection of a surrounding city road and an urban road at the periphery of a city, the surrounding city road is a main channel for a truck to enter a highway, and a large number of trucks can enter the surrounding city road by turning left on an urban trunk road. The operating efficiency of the intersection depends on the saturation flow rate of the vehicle release; compared with a passenger car, the truck has the characteristics of large volume, low speed, poor maneuvering performance and the like. The interference among the passenger vehicles and the freight vehicles is intensified along with the increase of the proportion of the freight vehicles, and the left turn release efficiency of the intersection under the condition of mixed passenger and freight is inevitably greatly influenced. The invention reduces the interference of mixed passenger and goods by arranging the special left-turn lane for the truck, increases the turning radius of the left-turn truck and ensures the high-efficiency left-turn release efficiency. On one hand, the method obtains the setting conditions of the truck special left-turn lane through theoretical analysis, obtains the saturation flow rate correction coefficient of the typical truck by utilizing a simulation experiment, establishes a critical condition setting model of the truck special left-turn lane, and provides a calculation method of the setting conditions of the truck special left-turn lane; on the other hand, the right setting condition of the left-turning lane special for the truck is given through analyzing the right dominant condition and the right critical condition; and finally, providing a signal timing scheme suitable for the left-turn lane of the separated special truck. The design can make up the blank in the design field of the left-turn lane special for the truck, and optimize the channelized design and signal timing of the special intersection.
The invention aims to overcome the defects of canalization design of the existing plane intersection and provides a design method for setting a left-turn lane special for a separate truck, and the scheme adopted by the invention is as follows:
the method for determining the left-turn lane setting special for the separated truck comprises the following steps:
(1) analyzing the setting form of the left-turn lane special for the separated truck:
the original left-turn lane passing mode is that passengers and cargoes pass through an intersection in a mixed mode, and the large-sized vehicle needs to turn left from the leftmost side of an entrance lane, as shown in figure 1; the novel left-turn lane passing mode is to separate a passenger car and a freight car and set a separated left-turn lane group to enable the passenger car and the freight car to be completely separated and pass through an intersection, and the left-turn radius of the freight car is met, as shown in fig. 2.
(2) And (3) analyzing the setting conditions of the left-turn lane special for the truck:
1. critical condition for left-turn lane of truck
The critical conditions are set for the left-turn lane special for the truck:
Figure BDA0000152366850000061
wherein,
Figure BDA0000152366850000062
the saturation flow rate of the mixed traffic lane under the conditions of radius r and mixed traffic proportion p is obtained;
Figure BDA0000152366850000071
the saturation flow rate of the special lane of the passenger car under the condition of radius r;
Figure BDA0000152366850000072
the saturation flow rate of the truck-dedicated lane under the condition of radius r;
the ratio of the number of the vehicles of each type of typical trucks to the total left-turn vehicle is p1、p2、p3(ii) a The proportion of the left-turn truck to the total number of the left-turn trucks is eta respectively1、η2、η3(ii) a The two proportional relations are
Figure BDA0000152366850000073
Where k is 1, 2, 3(1 stands for large truck, 2 stands for container truck, 3 stands for trailer, which isThe length of the body of the medium and large truck is about 10m, the length of the body of the container truck is about 14m, and the length of the body of the trailer truck is about 1 gm); p is the proportion of the total amount of left-turning trucks to the total amount of left-turning vehicles;
comprehensive correction coefficient of mixed roadThe calculation formula is as follows: <math> <mrow> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&epsiv;</mi> <mn>1</mn> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>2</mn> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>3</mn> <mrow> <msub> <mi>r</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>3</mn> </msub> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>p</mi> <mn>3</mn> </msub> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </math> wherein,
Figure BDA0000152366850000076
for trucks at radius r1(r2、r3) Ratio p of freight car1(p2、p3) A correction factor under the condition;
comprehensive correction coefficient of truck lane
Figure BDA0000152366850000077
The calculation formula is as follows: <math> <mrow> <msup> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&epsiv;</mi> <mn>1</mn> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>2</mn> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>3</mn> <mrow> <msub> <mi>r</mi> <mn>3</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>3</mn> </msub> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <msub> <mi>&eta;</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </math> wherein,
Figure BDA0000152366850000079
for trucks at radius r1(r2、r3) And the correction coefficient under the condition of 100% of the truck proportion;
and substituting each correction coefficient into:
Figure BDA00001523668500000710
due to the fact thatElimination
Figure BDA00001523668500000712
The simplification is as follows:
Figure BDA00001523668500000713
and when the inequality relation is met, setting a left-turning lane special for the truck, otherwise, not setting the left-turning lane special for the truck.
2. Typical type truck correction factor
Correction coefficients of different turning radii and different mixing proportions of various typical trucks are as follows:
TABLE 4 Large truck saturated flow Rate correction factor
5m 10m 15m 20m 25m 30m 35m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9375 0.9279 0.9279 0.9267 0.9220 0.9271 0.9417
20% 0.8586 0.8758 0.8667 0.8712 0.8550 0.8710 0.8787
30% 0.8304 0.8315 0.8072 0.8301 0.8227 0.8289 0.8374
40% 0.7634 0.7871 0.7676 0.7874 0.7734 0.7854 0.8028
50% 0.7247 0.7273 0.7252 0.7480 0.7366 0.7496 0.7615
60% 0.6905 0.7073 0.6910 0.7077 0.7005 0.7104 0.7236
40m 45m 50m 55m 60m 65m 70m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9348 0.9398 0.9307 0.9442 0.9397 0.9319 0.9324
20% 0.8871 0.8935 0.8841 0.8921 0.8883 0.8831 0.8827
30% 0.8441 0.8427 0.8443 0.8526 0.8548 0.8441 0.8440
40% 0.8108 0.8072 0.8007 0.8096 0.8088 0.8045 0.8157
50% 0.7658 0.7698 0.7603 0.7762 0.7658 0.7737 0.7707
60% 0.7345 0.7356 0.7247 0.7338 0.7336 0.7301 0.7383
TABLE 5 correction coefficient for saturated flow rate of container vehicle
5m 10m 15m 20m 25m 30m 35m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9107 0.9268 0.9008 0.9155 0.9184 0.9228 0.9194
20% 0.8408 0.8614 0.8365 0.8615 0.8463 0.8525 0.8664
30% 0.8006 0.7949 0.7864 0.8019 0.8015 0.8174 0.8113
40% 0.7336 0.7616 0.7337 0.7585 0.7515 0.7619 0.7737
50% 0.6920 0.7129 0.6953 0.7109 0.7059 0.7170 0.7327
60% 0.6458 0.6696 0.6470 0.6812 0.6684 0.6819 0.6924
40m 45m 50m 55m 60m 65m 70m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9250 0.9352 0.9242 0.9214 0.9309 0.9272 0.9304
20% 0.8669 0.8774 0.8668 0.8736 0.8775 0.8654 0.8783
30% 0.8258 0.8272 0.8200 0.8265 0.8408 0.8252 0.8354
40% 0.7782 0.7910 0.7793 0.7836 0.7916 0.7867 0.7884
50% 0.7423 0.7408 0.7423 0.7467 0.7532 0.7500 0.7414
60% 0.7012 0.7058 0.6973 0.7001 0.7117 0.6987 0.7090
TABLE 6 trailer saturation flow correction factor
5m 10m 15m 20m 25m 30m 35m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.8735 0.9002 0.8731 0.8905 0.8846 0.8912 0.8932
20% 0.8095 0.8071 0.7846 0.8052 0.7897 0.8125 0.8146
30% 0.7262 0.7550 0.7221 0.7391 0.7426 0.7423 0.7468
40% 0.6607 0.6851 0.6640 0.6916 0.6743 0.6798 0.6917
50% 0.6116 0.6208 0.6113 0.6353 0.6221 0.6341 0.6447
60% 0.5699 0.5854 0.5559 0.5918 0.5809 0.6004 0.5923
40m 45m 50m 55m 60m 65m 70m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9022 0.8977 0.8970 0.8948 0.9051 0.9056 0.9049
20% 0.8167 0.8253 0.8107 0.8253 0.8312 0.8234 0.8336
30% 0.7580 0.7630 0.7546 0.7557 0.7718 0.7698 0.7768
40% 0.7032 0.7097 0.7035 0.7056 0.7165 0.7104 0.7177
50% 0.6491 0.6531 0.6535 0.6554 0.6625 0.6620 0.6684
60% 0.6040 0.6093 0.6067 0.6094 0.6174 0.6200 0.6197
Saturated flow rate correction coefficient for various types of typical truck-dedicated lanes:
TABLE 7 correction coefficient of saturation flow rate of special lane for each type of typical truck
5m 10m 15m 20m 25m 30m 35m
Large truck 0.5476 0.5987 0.5829 0.6071 0.5776 0.6136 0.6037
Container vehicle 0.5134 0.5532 0.5308 0.5499 0.5640 0.5555 0.5850
Trailer vehicle 0.4479 0.4579 0.4155 0.4444 0.4559 0.4635 0.4513
40m 45m 50m 55m 60m 65m 70m
Large truck 0.6243 0.6278 0.6070 0.6149 0.6231 0.6347 0.6332
Container vehicle 0.5760 0.5839 0.5894 0.5973 0.5946 0.5810 0.5843
Trailer vehicle 0.4912 0.4892 0.4747 0.4710 0.4775 0.5070 0.5078
3. A typical truck correction coefficient calculation method comprises the following steps:
in practical situation, the correction coefficients are respectively corrected for various typical trucks according to different turning radii and mixed-line proportion conditions
Figure BDA0000152366850000091
The calculation method of (a) is as follows:
I. when in use
Figure BDA0000152366850000092
Figure BDA0000152366850000093
While, get throughThe correction coefficients of the trucks of the corresponding types can be obtained by inquiring the tables 1, 2 and 3; (Table 1 shows the correction coefficient of the saturation flow rate of a large truck; Table 2 shows the correction coefficient of the saturation flow rate of a container truck; and Table 3 shows the correction coefficient of the saturation flow rate of a trailer.) wherein rkThe turning radius of a k-type truck under the actual condition;for the ith radius in the class k truck correction coefficient table,
Figure BDA0000152366850000095
pkthe proportion of k types of left-turning trucks to the total number of left-turning vehicles under actual conditions (hereinafter referred to as mixed-driving proportion);for the jth mixing proportion in the correction coefficient table of the k-type truck,
Figure BDA0000152366850000097
II. When in use
Figure BDA0000152366850000098
Figure BDA0000152366850000099
Then, the calculation formula is: <math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> wherein,
Figure BDA00001523668500000911
for class k trucks, i.e. relative coefficient of mixing ratio
Figure BDA00001523668500000912
Figure BDA00001523668500000913
The correction coefficient of the k-type truck under the condition of the ith radius and the jth (j +1) mixing proportion is obtained;
III when
Figure BDA00001523668500000915
Then, the calculation formula is:
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <mo>|</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>|</mo> <mo>+</mo> <mi>min</mi> <mo>{</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>}</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> wherein,as a coefficient of radius of class k trucks, i.e.
Figure BDA00001523668500000919
The correction coefficient of the k-type truck under the condition of the ith (i +1) radius and the jth mixing proportion is obtained;
IV when
Figure BDA00001523668500000920
Figure BDA00001523668500000921
Then, the calculation formula is:
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>|</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>min</mi> <mo>{</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>}</mo> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math> the parameter meanings are the same as above;
the correction coefficients of various typical trucks under actual conditions can be calculated through the calculation formulas, namely
Figure BDA00001523668500000923
Wherein
Figure BDA00001523668500000925
Is radius r1(r2、r3) Mixed running proportion p of truck1(p2、p3) A correction factor under the condition;
and judging whether a truck special left-turn lane is set or not according to the calculated correction coefficients of various trucks and the calculation of the setting critical condition of the truck special left-turn lane.
(3) Analyzing the right-hand condition of the left-turn lane special for the truck:
1. right-hand dominant condition analysis
I meeting vehicle performance requirements
Because the performances of the trucks are smaller, the buses have obvious difference, particularly the trucks need larger radius when turning, and the minimum turning radius of the common articulated vehicle is 10.5-12.5 m, the arrangement of an intersection entrance lane is changed, and a left-turning lane special for the trucks is arranged at the right, so that the turning radius can be increased to meet the turning requirement of the trucks, and the stability and the smoothness of the left-turning of the trucks passing through the intersection are further ensured;
II left turn saturation flow rate increase
The VISSIM simulation is utilized to obtain the change curve of the saturation flow rate of various typical large trucks under different turning radiuses, the left-turning saturation flow rate of various typical trucks is increased along with the increase of the turning radiuses, and the advantage that the truck special left-turning lane is arranged at the right is explained. As shown in fig. 3.
2. Right side critical condition analysis
It is assumed that the intersection has symmetry with respect to the entrance lane arrangement, as shown in fig. 4. The critical condition for right arrangement of the left-turn lane special for the truck is that the distance between truck running curves of the left-turn lane special for the opposite truck is met
Figure BDA0000152366850000101
Wherein
Figure BDA0000152366850000102
Is the minimum safe distance.
I, a minimum safe distance calculation method:
with the vehicle driving side clearance δ as the minimum safe distance, the calculation formula is as follows: δ 0.7+0.02 (v)1+v2) (ii) a Wherein v is1(v2) The vehicle speed for the present (opposite) vehicle;
assuming that the arrangement form of the opposite approach lane at the intersection has symmetry, i.e. v1=v2(ii) a The method is simplified as follows: δ is 0.7+0.04 v; wherein v is the running average speed of the left-turn truck;
the relationship between the turning radius r of the intersection and the turning running vehicle speed v is as follows:wherein,
Figure BDA0000152366850000104
is a vehicle type coefficient; alpha is the slope of the turning road; when the vehicle type is large-sized vehicle
Figure BDA0000152366850000105
The level of the intersection plane, namely alpha is 0; then there are: <math> <mrow> <msubsup> <mi>d</mi> <mi>s</mi> <mi>min</mi> </msubsup> <mo>=</mo> <mi>&delta;</mi> <mo>=</mo> <mn>0.7</mn> <mo>+</mo> <mn>0.04</mn> <msqrt> <mi>r</mi> <mo>&times;</mo> <mn>19.5</mn> </msqrt> <mo>.</mo> </mrow> </math>
II, a track curve interval calculation method:
the blue rectangle in FIG. 4 is the boundary of the intersection, and the width of the B, D opening is l1A, C mouth width l2(ii) a Taking the intersection B entrance lane as an example, the left-turn lane 2 is a special truckUsing a left-turn lane with an entry radius of y1Exit radius x1Then average radius of left turn of truck
Figure BDA0000152366850000107
Due to the symmetry of the intersection approach lane, it is clear that the average radius of the left turn of the oncoming truck is also d1
From the geometric relationship, it is known that when d1When the sum delta d and the delta l are on the same straight line, the distance between the freight car running curves of the special left-turn lanes for the opposite freight cars is the minimum, wherein the delta l is the distance between the rectangular diagonals of the intersection; then the minimum distance between the freight car running curves of the special left-turn lanes of the opposite freight cars is calculated according to the formula:
Figure BDA0000152366850000108
III critical condition determination:
the right-arranged discriminant formula of the left-turn lane special for the truck is as follows:
Figure BDA0000152366850000111
IV analysis of other constraints:
firstly, as shown in FIG. 5, the red indicating arrow at the intersection B entrance lane represents the running curve of the truck left-turn lane vehicle when x is1=y1When it is determined that the left-turn lane is set to the optimum position, where y1Is the inlet radius, x1Is the exit radius; although the saturated flow rate of the left-turn lane special for the truck can be increased by continuously placing the truck at the right side, the improvement effect is not obvious, and the running time of the truck in the intersection is increased by placing the truck at the right side in a transition manner, but the delay is increased, so that the truck can not be placed at the right side blindly;
secondly, the right position of the left-turn lane is a novel entrance way arrangement mode, drivers in China generally know that the left-turn lane is on the left side of the entrance way of the intersection, and obviously the left-turn lane is contrary to the left-turn driving habit of the drivers, so that the reasonable right position of the left-turn lane needs to be deeply researched and analyzed.
(4) Split left turn lane assist condition analysis
1. Left-turn lane mark special for truck
The invention relates to a left-turn lane special for a truck, which is a novel intersection entrance lane arrangement mode, and a mark suitable for the left-turn lane special for the truck is redesigned, as shown in fig. 6.
2. Left-hand bend waiting-to-turn area setting
For the right truck special left-turn lane, a left-turn waiting area is not arranged, the invention mainly considers that the interference of the right truck left-turn lane vehicle on the same-direction straight driving is avoided, in addition, the invention also considers that a certain safety distance is kept between the right truck left-turn lane vehicle and the opposite right truck left-turn lane vehicle, so the right truck left-turn lane is not provided with the left-turn waiting area; but the original left-turning waiting area is still reserved for the left-turning lane special for the truck which is not arranged on the right.
(5) Intersection signal timing method of left-turn lane special for separate truck
1. Split left turn lane traffic conflict analysis
Fig. 7 and 8 are diagrams illustrating a collision analysis between a left-turning vehicle in the phase i (split left-turn phase) and an adjacent phase under the split-type (split) dedicated dual left-turn lane setting condition, according to the legend, the following conditions are satisfied for the green light interval time between the phases i-1 and i and between the phases i and i + 1:
I. green lamp interval time between i-1 and i phase
For the conditions satisfied by the interval between the i-1 phase and the i-phase, taking FIG. 7 as an example, the end of the i-1 phase green light is the time when the straight end car reaches the conflict points 71, 72
Figure BDA0000152366850000112
The time of the first left-turn car reaching the conflict points 71 and 72 in the initial stage of i-phase green light is respectively
Figure BDA0000152366850000113
Only the following requirements are met:wherein, tsFor a safe interval time (typically taken to be 2s),the green lamp interval(s) between the i-1 th phase and the i-th phase under the split condition.
II. Green lamp interval time between i and i +1 phase
For the condition that the interval time between the i phase and the i +1 phase is satisfied, taking fig. 8 as an example, the time when the last left-turn car of the i phase green light terminal reaches the conflict point 1, 2, 3, 4 is respectively
Figure BDA0000152366850000116
The time when the initial straight-ahead first vehicle of the i +1 phase green light reaches the conflict point 1, 2, 3 and 4 is respectivelyOnly the following requirements are met: <math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>1</mn> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&GreaterEqual;</mo> <msubsup> <mi>t</mi> <mn>1</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>outer</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>3</mn> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mn>2</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&GreaterEqual;</mo> <msubsup> <mi>t</mi> <mn>3</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>inner</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math> then the green interval between the ith phase and the (i +1) th phase is
Figure BDA0000152366850000122
Wherein,
Figure BDA0000152366850000123
the green light interval time alternative value of the conflict between the left-side direct driving and the left-turning vehicle,
Figure BDA0000152366850000124
and selecting the green light interval time alternative value of the right-side direct driving vehicle and the left-turning vehicle.
2. Intersection signal timing
Signal total loss under special passenger and cargo lane conditionTime of loss LtThe calculation formula is as follows:
Figure BDA0000152366850000125
wherein L issGreen light initial loss time(s);
Figure BDA0000152366850000126
the green lamp interval time(s) between the ith phase and the (i +1) th phase; a is the duration(s) of a yellow light, and is generally taken as 3 s; i is the number of phases.
Optimum signal period C under special truck left-turn lane conditiont0The calculation formula is as follows:
Figure BDA0000152366850000127
wherein Y istIs the sum of the maximum flow ratios of the phases.
The present invention will be described in further detail with reference to the following embodiments and the accompanying drawings.
Special left-turn lane arrangement form for one-and-separate truck
1. Original road passing mode
The original left-turn lane traffic mode is that passengers and cargoes pass through the intersection in a mixed mode, and the large-sized vehicle needs to turn left from the leftmost side of the entrance lane, as shown in fig. 1.
2. Novel road passing mode
The novel left-turn lane passing mode is to separate a passenger car and a freight car and set a separated left-turn lane group to enable the passenger car and the freight car to be completely separated and pass through an intersection, and the left-turn radius of the freight car is met, as shown in fig. 2.
Setting condition analysis of left-turn lane special for separated truck
1. Analysis of left-turn lane setting conditions for trucks
1.1 set up critical conditions for left-turn lane special for truck
The invention considers that whether the truck-dedicated left-turn lane is set or not is determined by comparing saturated release flow rates before and after the truck-dedicated left-turn lane is set, and the critical condition of the truck-dedicated left-turn lane is set as shown in the formula (1):
<math> <mrow> <mn>2</mn> <msubsup> <mi>S</mi> <mi>mix</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>p</mi> </mrow> </msubsup> <mo>&le;</mo> <msubsup> <mi>S</mi> <mi>car</mi> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>S</mi> <mi>truck</mi> <mi>r</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
Figure BDA0000152366850000129
the saturation flow rate of the mixed traffic lane under the conditions of radius r and mixed traffic proportion p is obtained;
Figure BDA00001523668500001210
the saturation flow rate of the special lane of the passenger car under the condition of radius r;
Figure BDA00001523668500001211
the saturation flow rate of the truck-dedicated lane under the condition of radius r;
based on the above analysis, the present invention considers that the saturation flow rate of a truck is calculated and expressed by using the correction coefficient of the saturation flow rate of various typical trucks, i.e., a large truck (the length of the truck body is about 10 m), a container truck (the length of the truck body is about 14 m), and a trailer truck (the length of the truck body is about 18 m), relative to the saturation flow rate of a passenger car. In practical situations, the types of trucks are not single types, so that a comprehensive description of the types of typical trucks is needed, which is described in detail below:
firstly, the ratio of the number of the vehicles of each type of typical truck to the total left-turn vehicle is respectivelyIs p1、p2、p3(ii) a The proportion of the left-turn truck to the total number of the left-turn trucks is eta respectively1、η2、η3(ii) a The two proportional relations are
Figure BDA00001523668500001212
Where k is 1, 2, 3(1 stands for large truck, 2 stands for container truck, 3 stands for trailer); and p is the proportion of the total amount of the left-turning trucks to the total amount of the left-turning vehicles.
Comprehensive correction coefficient of mixed road
Figure BDA0000152366850000131
The calculation formula is as follows:
<math> <mrow> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&epsiv;</mi> <mn>1</mn> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>2</mn> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>3</mn> <mrow> <msub> <mi>r</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>3</mn> </msub> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>p</mi> <mn>3</mn> </msub> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,for trucks at radius r1(r2、r3) Ratio p of freight car1(p2、p3) A correction factor under the condition;
comprehensive correction coefficient of special lane for truck
Figure BDA0000152366850000134
The calculation formula is as follows:
<math> <mrow> <msup> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&epsiv;</mi> <mn>1</mn> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>2</mn> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>3</mn> <mrow> <msub> <mi>r</mi> <mn>3</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>3</mn> </msub> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <msub> <mi>&eta;</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
Figure BDA0000152366850000136
for trucks at radius r1(r2、r3) And the correction coefficient under the condition of 100% of the truck proportion;
the correction coefficients are substituted into formula (1) to obtain:
<math> <mrow> <mn>2</mn> <msubsup> <mi>S</mi> <mi>car</mi> <mi>r</mi> </msubsup> <mo>&times;</mo> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>&le;</mo> <msubsup> <mi>S</mi> <mi>car</mi> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>S</mi> <mi>car</mi> <mi>r</mi> </msubsup> <mo>&times;</mo> <msup> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
due to the fact that
Figure BDA0000152366850000138
Elimination
Figure BDA0000152366850000139
(4) The formula is simplified as follows:
<math> <mrow> <mn>2</mn> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>&le;</mo> <mn>1</mn> <mo>+</mo> <msup> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
therefore, the truck-dedicated left-turn lane is set when the inequality relation of the above equations is satisfied, and the truck-dedicated left-turn lane is not set otherwise.
1.2 typical type truck correction factor
The invention utilizes VISSIM simulation to obtain the saturated flow rate correction coefficients of various typical trucks under the conditions of different turning radii (5-70 m) and mixed traffic proportions (0-60%), and the saturated flow rate correction coefficients of special truck left-turn lanes (the mixed traffic proportions of the trucks are 100%) under the conditions of various typical trucks.
The correction coefficients of different turning radii and different mixing proportions of various typical trucks are shown in tables 1, 2 and 3; wherein, table 1 is the large truck saturation flow rate correction coefficient; table 2 shows the container vehicle saturation flow rate correction factor; table 3 shows trailer saturation flow rate correction factors.
TABLE 8 Large truck saturated flow Rate correction factor
5m 10m 15m 20m 25m 30m 35m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9375 0.9279 0.9279 0.9267 0.9220 0.9271 0.9417
20% 0.8586 0.8758 0.8667 0.8712 0.8550 0.8710 0.8787
30% 0.8304 0.8315 0.8072 0.8301 0.8227 0.8289 0.8374
40% 0.7634 0.7871 0.7676 0.7874 0.7734 0.7854 0.8028
50% 0.7247 0.7273 0.7252 0.7480 0.7366 0.7496 0.7615
60% 0.6905 0.7073 0.6910 0.7077 0.7005 0.7104 0.7236
40m 45m 50m 55m 60m 65m 70m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9348 0.9398 0.9307 0.9442 0.9397 0.9319 0.9324
20% 0.8871 0.8935 0.8841 0.8921 0.8883 0.8831 0.8827
30% 0.8441 0.8427 0.8443 0.8526 0.8548 0.8441 0.8440
40% 0.8108 0.8072 0.8007 0.8096 0.8088 0.8045 0.8157
50% 0.7658 0.7698 0.7603 0.7762 0.7658 0.7737 0.7707
60% 0.7345 0.7356 0.7247 0.7338 0.7336 0.7301 0.7383
TABLE 9 correction coefficient for saturated flow rate of container vehicle
5m 10m 15m 20m 25m 30m 35m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9107 0.9268 0.9008 0.9155 0.9184 0.9228 0.9194
20% 0.8408 0.8614 0.8365 0.8615 0.8463 0.8525 0.8664
30% 0.8006 0.7949 0.7864 0.8019 0.8015 0.8174 0.8113
40% 0.7336 0.7616 0.7337 0.7585 0.7515 0.7619 0.7737
50% 0.6920 0.7129 0.6953 0.7109 0.7059 0.7170 0.7327
60% 0.6458 0.6696 0.6470 0.6812 0.6684 0.6819 0.6924
40m 45m 50m 55m 60m 65m 70m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9250 0.9352 0.9242 0.9214 0.9309 0.9272 0.9304
20% 0.8669 0.8774 0.8668 0.8736 0.8775 0.8654 0.8783
30% 0.8258 0.8272 0.8200 0.8265 0.8408 0.8252 0.8354
40% 0.7782 0.7910 0.7793 0.7836 0.7916 0.7867 0.7884
50% 0.7423 0.7408 0.7423 0.7467 0.7532 0.7500 0.7414
60% 0.7012 0.7058 0.6973 0.7001 0.7117 0.6987 0.7090
TABLE 10 trailer saturation flow correction factor
5m 10m 15m 20m 25m 30m 35m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.8735 0.9002 0.8731 0.8905 0.8846 0.8912 0.8932
20% 0.8095 0.8071 0.7846 0.8052 0.7897 0.8125 0.8146
30% 0.7262 0.7550 0.7221 0.7391 0.7426 0.7423 0.7468
40% 0.6607 0.6851 0.6640 0.6916 0.6743 0.6798 0.6917
50% 0.6116 0.6208 0.6113 0.6353 0.6221 0.6341 0.6447
60% 0.5699 0.5854 0.5559 0.5918 0.5809 0.6004 0.5923
40m 45m 50m 55m 60m 65m 70m
0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9022 0.8977 0.8970 0.8948 0.9051 0.9056 0.9049
20% 0.8167 0.8253 0.8107 0.8253 0.8312 0.8234 0.8336
30% 0.7580 0.7630 0.7546 0.7557 0.7718 0.7698 0.7768
40% 0.7032 0.7097 0.7035 0.7056 0.7165 0.7104 0.7177
50% 0.6491 0.6531 0.6535 0.6554 0.6625 0.6620 0.6684
60% 0.6040 0.6093 0.6067 0.6094 0.6174 0.6200 0.6197
The saturated flow rate correction coefficients for various typical truck-dedicated lanes are shown in table 4:
TABLE 11 correction coefficient of saturation flow rate of each type of typical truck dedicated lane
5m 10m 15m 20m 25m 30m 35m
Large truck 0.5476 0.5987 0.5829 0.6071 0.5776 0.6136 0.6037
Container vehicle 0.5134 0.5532 0.5308 0.5499 0.5640 0.5555 0.5850
Trailer vehicle 0.4479 0.4579 0.4155 0.4444 0.4559 0.4635 0.4513
40m 45m 50m 55m 60m 65m 70m
Large truck 0.6243 0.6278 0.6070 0.6149 0.6231 0.6347 0.6332
Container vehicle 0.5760 0.5839 0.5894 0.5973 0.5946 0.5810 0.5843
Trailer vehicle 0.4912 0.4892 0.4747 0.4710 0.4775 0.5070 0.5078
1.3 typical truck correction coefficient calculation method
In practice, the needleCorrecting coefficients for various typical trucks under different turning radius and mixed-running proportion conditions
Figure BDA0000152366850000151
The calculation method of (a) is as follows:
I. when in use
Figure BDA0000152366850000153
In time, the correction coefficients of the corresponding types of trucks can be obtained by inquiring the table 1, the table 2 and the table 3; (Table 1 shows a large truck saturation flow rate correction factor; Table 2 shows a container vehicle saturation flow rate correction factor; Table 3 shows a trailer saturation flow rate correction factor.) for example, in a large truck saturation flow rate correction factor,
Figure BDA0000152366850000154
turning radius of specific truck type of truck r k i + 1 = r k i + 5 = r k 1 + 5 = 10 m , p k 1 = p k = 0 , p k j + 1 = p k j + 10 % = p k 1 + 10 % = 10 % , The look-up table for the saturation flow rate correction factor of a large truck gives 0.9279, and the rest can be analogized accordingly.
Wherein r iskThe turning radius of a k-type truck under the actual condition;for the ith radius in the class k truck correction coefficient table,
Figure BDA0000152366850000159
pkthe proportion of k types of left-turning trucks to the total number of left-turning vehicles under actual conditions (hereinafter referred to as mixed-driving proportion);
Figure BDA00001523668500001510
for the jth mixing proportion in the correction coefficient table of the k-type truck,
Figure BDA00001523668500001511
II. When in use
Figure BDA00001523668500001512
Figure BDA00001523668500001513
Then, the calculation is performed according to equation (6):
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
Figure BDA00001523668500001515
for class k trucks, i.e. relative coefficient of mixing ratio
Figure BDA00001523668500001516
Figure BDA00001523668500001517
Correction coefficient of k-type truck under the condition of ith radius and jth (j +1) mixing proportion;
III when
Figure BDA00001523668500001518
Figure BDA00001523668500001519
Then, it is calculated according to equation (7):
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <mo>|</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>|</mo> <mo>+</mo> <mi>min</mi> <mo>{</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>}</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
Figure BDA00001523668500001521
as a coefficient of radius of class k trucks, i.e.
Figure BDA00001523668500001522
Figure BDA00001523668500001523
The correction coefficient of the k-type truck under the condition of the ith (i +1) radius and the jth mixing proportion is obtained;
IV when
Figure BDA0000152366850000161
Figure BDA0000152366850000162
Then, the calculation is performed according to equation (8):
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>|</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>min</mi> <mo>{</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>}</mo> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
the correction coefficients of various typical trucks under actual conditions can be calculated through the calculation formulas (6) to (8), namely
Figure BDA0000152366850000164
Wherein
Figure BDA0000152366850000165
Is radius r1(r2、r3) Mixed running proportion p of truck1(p2、p3) A correction factor under the condition;
and (4) according to the calculated correction coefficients of various trucks, calculating and judging whether a truck-dedicated left-turn lane is set according to the formulas (1) to (5).
2 analysis of right-hand condition of left-turn lane special for truck
2.1 Right-positioned dominance Condition analysis
I. Meet vehicle performance requirements
Because the performances of the trucks are smaller, the trucks have obvious difference, particularly the trucks need larger radius when turning, the minimum turning radius of the common articulated vehicle is 10.5-12.5 m, and the special left-turning lane for the trucks is arranged at the right by changing the arrangement of the inlet lane of the intersection, so that the turning radius can be improved to meet the turning requirement of the trucks, and the stability and the smoothness of the left-turning passing intersection of the trucks are further ensured.
II. Left turn saturation flow rate increase
VISSIM simulation is utilized to obtain the change curve of the saturation flow rate of various typical large trucks under different turning radiuses, as shown in figure 3:
as can be seen from FIG. 3, the left turn saturation flow rates of various typical trucks increase with increasing turning radius, illustrating the advantage of right-hand placement of the truck-specific left-turn lanes.
2.2 Right Critical Condition analysis
It is assumed that the intersection has symmetry with respect to the entrance lane arrangement, as shown in fig. 4. The critical condition for right arrangement of the left-turn lane special for the truck is that the distance between truck running curves of the left-turn lane special for the opposite truck is met
Figure BDA0000152366850000166
Wherein
Figure BDA0000152366850000167
Is the minimum safe distance.
I. The minimum safe distance calculation method comprises the following steps:
with the vehicle driving side clearance δ as the minimum safe distance, the calculation formula is as follows:
δ=0.7+0.02(v1+v2)(9)
wherein v is1(v2) The vehicle speed for the present (opposite) vehicle;
assuming that the arrangement form of the opposite approach lane at the intersection has symmetry, the speeds of the outside left-turning vehicles are consistent, namely v1=v2(ii) a The original formula is simplified as follows:
δ=0.7+0.04v (10)
wherein v is the running average speed of the left-turn truck;
the intersection turning radius r and the turning running vehicle speed v are related to the formula (11):
Figure BDA0000152366850000171
wherein,
Figure BDA0000152366850000172
is a vehicle type coefficient; alpha is the slope of the turning road;
when the vehicle type is large-sized vehicle
Figure BDA0000152366850000173
The level of the intersection plane, namely alpha is 0; the simultaneous equations (10) and (11) are then reduced to:
<math> <mrow> <msubsup> <mi>d</mi> <mi>s</mi> <mi>min</mi> </msubsup> <mo>=</mo> <mi>&delta;</mi> <mo>=</mo> <mn>0.7</mn> <mo>+</mo> <mn>0.04</mn> <msqrt> <mi>r</mi> <mo>&times;</mo> <mn>19.5</mn> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
II. The track curve spacing calculation method comprises the following steps:
the blue rectangle in FIG. 4 is the boundary of the intersection, and the width of the B, D opening is l1A, C mouth width l2(ii) a Taking an intersection B entrance lane as an example, the left-turn lane 2 is a special left-turn lane for trucks, and the entrance radius of the left-turn lane is y1Exit radius x1Then average radius of left turn of truck
Figure BDA0000152366850000175
Due to the symmetry of the intersection approach lane, it is clear that the average radius of the left turn of the oncoming truck is also d1
From the geometric relationship, it is known that when d1When the sum delta d and the delta l are on the same straight line, the distance between the freight car running curves of the special left-turn lanes for the opposite freight cars is the minimum, wherein the delta l is the opposite angle of the rectangle of the intersectionA line distance; then the minimum distance between the freight car running curves of the special left-turn lanes of the opposite freight cars is calculated according to the formula:
<math> <mrow> <mi>&Delta;d</mi> <mo>=</mo> <msqrt> <msup> <msub> <mi>l</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>l</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </msqrt> <mo>-</mo> <mn>2</mn> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
III, determining critical conditions:
according to the method for calculating the distance between the freight car running curves of the special left-turn lane for the freight car and the method for calculating the minimum safe distance between the cars running in opposite directions based on the geometric dimension of the intersection, the feasibility of right arrangement of the special left-turn lane for the freight car can be judged, and the formula is shown as follows:
Figure BDA0000152366850000177
IV, analysis of other constraints:
firstly, as shown in FIG. 5, the red indicating arrow at the intersection B entrance lane represents the running curve of the truck left-turn lane vehicle when x is1=y1When it is determined that the left-turn lane is set to the optimum position, where y1Is the inlet radius, x1Is the exit radius; although the saturation flow rate of the left-turn lane special for the truck can be increased by continuously placing the truck at the right position, the improvement effect is remarkable, and the transition right position can increase the running time of the truck in the intersection and cause the increase of delay, so that the blind right position cannot be suggested;
Secondly, the right position of the left-turn lane is a novel entrance way arrangement mode, drivers in China generally know that the left-turn lane is on the left side of the entrance way of the intersection, and obviously the left-turn lane is contrary to the left-turn driving habit of the drivers, so that the reasonable right position of the left-turn lane needs to be deeply researched and analyzed.
3. Split left turn lane assist condition analysis
3.1 left-turn lane marker special for truck
The invention relates to a left-turn lane special for a truck, which is a novel intersection entrance lane arrangement mode, and a mark suitable for the left-turn lane special for the truck is redesigned, as shown in fig. 6.
3.2 left-hand bend waiting-to-turn zone setting
For the right truck special left-turn lane, a left-turn waiting area is not arranged, the invention mainly considers that the interference of the right truck left-turn lane vehicle on the same-direction straight driving is avoided, in addition, the invention also considers that a certain safety distance is kept between the right truck left-turn lane vehicle and the opposite right truck left-turn lane vehicle, so the right truck left-turn lane is not provided with the left-turn waiting area; but the original left-turning waiting area is still reserved for the left-turning lane special for the truck which is not arranged on the right.
Intersection signal timing method of left-turn lane special for separated truck
1. Split left turn lane traffic conflict analysis
Fig. 7 and 8 are diagrams illustrating a collision analysis between a left-turning vehicle in the phase i (split left-turn phase) and an adjacent phase under the split-type (split) dedicated dual left-turn lane setting condition, according to the legend, the following conditions are satisfied for the green light interval time between the phases i-1 and i and between the phases i and i + 1:
I. green lamp interval time between i-1 and i phase
For the satisfaction of the green lamp interval between i-1 and i phase, take FIG. 7 as an example, i-The time when the last straight car of the 1 phase green light reaches the conflict point 71 and 72 is respectively
Figure BDA0000152366850000181
The time of the first left-turn car reaching the conflict points 71 and 72 in the initial stage of i-phase green light is respectively
Figure BDA0000152366850000182
Is obviously present
Figure BDA0000152366850000183
Figure BDA0000152366850000184
Therefore, only the following requirements are met:
<math> <mrow> <msubsup> <mi>t</mi> <mn>1</mn> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> <mo>&le;</mo> <msubsup> <mi>t</mi> <mn>1</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>inner</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>I</mi> <mi>sep</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, tsFor a safe interval time (typically taken to be 2s),
Figure BDA0000152366850000186
the green lamp interval(s) between the i-1 th phase and the i-th phase under the split condition.
II. Green lamp interval time between i and i +1 phase
For the condition that the interval time between the i phase and the i +1 phase is satisfied, taking fig. 8 as an example, the time when the last left-turn car of the i phase green light terminal reaches the conflict point 1, 2, 3, 4 is respectively
Figure BDA0000152366850000187
The time when the initial straight-ahead first vehicle of the i +1 phase green light reaches the conflict point 1, 2, 3 and 4 is respectivelyIs obviously present
Figure BDA0000152366850000189
Figure BDA00001523668500001810
However, since the turning locus of the vehicle on the outer left-turn lane is deviated to the inner side to some extent, the following relationship exists:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>1</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>outer</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msubsup> <mi>t</mi> <mn>2</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>inner</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>3</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>inner</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <msubsup> <mi>t</mi> <mn>4</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>outer</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
therefore, only the following requirements are met:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>1</mn> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&GreaterEqual;</mo> <msubsup> <mi>t</mi> <mn>1</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>outer</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>3</mn> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mn>2</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&GreaterEqual;</mo> <msubsup> <mi>t</mi> <mn>3</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>inner</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
then the green interval between the ith phase and the (i +1) th phase is
I sep i , i + 1 = max { I 1 i , i + 1 , I 2 i , i + 1 } - - - ( 18 )
Wherein
Figure BDA00001523668500001814
The green light interval time alternative value of the conflict between the left-side direct driving and the left-turning vehicle,
Figure BDA00001523668500001815
and selecting the green light interval time alternative value of the right-side direct driving vehicle and the left-turning vehicle.
Fig. 7 and 8 are collision analyses for a split left-turn phase, which is different from the collision cases of other left-turn forms. The purpose of the conflict analysis is to analyze the green interval between the split left-hand phase and its preceding and following phases, while the green interval between the other phases is unchanged.
2. Intersection signal timing
Total signal loss time L under special passenger and cargo lane conditiontCalculated according to equation (19):
<math> <mrow> <msub> <mi>L</mi> <mi>t</mi> </msub> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mi>i</mi> </munder> <msub> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>+</mo> <msubsup> <mi>I</mi> <mi>sep</mi> <mi>i</mi> </msubsup> <mo>+</mo> <mi>A</mi> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein L issGreen light initial loss time(s);
Figure BDA0000152366850000192
the green lamp interval time(s) between the ith phase and the (i +1) th phase; a is the duration(s) of a yellow light, and is generally taken as 3 s; i is the number of phases.
Optimum signal period C under special truck left-turn lane conditiont0Calculated according to equation (20):
C t 0 = 1.5 L t + 5 1 - Y t - - - ( 20 )
wherein Y istIs the sum of the maximum flow ratios of the phases.
The invention provides a novel canalization form of a special left-turn lane for a separate truck, on one hand, the setting condition of the special left-turn lane for the truck is obtained through theoretical analysis, a typical type truck saturation flow rate correction coefficient is obtained through a simulation experiment, a critical condition setting model of the special left-turn lane for the truck is established, and a calculation method of the setting condition of the special left-turn lane for the truck is given; on the other hand, the right setting condition of the left-turning lane special for the truck is given through analyzing the right dominant condition and the right critical condition; and finally, providing a signal timing scheme suitable for the left-turn lane of the separated special truck. The method makes up the blank of the research field and provides a basis for the arrangement of the left-turn lane special for the plane intersection truck.

Claims (3)

1. A method for setting a left-turn lane special for a split truck is characterized by comprising the following steps:
(1) judging whether a special left-turn lane of the truck is set according to the calculation of the setting critical condition of the special left-turn lane of the truck:
when inequality is satisfied
Figure FDA0000152366840000011
When the left-turn lane is set, the left-turn lane is not set; wherein: comprehensive repair of mixed-walking roadPositive coefficient
Figure FDA0000152366840000012
The calculation formula is as follows:
Figure FDA0000152366840000013
Figure FDA0000152366840000014
to correspond to the radius r of the truck1、r2、r3Ratio p of freight car1、p2、p3Truck correction factor under conditions;
comprehensive correction coefficient of truck lane
Figure FDA0000152366840000015
The calculation formula is as follows: <math> <mrow> <msup> <mover> <mi>&epsiv;</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&epsiv;</mi> <mn>1</mn> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>2</mn> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>&epsiv;</mi> <mn>3</mn> <mrow> <msub> <mi>r</mi> <mn>3</mn> </msub> <mo>,</mo> <mn>100</mn> <mo>%</mo> </mrow> </msubsup> <mo>&times;</mo> <msub> <mi>&eta;</mi> <mn>3</mn> </msub> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <msub> <mi>&eta;</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
Figure FDA0000152366840000017
to correspond to the radius r of the truck1、r2、r3And the correction coefficient under the condition of 100% of the truck proportion;
(2) analyzing the right-hand condition of the left-hand lane special for the truck:
calculating a right-side critical condition, and judging whether the left-turn lane special for the truck is arranged on the right side: the critical condition for right arrangement of the left-turn lane special for the truck is that the distance between truck running curves of the left-turn lane special for the opposite truck is metWhereinIs the minimum safe distance; delta d is the minimum distance between the freight car running curves of the special left-turn lanes for the opposite freight cars; with the vehicle driving side clearance δ as the minimum safe distance, the calculation formula is as follows:
δ=0.7+0.02(v1+v2) (ii) a Wherein v is1、v2The running speed of the vehicle is the running speed of the vehicle;
assuming that the arrangement form of the opposite approach lane at the intersection has symmetry, i.e. v1=v2(ii) a The method is simplified as follows:
δ is 0.7+0.04 v; wherein v is the running average speed of the left-turn truck;
the relationship between the turning radius r of the intersection and the turning running vehicle speed v is as follows:wherein,is a vehicle type coefficient; alpha is the slope of the turning road; when the vehicle type is large-sized vehicle
Figure FDA00001523668400000112
The level of the intersection plane, namely alpha is 0; then there are: <math> <mrow> <msubsup> <mi>d</mi> <mi>s</mi> <mi>min</mi> </msubsup> <mo>=</mo> <mi>&delta;</mi> <mo>=</mo> <mn>0.7</mn> <mo>+</mo> <mn>0.04</mn> <msqrt> <mi>r</mi> <mo>&times;</mo> <mn>19.5</mn> </msqrt> <mo>;</mo> </mrow> </math>
(3) analyzing the separated left-turn lane auxiliary condition:
the left-turn lane of the right truck is not provided with a left-turn waiting area, and the original left-turn waiting area is still reserved for the special left-turn lane of the truck which is not arranged on the right;
(4) and (3) signal timing of an intersection of a left-turn lane special for the separated truck:
'Wei' and separated left-turn lane traffic conflict analysis
The following conditions are satisfied for the green light interval time between i-1 and i phases and between i and i +1 phases, where i phase is the local phase, i.e. the split left-turn phase:
I. green lamp interval time between i-1 and i phase
For the meeting condition of the green light interval time between the i-1 phase and the i phase, the conflict point of the vehicle with the inner left-turn lane and the opposite straight-going vehicle is set as a conflict point 71, the conflict point of the vehicle with the outer left-turn lane and the opposite straight-going vehicle is set as a conflict point 72, and the time of the last straight-going vehicle at the last stage of the i-1 phase green light reaching the conflict points 71 and 72 is respectively set as
Figure FDA0000152366840000021
The time of the first left-turn car reaching the conflict points 71 and 72 in the initial stage of i-phase green light is respectively
Figure FDA0000152366840000022
Only the following requirements are met:
Figure FDA0000152366840000023
wherein, tsFor the safety interval, in seconds,
Figure FDA0000152366840000024
the green light interval time between the i-1 th phase and the i-th phase under the separated condition is unit of second;
II. Green lamp interval time between i and i +1 phase
For the meeting condition of the green light interval time between the i phase and the i +1 phase, the conflict point of the outside left-turn lane vehicle and the right-left straight-driving vehicle is conflict point 1, the conflict point of the inside left-turn lane vehicle and the right-left straight-driving vehicle is conflict point 2, the conflict point of the inside left-turn lane vehicle and the left-right straight-driving vehicle is conflict point 3, the conflict point of the outside left-turn lane vehicle and the left-right straight-driving vehicle is conflict point 4, and the time for the i phase green light terminal left-turn end vehicle to reach the conflict points 1, 2, 3 and 4 is respectively
Figure FDA0000152366840000025
Figure FDA0000152366840000026
The time when the initial straight-ahead first vehicle of the i +1 phase green light reaches the conflict point 1, 2, 3 and 4 is respectively
Figure FDA0000152366840000027
Figure FDA0000152366840000028
Only the following requirements are met: <math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>1</mn> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&GreaterEqual;</mo> <msubsup> <mi>t</mi> <mn>1</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>outer</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>t</mi> <mn>3</mn> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mn>2</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&GreaterEqual;</mo> <msubsup> <mi>t</mi> <mn>3</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mi>inner</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>t</mi> <mi>s</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math> then the green interval between the ith phase and the (i +1) th phase is
Figure FDA00001523668400000210
Wherein,
Figure FDA00001523668400000211
the green light interval time alternative value of the conflict between the left-side direct driving and the left-turning vehicle,selecting a value for the green light interval time of the right-side straight-driving vehicle and the left-turning vehicle;
② intersection signal timing
Total signal loss time L under special passenger and cargo lane conditiontThe calculation formula is as follows:
Figure FDA00001523668400000213
wherein L issThe initial loss time of the green light is unit of second;
Figure FDA00001523668400000214
the green light interval time between the ith phase and the (i +1) th phase is unit of second; a is the duration of a yellow light and is unit second; i is the phase number;
optimum signal period C under special truck left-turn lane conditiont0The calculation formula is as follows:wherein Y istIs the sum of the maximum flow ratios of the phases.
2. The method as claimed in claim 1, wherein the correction coefficients for the various types of typical trucks are respectively adjusted according to different turning radii and mixed-driving proportion conditions
Figure FDA00001523668400000216
Is calculated as followsShown in the figure:
I. when in use
Figure FDA00001523668400000217
Figure FDA00001523668400000218
In time, the correction coefficients of the corresponding types of trucks can be obtained by inquiring the table 1, the table 2 and the table 3; table 1 shows the correction coefficient of the saturation flow rate of the large truck; table 2 shows the container vehicle saturation flow rate correction factor; table 3 is trailer saturation flow rate correction factor; wherein r iskThe turning radius of a k-type truck under the actual condition;
Figure FDA00001523668400000219
for the ith radius in the class k truck correction coefficient table,
Figure FDA00001523668400000220
pkthe proportion of k types of left-turning trucks to the total number of left-turning vehicles under the actual condition is called mixed-driving proportion for short;for the jth mixing proportion in the correction coefficient table of the k-type truck,
Figure FDA00001523668400000222
TABLE 1 Large truck saturated flow Rate correction factor
5m 10m 15m 20m 25m 30m 35m 0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10% 0.9375 0.9279 0.9279 0.9267 0.9220 0.9271 0.9417 20% 0.8586 0.8758 0.8667 0.8712 0.8550 0.8710 0.8787 30% 0.8304 0.8315 0.8072 0.8301 0.8227 0.8289 0.8374
40% 0.7634 0.7871 0.7676 0.7874 0.7734 0.7854 0.8028 50% 0.7247 0.7273 0.7252 0.7480 0.7366 0.7496 0.7615 60% 0.6905 0.7073 0.6910 0.7077 0.7005 0.7104 0.7236 40m 45m 50m 55m 60m 65m 70m 0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10% 0.9348 0.9398 0.9307 0.9442 0.9397 0.9319 0.9324 20% 0.8871 0.8935 0.8841 0.8921 0.8883 0.8831 0.8827 30% 0.8441 0.8427 0.8443 0.8526 0.8548 0.8441 0.8440 40% 0.8108 0.8072 0.8007 0.8096 0.8088 0.8045 0.8157 50% 0.7658 0.7698 0.7603 0.7762 0.7658 0.7737 0.7707 60% 0.7345 0.7356 0.7247 0.7338 0.7336 0.7301 0.7383
TABLE 2 correction coefficient for saturated flow rate of container vehicle
5m 10m 15m 20m 25m 30m 35m 0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10% 0.9107 0.9268 0.9008 0.9155 0.9184 0.9228 0.9194 20% 0.8408 0.8614 0.8365 0.8615 0.8463 0.8525 0.8664 30% 0.8006 0.7949 0.7864 0.8019 0.8015 0.8174 0.8113 40% 0.7336 0.7616 0.7337 0.7585 0.7515 0.7619 0.7737 50% 0.6920 0.7129 0.6953 0.7109 0.7059 0.7170 0.7327 60% 0.6458 0.6696 0.6470 0.6812 0.6684 0.6819 0.6924 40m 45m 50m 55m 60m 65m 70m 0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10% 0.9250 0.9352 0.9242 0.9214 0.9309 0.9272 0.9304 20% 0.8669 0.8774 0.8668 0.8736 0.8775 0.8654 0.8783 30% 0.8258 0.8272 0.8200 0.8265 0.8408 0.8252 0.8354 40% 0.7782 0.7910 0.7793 0.7836 0.7916 0.7867 0.7884 50% 0.7423 0.7408 0.7423 0.7467 0.7532 0.7500 0.7414 60% 0.7012 0.7058 0.6973 0.7001 0.7117 0.6987 0.7090
TABLE 3 trailer saturation flow correction factor
5m 10m 15m 20m 25m 30m 35m 0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10% 0.8735 0.9002 0.8731 0.8905 0.8846 0.8912 0.8932 20% 0.8095 0.8071 0.7846 0.8052 0.7897 0.8125 0.8146 30% 0.7262 0.7550 0.7221 0.7391 0.7426 0.7423 0.7468 40% 0.6607 0.6851 0.6640 0.6916 0.6743 0.6798 0.6917 50% 0.6116 0.6208 0.6113 0.6353 0.6221 0.6341 0.6447 60% 0.5699 0.5854 0.5559 0.5918 0.5809 0.6004 0.5923 40m 45m 50m 55m 60m 65m 70m 0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% 0.9022 0.8977 0.8970 0.8948 0.9051 0.9056 0.9049 20% 0.8167 0.8253 0.8107 0.8253 0.8312 0.8234 0.8336 30% 0.7580 0.7630 0.7546 0.7557 0.7718 0.7698 0.7768 40% 0.7032 0.7097 0.7035 0.7056 0.7165 0.7104 0.7177 50% 0.6491 0.6531 0.6535 0.6554 0.6625 0.6620 0.6684 60% 0.6040 0.6093 0.6067 0.6094 0.6174 0.6200 0.6197
II. When in use
Figure FDA0000152366840000041
Figure FDA0000152366840000042
Then, the calculation formula is: <math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> wherein,
Figure FDA0000152366840000044
for class k trucks, i.e. relative coefficient of mixing ratio
Figure FDA0000152366840000046
The correction coefficient of the k-type truck under the condition of the ith radius and the jth mixing proportion,
Figure FDA0000152366840000047
the correction coefficient of the k-type truck under the condition of the ith radius and the (j +1) th mixed row proportion is obtained;
III when
Figure FDA0000152366840000048
Figure FDA0000152366840000049
Then, the calculation formula is:
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mrow> <mo>(</mo> <mo>|</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>|</mo> <mo>+</mo> <mi>min</mi> <mo>{</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>}</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> wherein,as a coefficient of radius of class k trucks, i.e.
Figure FDA00001523668400000412
Figure FDA00001523668400000413
The correction coefficient of the k-type truck under the condition of the ith radius and the jth mixing proportion,
Figure FDA00001523668400000414
the correction coefficient of the k-type truck under the conditions of i +1 radius and j mixed row proportion;
IV when
Figure FDA00001523668400000415
Figure FDA00001523668400000416
Then, the calculation formula is:
<math> <mrow> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>|</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>min</mi> <mo>{</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&epsiv;</mi> <mi>k</mi> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mi>k</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>}</mo> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
3. the method for setting the left-turn lane special for the split-type truck as claimed in claim 1, wherein the method for calculating the trace curve interval of the minimum safety distance comprises the following steps:
let AC and BD be an intersection, and the width of the B, D opening is l1A, C mouth width l2(ii) a Taking an intersection B entrance lane as an example, the left-turn lane 2 is a special left-turn lane for trucks, and the entrance radius of the left-turn lane is y1Exit radius x1Then average radius of left turn of truck
Figure FDA00001523668400000418
Because of the symmetry of the opposite approach path at the intersection, the average radius of the left turn of the opposite truck is also d1
From the geometric relationship, it is known that when d1When the sum delta d and the delta l are on the same straight line, the distance between the freight car running curves of the special left-turn lanes for the opposite freight cars is the minimum, wherein the delta l is the distance between the rectangular diagonals of the intersection; then the minimum distance between the freight car running curves of the special left-turn lanes of the opposite freight cars is calculated according to the formula:
Figure FDA00001523668400000419
CN2012101049054A 2012-04-11 2012-04-11 Method for arranging special left-turning lane for separating type truck Pending CN102610093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101049054A CN102610093A (en) 2012-04-11 2012-04-11 Method for arranging special left-turning lane for separating type truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101049054A CN102610093A (en) 2012-04-11 2012-04-11 Method for arranging special left-turning lane for separating type truck

Publications (1)

Publication Number Publication Date
CN102610093A true CN102610093A (en) 2012-07-25

Family

ID=46527427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101049054A Pending CN102610093A (en) 2012-04-11 2012-04-11 Method for arranging special left-turning lane for separating type truck

Country Status (1)

Country Link
CN (1) CN102610093A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157153A (en) * 2014-08-15 2014-11-19 北京航空航天大学 Separated left turn lane design and related intersection channelization, signal phase and timing setting method
CN105185136A (en) * 2015-07-31 2015-12-23 东南大学 Method and system for guiding vehicles driving in wrong way on passenger car and truck separating highway
CN109377771A (en) * 2018-11-26 2019-02-22 启迪设计集团股份有限公司 The demand determination method and device of external left turn lane is arranged in signalized intersections
CN110111569A (en) * 2019-05-05 2019-08-09 广东振业优控科技股份有限公司 A kind of level-crossing left turn waiting zone setting appraisal procedure
CN111369783A (en) * 2018-12-25 2020-07-03 北京嘀嘀无限科技发展有限公司 Method and system for identifying intersection
CN116740943A (en) * 2023-08-10 2023-09-12 天津市政工程设计研究总院有限公司 Dynamic control method and system for intelligent network-connected external left-turning lane

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157153A (en) * 2014-08-15 2014-11-19 北京航空航天大学 Separated left turn lane design and related intersection channelization, signal phase and timing setting method
CN104157153B (en) * 2014-08-15 2016-01-13 北京航空航天大学 The intersection channelization of the design of a kind of separate type left turn lane and related intersection, signal phase and timing method to set up
CN105185136A (en) * 2015-07-31 2015-12-23 东南大学 Method and system for guiding vehicles driving in wrong way on passenger car and truck separating highway
CN109377771A (en) * 2018-11-26 2019-02-22 启迪设计集团股份有限公司 The demand determination method and device of external left turn lane is arranged in signalized intersections
CN109377771B (en) * 2018-11-26 2021-07-09 启迪设计集团股份有限公司 Demand judgment method and device for arranging external left-turn lane at signalized intersection
CN111369783A (en) * 2018-12-25 2020-07-03 北京嘀嘀无限科技发展有限公司 Method and system for identifying intersection
CN111369783B (en) * 2018-12-25 2021-06-01 北京嘀嘀无限科技发展有限公司 Method and system for identifying intersection
CN110111569A (en) * 2019-05-05 2019-08-09 广东振业优控科技股份有限公司 A kind of level-crossing left turn waiting zone setting appraisal procedure
CN116740943A (en) * 2023-08-10 2023-09-12 天津市政工程设计研究总院有限公司 Dynamic control method and system for intelligent network-connected external left-turning lane
CN116740943B (en) * 2023-08-10 2023-12-22 天津市政工程设计研究总院有限公司 Dynamic control method and system for intelligent network-connected external left-turning lane

Similar Documents

Publication Publication Date Title
CN102610093A (en) Method for arranging special left-turning lane for separating type truck
CN110619752B (en) Vehicle and signal lamp cooperative control method and control system based on LTE-V2X communication technology
CN108399762B (en) Intersection traffic control method under mixed traffic condition of automatic driving and manual driving vehicles
Mandava et al. Arterial velocity planning based on traffic signal information under light traffic conditions
CN104794919B (en) A kind of autoroute track resource real-time optimization collocation method
CN110930697B (en) Rule-based intelligent networked vehicle cooperative convergence control method
CN107016858B (en) Pre-signal control method for intersection multi-flow direction waiting area and dislocation type stop line
CN103871241B (en) One dynamically divides control method towards track, Weaving Sections of Urban Expressway
CN104504915A (en) Reversible short lane signal control method based on intersection vehicle in-turn release
CN110085025B (en) Multi-mode running speed optimization method for bus rapid transit
CN105489026B (en) &#34; windmill type &#34; intersection design method
CN104192148B (en) A kind of major trunk roads speed planing method based on traffic signal information precognition
CN106446430B (en) A kind of semitrailer bend is overtaken other vehicles risk analysis method
CN107730883A (en) Intersection area vehicle scheduling method in Internet of vehicles environment
CN113516856B (en) Trunk line coordination control method considering road running speed and intersection traffic state
CN113516855B (en) Channelized design optimization method for parallel flow intersection
CN106997675A (en) Target vehicle speed Forecasting Methodology based on Dynamic Programming
CN113628443B (en) Signal intersection speed guiding method based on driver finiteness
CN101140698A (en) Passenger cross street and signal priority coordinating method
CN106997172A (en) Target vehicle speed forecasting system based on Dynamic Programming
CN104831593A (en) Freely-overtaking lane arranging method of two lane road
CN102360527A (en) Evaluation method relating to standard of service at crossings
CN108257393B (en) Pedestrian road section street crossing control method based on ground public traffic prior passage
CN109914171A (en) Intersection double stop line traffic systems and its application method
CN107808531A (en) It is a kind of based on pre-signal close to stagger intersection wagon flow passing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120725