CN102608565A - Direction-of-arrival estimation method on basis of uniform circular array - Google Patents

Direction-of-arrival estimation method on basis of uniform circular array Download PDF

Info

Publication number
CN102608565A
CN102608565A CN2012100782940A CN201210078294A CN102608565A CN 102608565 A CN102608565 A CN 102608565A CN 2012100782940 A CN2012100782940 A CN 2012100782940A CN 201210078294 A CN201210078294 A CN 201210078294A CN 102608565 A CN102608565 A CN 102608565A
Authority
CN
China
Prior art keywords
matrix
array
arrival
coherent
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100782940A
Other languages
Chinese (zh)
Other versions
CN102608565B (en
Inventor
刁鸣
安春莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201210078294.0A priority Critical patent/CN102608565B/en
Publication of CN102608565A publication Critical patent/CN102608565A/en
Application granted granted Critical
Publication of CN102608565B publication Critical patent/CN102608565B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种波达方向估计方法,具体涉及基于均匀圆阵列的独立信号和相干信号的波达方向估计方法。本发明的基于均匀圆阵列的波达方向估计方法,包括:波达方向估计参数预处理;去除模式空间噪声;提高阵列孔径,对独立信号进行波达方向估计;消除独立信号,对相干信号进行波达方向估计。本发明具有更高的估计精度,阵列孔径得到了更加充分的利用,弥补由于虚拟阵列变换带来的阵列孔径损失,估计性能得到进一步地提升,计算简便,运算量小。

Figure 201210078294

The invention relates to a method for estimating a direction of arrival, in particular to a method for estimating a direction of arrival based on an independent signal and a coherent signal of a uniform circular array. The DOA estimation method based on a uniform circular array of the present invention includes: preprocessing DOA estimation parameters; removing pattern space noise; increasing the array aperture, performing DOA estimation on independent signals; eliminating independent signals, and performing DOA estimation on coherent signals Direction of arrival estimation. The invention has higher estimating precision, the array aperture is more fully utilized, the array aperture loss caused by the virtual array transformation is compensated, the estimation performance is further improved, the calculation is simple and the calculation amount is small.

Figure 201210078294

Description

一种基于均匀圆阵列的波达方向估计方法A Direction of Arrival Estimation Method Based on Uniform Circular Array

技术领域 technical field

本发明涉及一种波达方向(Direction of Arrival,简称DOA)估计方法,具体涉及基于均匀圆阵列(Uniform CircularArray,简称UCA)的独立信号和相干信号的波达方向估计方法。The present invention relates to a direction of arrival (Direction of Arrival, referred to as DOA) estimation method, in particular to a direction of arrival estimation method based on independent signals and coherent signals of a uniform circular array (Uniform Circular Array, referred to as UCA).

背景技术 Background technique

在实际信号环境当中,独立信号与相干信号往往是同时存在的,大多DOA估计算法主要是针对独立信号或者相干信号单独设计的,没有考虑独立信号和相干信号同时存在的情况,更没有充分利用独立信号和相干信号的特点来进行DOA估计。在文献:Ye Z F,Zhang Y F,LiuC.Direction-of-arrival estimation for uncorrelated and coherent signals with fewer sensors[J].IEEE Trans.on Microwaves,Antennas&Propagation,2009,3(3):473-482中,考虑了独立信号和相干信号的DOA估计问题,但其只适用于均匀线阵列(Uniform LinearArray,简称ULA)的DOA估计情况。In the actual signal environment, independent signals and coherent signals often exist at the same time. Most DOA estimation algorithms are mainly designed for independent signals or coherent signals. The characteristics of the signal and the coherent signal are used to estimate the DOA. In the literature: Ye Z F, Zhang Y F, LiuC.Direction-of-arrival estimation for uncorrelated and coherent signals with fewer sensors[J].IEEE Trans.on Microwaves, Antennas&Propagation, 2009, 3(3):473-482 , considering the DOA estimation of independent signals and coherent signals, but it is only applicable to the DOA estimation of Uniform Linear Array (ULA).

UCA阵列分布在一个平面上,它可以同时提供方位角和俯仰角信息,并且其提供的方位角信息是360°无模糊的。但是由于UCA阵列导向矢量不具有范德蒙德结构,很多基于ULA阵列的测向算法不能用于UCA阵列,尤其是在相干信号存在的情况下。为了让基于ULA阵列的测向算法适用于UCA阵列乃至任意阵列,广大学者提出了很多方法,将非ULA阵列虚拟变换为ULA阵列。其中比较经典的几种方法有:针对UCA阵列的模式空间变换,针对任意阵列的内插变换技术和流行分离技术。利用前述的阵列虚拟变换技术可以将任意阵列虚拟为ULA阵列,进而利用基于ULA阵列的DOA估计算法求出相应的波达方向。但是经过虚拟变换过后的阵列往往存在不同程度的阵列孔径损失,使得估计性能有所降低;而且噪声经过虚拟变换后可能会被非线性地放大,这将使得估计性能进一步的恶化,尤其是在信噪比较小的情况。The UCA array is distributed on a plane, it can provide azimuth angle and elevation angle information at the same time, and the azimuth angle information it provides is 360° without ambiguity. However, because the UCA array steering vector does not have a Vandermonde structure, many direction finding algorithms based on ULA arrays cannot be used for UCA arrays, especially in the presence of coherent signals. In order to make the direction-finding algorithm based on ULA arrays suitable for UCA arrays or even arbitrary arrays, many scholars have proposed many methods to virtually transform non-ULA arrays into ULA arrays. Some of the more classic methods are: pattern space transformation for UCA arrays, interpolation transformation technology for arbitrary arrays and popular separation technology. Using the aforementioned array virtual transformation technology, any array can be virtualized as a ULA array, and then the DOA estimation algorithm based on the ULA array can be used to obtain the corresponding direction of arrival. However, the array after virtual transformation often has different degrees of array aperture loss, which reduces the estimation performance; and the noise may be nonlinearly amplified after virtual transformation, which will further deteriorate the estimation performance, especially in the signal When the noise ratio is small.

发明内容 Contents of the invention

本发明的目的在于提出一种估计过程简单,计算量小的基于均匀圆阵列的波达方向估计方法。The purpose of the present invention is to propose a direction of arrival estimation method based on a uniform circular array with a simple estimation process and a small amount of calculation.

本发明的目的是这样实现的:The purpose of the present invention is achieved like this:

本发明的基于均匀圆阵列的波达方向估计方法,包括如下步骤:The DOA estimation method based on the uniform circular array of the present invention comprises the following steps:

(1)波达方向估计参数预处理:(1) Direction of arrival estimation parameter preprocessing:

a.根据阵列输出数据矩阵X:X=AS+Z,求均匀圆阵列的接收数据协方差矩阵R:R=E[XXH]=ARSAH2I;a. According to the array output data matrix X: X=AS+Z, seek the received data covariance matrix R of the uniform circular array: R=E[XX H ]=AR S A H2 I;

其中,A表示均匀圆阵列的M×N维阵列流型矩阵,M表示阵元个数,N表示信号个数,N中独立信号和相干信号个数分别为Ni和Nc

Figure BDA0000146190920000021
D为相干信源组数,nk为第k组相干信源的信号个数,S表示N×L维信号数据矩阵,L表示快拍数,Z表示M×L维高斯白噪声数据矩阵,XH表示X的共轭转置,RS为信号数据协方差矩阵,σ2为高斯白噪声的功率,I为与R相同维数的单位阵;Among them, A represents the M×N dimensional array flow pattern matrix of the uniform circular array, M represents the number of array elements, N represents the number of signals, and the numbers of independent signals and coherent signals in N are N i and N c , respectively.
Figure BDA0000146190920000021
D is the number of coherent source groups, nk is the number of signals of the kth coherent source group, S represents the N×L dimensional signal data matrix, L represents the number of snapshots, Z represents the M×L dimensional Gaussian white noise data matrix, X H represents the conjugate transpose of X, RS is the signal data covariance matrix, σ 2 is the power of Gaussian white noise, and I is the identity matrix with the same dimension as R;

b.利用模式空间变换矩阵T:

Figure BDA0000146190920000022
对均匀圆阵列的接收数据R进行变换,得到模式空间中均匀线阵列的接收数据协方差矩阵R1 b. Use the pattern space transformation matrix T:
Figure BDA0000146190920000022
Transform the received data R of the uniform circular array to obtain the received data covariance matrix R 1 of the uniform linear array in the pattern space:

其中,J0为2K+1维对角阵,J0对角线位置上的元素为J0(k,k)=j(k-1-K)B(k-1-K)(-β),B(k-1-K)(·)为k-1-K阶的第一类Bessel函数,k=1,…,2K+1;F为离散傅里叶变换矩阵,F=[w-K w-K+1…wK],wq=[1e-jp…e-jp(M-1)]H

Figure BDA0000146190920000024
q=-K,…,K;A1为虚拟均匀线阵的(2K+1)×N维流型矩阵,A1=[a1 a2…aN],
Figure BDA0000146190920000025
i=1,…,N;Among them, J 0 is a 2K+1-dimensional diagonal matrix, and the elements on the diagonal position of J 0 are J 0 (k, k)=j (k-1-K) B (k-1-K) (-β ), B (k-1-K) ( ) is the Bessel function of the first kind of k-1-K order, k=1,..., 2K+1; F is the discrete Fourier transform matrix, F=[w -K w -K+1 ...w K ], w q =[1e -jp ...e -jp(M-1) ] H ,
Figure BDA0000146190920000024
q=-K,...,K; A 1 is the (2K+1)×N-dimensional manifold matrix of the virtual uniform linear array, A 1 =[a 1 a 2 ... a N ],
Figure BDA0000146190920000025
i=1,...,N;

(2)去除模式空间噪声:(2) Remove pattern space noise:

求不含噪声成分的数据协方差矩阵R2

Figure BDA0000146190920000026
噪声功率σ2通过对R进行特征值分解,并对其M-(Ni+D)个小特征值求平均得到;Find the data covariance matrix R 2 without noise components:
Figure BDA0000146190920000026
The noise power σ 2 is obtained by decomposing the eigenvalues of R and averaging its M-(N i +D) small eigenvalues;

(3)提高阵列孔径,对独立信号进行波达方向估计:(3) Improve the array aperture and estimate the direction of arrival for independent signals:

用多重信号分谱峰搜索方法进行波达方向估计,搜索出Ni+D个大特征值对应的谱峰,其对应的估计角度包含了Ni个独立信号对应的波达方向角度和D组相干信号对应的波达方向角度,选择幅值最大的Ni个谱峰幅值对应的波达方向角度作为独立信号的波达方向估计结果;Use the multiple signal split spectrum peak search method to estimate the direction of arrival, search out the spectral peaks corresponding to N i + D large eigenvalues, and the corresponding estimated angles include the direction of arrival angles corresponding to N i independent signals and D groups The direction of arrival angle corresponding to the coherent signal, select the direction of arrival angle corresponding to the N i spectral peak amplitudes with the largest amplitude as the direction of arrival estimation result of the independent signal;

(4)消除独立信号,对相干信号进行波达方向估计:(4) Eliminate independent signals and estimate direction of arrival for coherent signals:

相干信号的数据协方差矩阵R3

Figure BDA0000146190920000027
其中,J为与R2同维数的反对角单位矩阵,A1c表示由相干信号的导向矢量组成的流型矩阵,RSc表示相干信号的信号协方差矩阵,
Figure BDA0000146190920000028
表示RSc的转置,利用前后向矢量重构算法进行解相干,得到没有秩亏损的相干信号数据矩阵,并利用总体最小二乘-旋转不变子空间算法求解相干信号的波达方向。The data covariance matrix R 3 of the coherent signal:
Figure BDA0000146190920000027
Among them, J is the anti-diagonal identity matrix with the same dimension as R 2 , A 1c represents the flow pattern matrix composed of the steering vector of the coherent signal, R Sc represents the signal covariance matrix of the coherent signal,
Figure BDA0000146190920000028
Represent the transpose of R Sc , use forward-backward vector reconstruction algorithm to decoherence, obtain the coherent signal data matrix without rank deficit, and use the total least squares-rotation invariant subspace algorithm to solve the direction of arrival of the coherent signal.

本发明的有益效果在于:The beneficial effects of the present invention are:

与现有的基于均匀圆阵列的测向算法相比,本发明在DOA估计过程中没有受到噪声影响,具有更高的估计精度,尤其是信噪比较小时估计性能有很大提高;通过将独立信号和相干信号分开估计,阵列孔径得到了更加充分的利用,弥补由于虚拟阵列变换带来的阵列孔径损失,估计性能得到进一步地提升;由于采用模式空间变换,DOA估计中采用的都是适于均匀线阵的算法,计算简便,运算量小。Compared with the existing direction-finding algorithm based on the uniform circular array, the present invention is not affected by noise in the DOA estimation process, and has higher estimation accuracy, especially when the signal-to-noise ratio is small, the estimation performance is greatly improved; The independent signal and the coherent signal are estimated separately, the array aperture is more fully utilized, and the loss of the array aperture caused by the virtual array transformation is compensated, and the estimation performance is further improved; Based on the uniform linear array algorithm, the calculation is simple and the amount of calculation is small.

附图说明 Description of drawings

图1是本发明基于均匀圆阵列的波达方向估计方法流程图;Fig. 1 is the flow chart of the method for estimating the direction of arrival based on the uniform circular array of the present invention;

图2是在相同条件下,入射信号为独立信号时,本发明方法与未去噪的模式空间MUSIC算法估计均方根误差比较示意图;Fig. 2 is under the same condition, when the incident signal is an independent signal, the comparison schematic diagram of the root mean square error estimated by the method of the present invention and the model space MUSIC algorithm without denoising;

图3是在相同条件下,入射信号为独立信号和相干信号的混合时,本发明方法与基于Toeplitz解相干方法的TLS-ESPRIT算法的估计均方根误差比较示意图。Fig. 3 is a schematic diagram of the estimated root mean square error comparison between the method of the present invention and the TLS-ESPRIT algorithm based on the Toeplitz decoherence method when the incident signal is a mixture of independent signals and coherent signals under the same conditions.

具体实施方式 Detailed ways

本发明的核心思想是利用模式空间变换过程中数据结构特点,消除均匀高斯白噪声对DOA估计的影响,提高估计性能;并采用独立信号和相干信号分开估计的方法,消除UCA阵列经过模式空间变换后的噪声影响,增加UCA阵列经过模式空间变换后的有效阵列孔径。The core idea of the present invention is to use the characteristics of the data structure in the process of mode space transformation to eliminate the influence of uniform Gaussian white noise on DOA estimation and improve the estimation performance; The effect of the noise after the UCA array is increased after the mode space transformation of the effective array aperture.

UCA阵列因其能提供无模糊的方位角信息以及二维角度信息而具有很大的优越性。但由于其阵元位置的特殊性,使得很多传统的基于ULA阵列的测向算法对UCA阵列不适用,尤其是在存在相干信号的情况。随着模式空间变换方法的引入,可以将UCA阵列虚拟转换为ULA阵列,但是转换后存在阵列孔径损失,并且噪声功率在模式空间下会被放大,进而影响DOA估计的精度。The UCA array has great advantages because it can provide unambiguous azimuth information and two-dimensional angle information. However, due to the particularity of the position of its array elements, many traditional direction-finding algorithms based on ULA arrays are not suitable for UCA arrays, especially in the presence of coherent signals. With the introduction of the mode space transformation method, the UCA array can be virtually converted into a ULA array, but there is an array aperture loss after conversion, and the noise power will be amplified in the mode space, which will affect the accuracy of DOA estimation.

在独立信号与相干信号同时存在时,如果利用两种信号自身的特性,将其分开进行DOA估计,将有效地提高阵列孔径。在估计过程当中根据数据结构,设计合理的消除噪声的方法,将极大地提高DOA估计的精度。When independent signals and coherent signals exist at the same time, if the characteristics of the two signals are used to separate them for DOA estimation, the array aperture will be effectively improved. According to the data structure in the estimation process, designing a reasonable method to eliminate noise will greatly improve the accuracy of DOA estimation.

下面结合附图对本发明的波达方向估计方法进行详细描述。The method for estimating the direction of arrival of the present invention will be described in detail below with reference to the accompanying drawings.

图1是本发明基于UCA阵列的波达方向估计方法流程图。如图1所示,该方法包括如下步骤:Fig. 1 is a flow chart of the method for estimating the direction of arrival based on the UCA array in the present invention. As shown in Figure 1, the method includes the following steps:

(1)波达方向估计参数预处理:(1) Direction of arrival estimation parameter preprocessing:

一、由各个阵元接收的快拍数据,获得阵列输出数据矩阵X,X=AS+Z,其中,A表示UCA阵列的M×N维阵列流型矩阵,M表示阵元个数,N表示信号个数,其中独立信号和相干信号个数分别为Ni

Figure BDA0000146190920000031
D为相干信源组数,nk为第k组相干信源的信号个数);Z表示N×L维信号数据矩阵,L表示快拍数;N表示M×L维高斯白噪声数据矩阵。由X求出UCA阵列的接收数据协方差矩阵R:1. From the snapshot data received by each array element, the array output data matrix X is obtained, X=AS+Z, where A represents the M×N-dimensional array flow matrix of the UCA array, M represents the number of array elements, and N represents The number of signals, where the numbers of independent signals and coherent signals are N i and
Figure BDA0000146190920000031
D is the number of coherent information source groups, n k is the number of signals of the kth coherent information source); Z represents the N×L dimensional signal data matrix, L represents the number of snapshots; N represents the M×L dimensional Gaussian white noise data matrix . Find the received data covariance matrix R of the UCA array from X:

R=E[XXH]=ARSAH2IR=E[XX H ]=AR S A H2 I

其中,XH表示X的共轭转置,RS为信号数据协方差矩阵,σ2为高斯白噪声的功率,I为与R相同维数的单位阵。Among them, X H represents the conjugate transpose of X, RS is the signal data covariance matrix, σ 2 is the power of Gaussian white noise, and I is the identity matrix with the same dimension as R.

二、构造模式空间变换矩阵T如下:2. Construct the pattern space transformation matrix T as follows:

TT == 11 Mm JJ 00 -- 11 Ff Hh

其中,J0为2K+1维对角阵,则J0对角线位置上的元素为J0(k,k)=j(k-1-K)B(k-1-K)(-β),B(k-1-K)(·)为k-1-K阶的第一类Bessel函数,k=1,…,2K+1;F为离散傅里叶变换矩阵,F=[w-K w-K+1…wK],wq=[1e-jp…e-jp(M-1)]H

Figure BDA0000146190920000042
q=-K,…,K。Wherein, J 0 is a 2K+1-dimensional diagonal array, and the elements on the diagonal position of J 0 are J 0 (k, k)=j (k-1-K) B (k-1-K) (- β), B (k-1-K) (.) is the Bessel function of the first kind of k-1-K order, k=1,..., 2K+1; F is the discrete Fourier transform matrix, F=[ w -K w -K+1 ...w K ], w q =[1e -jp ...e -jp(M-1) ] H ,
Figure BDA0000146190920000042
q=-K, . . . , K.

对R进行模式空间变换,得到模式空间中的数据协方差矩阵R1The pattern space transformation is performed on R to obtain the data covariance matrix R 1 in the pattern space:

R 1 = TRT H = A 1 R S A 1 H + σ 2 TT H (公式5) R 1 = TRT h = A 1 R S A 1 h + σ 2 TT h (Formula 5)

其中,A1为虚拟均匀线阵的(2K+1)×N维流型矩阵,A1=[a1 a2…aN],

Figure BDA0000146190920000044
i=1,…,N。Among them, A 1 is the (2K+1)×N-dimensional manifold matrix of the virtual uniform linear array, A 1 =[a 1 a 2 ... a N ],
Figure BDA0000146190920000044
i=1,...,N.

(2)去除模式空间噪声:(2) Remove pattern space noise:

由步骤三公式5可知,原来的空间白噪声在模式空间仍然是白噪声,但噪声功率会变大且不均匀,这严重影响了估计性能。由R1求出不含噪声成分的数据协方差矩阵R2From Equation 5 in Step 3, it can be seen that the original spatial white noise is still white noise in the mode space, but the noise power will become larger and uneven, which seriously affects the estimation performance. Calculate the data covariance matrix R 2 without noise components from R 1 :

R 2 = R 1 - σ 2 TT H = A 1 R S A 1 H (公式6) R 2 = R 1 - σ 2 TT h = A 1 R S A 1 h (Formula 6)

由公式6可知,只要知道了噪声功率σ2和T即可求得不含噪声的数据协方差矩阵R2。噪声功率σ2可以通过对R进行特征值分解,并对其M-(Ni+D)个小特征值求平均得到;而T在步骤二当中已经求出。It can be known from formula 6 that as long as the noise power σ 2 and T are known, the noise-free data covariance matrix R 2 can be obtained. The noise power σ 2 can be obtained by decomposing the eigenvalues of R and averaging its M-(N i +D) small eigenvalues; and T has been obtained in step two.

(3)提高阵列孔径,对独立信号进行波达方向估计:(3) Improve the array aperture and estimate the direction of arrival for independent signals:

对R2进行奇异值分解,得到M-(Ni+D)个小特征值对应的噪声子空间UN。采用MUSIC谱峰搜索方法进行DOA估计:Singular value decomposition is performed on R 2 to obtain the noise subspace U N corresponding to M-(N i +D) small eigenvalues. Using the MUSIC peak search method for DOA estimation:

PP MUSICMUSIC (( θθ )) == 11 aa Hh (( θθ )) Uu NN Uu NN Hh aa (( θθ )) ..

可以搜索出Ni+D个大特征值对应的谱峰,其对应的估计角度包含了Ni个独立信号对应的DOA角度和D组相干信号对应的DOA角度。由于一组相干信号对应的导向矢量不是标准形式,因而其与噪声子空间的正交性不如独立信号好,对应的谱峰幅值更小。可以选择幅值最大的Ni个谱峰幅值对应的DOA角度作为独立信号的波达方向估计结果。Spectrum peaks corresponding to N i +D large eigenvalues can be searched out, and the corresponding estimated angles include DOA angles corresponding to N i independent signals and DOA angles corresponding to D groups of coherent signals. Since the steering vector corresponding to a group of coherent signals is not in the standard form, its orthogonality with the noise subspace is not as good as that of independent signals, and the corresponding spectral peak amplitude is smaller. The DOA angles corresponding to the Ni spectral peak amplitudes with the largest amplitudes can be selected as the DOA estimation results of the independent signals.

(4)消除独立信号,对相干信号进行波达方向估计:(4) Eliminate independent signals and estimate direction of arrival for coherent signals:

步骤五中已经对独立信号进行了DOA估计,为了避免重复估计以提高阵列利用率,有必要去除全部独立信号的信息。根据公式6,并利用独立信号和噪声数据协方差矩阵的Toeplitz特征,得到相干信号的数据协方差矩阵R3In step five, DOA estimation has been performed on independent signals. In order to avoid repeated estimation and improve array utilization, it is necessary to remove information of all independent signals. According to Equation 6, and using the Toeplitz feature of the independent signal and noise data covariance matrix, the data covariance matrix R 3 of the coherent signal is obtained:

R 3 = R 2 - JR 2 T J = A 1 c ( R Sc - R Sc T ) A 1 c H (公式7) R 3 = R 2 - JR 2 T J = A 1 c ( R sc - R sc T ) A 1 c h (Formula 7)

其中,J为与R2同维数的反对角单位矩阵,A1c表示由相干信号的导向矢量组成的流型矩阵,RSc表示相干信号的信号协方差矩阵,

Figure BDA0000146190920000052
表示RSc的转置。显然,R3中不含有任何的独立信号和噪声的信息。Among them, J is the anti-diagonal identity matrix with the same dimension as R 2 , A 1c represents the flow pattern matrix composed of the steering vector of the coherent signal, R Sc represents the signal covariance matrix of the coherent signal,
Figure BDA0000146190920000052
Indicates the transpose of R Sc . Obviously, R3 does not contain any independent signal and noise information.

利用前后向矢量重构算法进行解相干,对R3进行奇异值分解,得到2D个大特征值对应的信号子空间US

Figure BDA0000146190920000053
对R4进行奇异值分解,取D个大特征值对应的信号子空间US1=[u1,u2,…,uD],构造列满秩的相干信号数据矩阵:The forward and backward vector reconstruction algorithm is used for decoherence, and the singular value decomposition is performed on R 3 to obtain the signal subspace U S corresponding to 2D large eigenvalues.
Figure BDA0000146190920000053
Singular value decomposition is performed on R 4 , and the signal subspace U S1 =[u 1 , u 2 ,...,u D ] corresponding to D large eigenvalues is taken to construct a full-rank coherent signal data matrix:

RR 55 == [[ RR 11 fbfb ,, RR 22 fbfb ,, ·&Center Dot; ·&Center Dot; ·· ,, RR DD. fbfb ]]

其中,

Figure BDA0000146190920000055
k=1,…,D。
Figure BDA0000146190920000056
为由uk构成的M0×Lfk维数据矩阵,M0=M+1-max{Lfk},
Figure BDA0000146190920000057
为由
Figure BDA0000146190920000059
构成的M0×Lfk维数据矩阵,Lfb=nk-Lfk。in,
Figure BDA0000146190920000055
k=1,...,D.
Figure BDA0000146190920000056
is a M 0 ×L fk dimensional data matrix composed of u k , M 0 =M+1-max{L fk },
Figure BDA0000146190920000057
for the reason
Figure BDA0000146190920000059
The formed M 0 ×L fk dimensional data matrix, L fb =n k -L fk .

利用总体最小二乘-旋转不变子空间算法(TLS-ESPRIT)求解相干信号的波达方向:R51和R52分别对应R5的前M0-1行和后M0-1行组成的矩阵,R6=[R51,R52]。对R6进行奇异值分解,Q为其右奇异矩阵中Nc个小特征值对应的特征矢量矩阵,维数为2N×N,且Q=[Q1;Q2],Q1和Q2均为N×N的矩阵,根据TLS-ESPRIT原理Use the total least squares-rotation invariant subspace algorithm (TLS-ESPRIT) to solve the direction of arrival of the coherent signal: R 51 and R 52 correspond to the front M 0 -1 line and the back M 0 -1 line of R 5 respectively matrix, R 6 =[R 51 , R 52 ]. Singular value decomposition is performed on R 6 , Q is the eigenvector matrix corresponding to N c small eigenvalues in the right singular matrix, the dimension is 2N×N, and Q=[Q 1 ; Q 2 ], Q 1 and Q 2 Both are N×N matrices, according to the TLS-ESPRIT principle

ΨΨ == -- QQ 11 QQ 22 -- 11

对Ψ进行特征分解,根据其特征值求得相干信号的波达方向Perform eigendecomposition on Ψ, and obtain the direction of arrival of the coherent signal according to its eigenvalues

Figure BDA00001461909200000511
Figure BDA00001461909200000511

式中,i=1,…,Nc,γi(Ψ)表示矩阵Ψ的第i个特征值。In the formula, i=1, ..., N c , γ i (Ψ) represents the ith eigenvalue of the matrix Ψ.

本发明提出的DOA估计方法不受到模式空间噪声的影响,极大地提高的测向算法的估计性能。通过将独立信号和相干信号分开进行估计,使得阵列孔径得到有效利用,弥补了模式空间变换带来阵列孔径损失的不足。以上两点的实施有效的解决了UCA阵列在DOA估计当中的两个缺陷,极大地扩展了UCA阵列的应用领域。The DOA estimation method proposed by the invention is not affected by the pattern space noise, and greatly improves the estimation performance of the direction finding algorithm. By separately estimating the independent signal and the coherent signal, the array aperture is effectively utilized, which makes up for the shortage of the array aperture loss caused by the mode space transformation. The implementation of the above two points effectively solves the two defects of the UCA array in DOA estimation, and greatly expands the application field of the UCA array.

Claims (1)

1. A direction of arrival estimation method based on a uniform circular array is characterized by comprising the following steps:
(1) preprocessing the estimation parameters of the direction of arrival:
a. output data matrix X from array: and (3) solving a covariance matrix R of the received data of the uniform circular array when X is AS + Z: r ═ E [ XX ]H]=ARSAH2I;
Wherein, A represents the M multiplied by N dimension array flow pattern matrix of the uniform circular array, M represents the number of array elements, N represents the number of signals, and N is an independent signal and a coherent signalThe number of each is NiAnd Nc
Figure FDA0000146190910000011
D is the number of coherent source groups, nkThe number of the signals of the kth group of coherent information sources is S represents an NxL dimensional signal data matrix, L represents a fast beat number, Z represents an MxL dimensional Gaussian white noise data matrix, and X representsHDenotes the conjugate transpose of X, RSAs a covariance matrix, σ, of the signal data2Is the power of Gaussian white noise, and I is a unit array with the same dimension as R;
b. using the pattern space transformation matrix T:
Figure FDA0000146190910000012
transforming the received data R of the uniform circular array to obtain a covariance matrix R of the received data of the uniform linear array in the mode space1
Wherein, J0Is a 2K +1 dimensional diagonal matrix, J0The element in the diagonal position is J0(k,k)=j(k-1-K)B(k-1-K)(-β),B(k-1-K)(. cndot.) is a first class of Bessel function of order K-1-K, K being 1, …, 2K + 1; f is a discrete Fourier transform matrix, and [ w ]-K w-K+1…wK],wq=[1 e-jp … e-jp(M-1)]Hq=-K,…,K;A1(2K +1) xN dimensional flow pattern matrix as virtual uniform linear array, A1=[a1 a2 … aN],i=1,…,N;
(2) Removing mode spatial noise:
method for obtaining data association without noise componentVariance matrix R2
Figure FDA0000146190910000016
Noise power σ2Decomposing the characteristic value of R and carrying out M- (N) on Ri+ D) averaging small characteristic values to obtain;
(3) increasing the aperture of the array, and estimating the direction of arrival of the independent signals:
estimating direction of arrival by using multi-signal spectral peak searching method, and searching out NiThe corresponding estimated angles of the spectrum peaks corresponding to the + D large eigenvalues comprise NiThe direction of arrival angle corresponding to the independent signals and the direction of arrival angle corresponding to the D groups of coherent signals are selected, and N with the maximum amplitude is selectediThe direction of arrival angle corresponding to the amplitude of each spectral peak is used as the estimation result of the direction of arrival of the independent signal;
(4) eliminating independent signals, and carrying out direction-of-arrival estimation on coherent signals:
data covariance matrix R of coherent signal3
Figure FDA0000146190910000017
Wherein J is and R2Co-dimensional inverse diagonal identity matrix, A1cRepresenting a flow pattern matrix consisting of steering vectors of coherent signals, RScA signal covariance matrix representing the coherent signal,
Figure FDA0000146190910000018
represents RScAnd performing decorrelation by using a forward and backward vector reconstruction algorithm to obtain a coherent signal data matrix without rank loss, and solving the direction of arrival of a coherent signal by using a total least square-rotation invariant subspace algorithm.
CN201210078294.0A 2012-03-23 2012-03-23 A Direction of Arrival Estimation Method Based on Uniform Circular Array Expired - Fee Related CN102608565B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210078294.0A CN102608565B (en) 2012-03-23 2012-03-23 A Direction of Arrival Estimation Method Based on Uniform Circular Array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210078294.0A CN102608565B (en) 2012-03-23 2012-03-23 A Direction of Arrival Estimation Method Based on Uniform Circular Array

Publications (2)

Publication Number Publication Date
CN102608565A true CN102608565A (en) 2012-07-25
CN102608565B CN102608565B (en) 2014-01-08

Family

ID=46526077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210078294.0A Expired - Fee Related CN102608565B (en) 2012-03-23 2012-03-23 A Direction of Arrival Estimation Method Based on Uniform Circular Array

Country Status (1)

Country Link
CN (1) CN102608565B (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091661A (en) * 2013-02-01 2013-05-08 西安科技大学 Broadband signal arriving direction estimation method based on iteration spectral reconfiguration
CN103308877A (en) * 2013-05-21 2013-09-18 西安电子科技大学 Segregated type dipole pair array-based method for estimating multi-parameter
CN103323811A (en) * 2013-05-21 2013-09-25 西安电子科技大学 Parameter estimation method based on virtual concentric annulus array
CN103731189A (en) * 2014-01-08 2014-04-16 桂林电子科技大学 Conformal antenna array dynamic subarray partitioning method and direction of arrival estimation method
CN104021293A (en) * 2014-06-09 2014-09-03 哈尔滨工业大学深圳研究生院 DOA and frequency combined estimation method based on structure least square method
CN104049234A (en) * 2014-03-18 2014-09-17 电子科技大学 Method for adopting uniform circular arrays to quickly determine spatial spectrums
CN104598732A (en) * 2015-01-19 2015-05-06 西安交通大学 Semi-parameter number estimation method for coherent and incoherent mixed signals
CN104678350A (en) * 2015-03-10 2015-06-03 重庆邮电大学 TLS-ESPRTT algorithm-based 2D DOA estimation in large scale MIMO system
WO2015096099A1 (en) * 2013-12-26 2015-07-02 华为技术有限公司 Method and apparatus for estimating angle of arrival, and electronic device
CN104833957A (en) * 2015-04-03 2015-08-12 西北大学 Arbitrary array multi-direction virtual transformation two-dimensional AOA detection rotation algorithm
CN105824002A (en) * 2016-04-15 2016-08-03 西安电子科技大学 Direction-of-arrival estimation method based on nested subarray array
CN106501765A (en) * 2016-12-02 2017-03-15 南京邮电大学 A kind of Maximum Likelihood DOA Estimation based on quadratic sum and Semidefinite Programming
CN106584207A (en) * 2016-11-28 2017-04-26 南京工程学院 Online monitoring method for abrasion of sliding bonding surface
CN106932087A (en) * 2017-03-21 2017-07-07 陕西理工大学 Circular acoustic vector-sensor array row near field sources Multiple Parameter Estimation Methods
CN107290709A (en) * 2017-05-05 2017-10-24 浙江大学 The relatively prime array Wave arrival direction estimating method decomposed based on vandermonde
CN107907853A (en) * 2017-11-07 2018-04-13 中国人民解放军信息工程大学 A kind of single distributed source DOA estimation method based on uniform circular array differential phase
CN108663654A (en) * 2018-06-26 2018-10-16 哈尔滨工程大学 A kind of 360 degrees omnidirection dynamic direction-finding method based on continuous quantum dove group
CN108828502A (en) * 2018-06-05 2018-11-16 哈尔滨工程大学 Coherent source direction determining method based on uniform circular array centre symmetry
CN109375154A (en) * 2018-10-23 2019-02-22 哈尔滨工程大学 A Coherent Signal Parameter Estimation Method Based on Uniform Circular Array in Impulsive Noise Environment
CN109507634A (en) * 2018-11-08 2019-03-22 中国电子科技集团公司第二十八研究所 A kind of blind far-field signal Wave arrival direction estimating method based on sensing operator under any sensor array
CN109709510A (en) * 2018-12-24 2019-05-03 贵州航天计量测试技术研究所 A kind of estimation method and system of coherent 2-d direction finding
CN110082708A (en) * 2019-02-25 2019-08-02 西安电子科技大学 Nonuniform noise design and Wave arrival direction estimating method
CN110109053A (en) * 2019-04-02 2019-08-09 华南理工大学 Quick DOA estimation method under a kind of unknown velocity of sound environment
CN110907887A (en) * 2019-10-21 2020-03-24 成都大公博创信息技术有限公司 Super-resolution direction-finding device based on uniform circular array and processing system
CN111273219A (en) * 2020-02-17 2020-06-12 华南理工大学 A one-dimensional underwater DOA estimation method based on circular and non-circular mixed signals
CN112346005A (en) * 2020-10-30 2021-02-09 哈尔滨工程大学 Airspace rotation orientation estimation method applied to uniform circular hydrophone array
WO2021248792A1 (en) * 2020-06-08 2021-12-16 浙江大学 Single-bit quantized signal virtual domain statistic reconstruction-based co-prime array direction of arrival estimation method
CN114428225A (en) * 2022-04-06 2022-05-03 中国电子科技集团公司第二十九研究所 Multi-radiation-source arrival angle measuring method and device based on quasi-matched filtering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175989A (en) * 2010-12-30 2011-09-07 电子科技大学 Method for measuring incoherently distributed signal two-dimensional DOA (direction of arrival)
CN102385048A (en) * 2011-08-10 2012-03-21 西安交通大学 Mixed signal direction estimation method based on even linear array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175989A (en) * 2010-12-30 2011-09-07 电子科技大学 Method for measuring incoherently distributed signal two-dimensional DOA (direction of arrival)
CN102385048A (en) * 2011-08-10 2012-03-21 西安交通大学 Mixed signal direction estimation method based on even linear array

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刁鸣等: "非圆信号的四阶累积量测向新方法", 《哈尔滨工程大学学报》, vol. 33, no. 1, 31 January 2012 (2012-01-31), pages 112 - 116 *
韩晓东等: "冲击噪声背景下均匀圆阵相干信源的DOA估计", 《应用科技》, vol. 39, no. 1, 29 February 2012 (2012-02-29), pages 35 - 38 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091661A (en) * 2013-02-01 2013-05-08 西安科技大学 Broadband signal arriving direction estimation method based on iteration spectral reconfiguration
CN103091661B (en) * 2013-02-01 2014-09-10 西安科技大学 Broadband signal arriving direction estimation method based on iteration spectral reconfiguration
CN103323811B (en) * 2013-05-21 2014-10-22 西安电子科技大学 Parameter estimation method based on virtual concentric annulus array
CN103308877A (en) * 2013-05-21 2013-09-18 西安电子科技大学 Segregated type dipole pair array-based method for estimating multi-parameter
CN103323811A (en) * 2013-05-21 2013-09-25 西安电子科技大学 Parameter estimation method based on virtual concentric annulus array
CN103308877B (en) * 2013-05-21 2015-11-18 西安电子科技大学 Based on the Multiple Parameter Estimation Methods of separate type dipole pair arrays
CN104937856B (en) * 2013-12-26 2018-06-05 华为技术有限公司 A kind of method, apparatus and electronic equipment for estimating angle of arrival
WO2015096099A1 (en) * 2013-12-26 2015-07-02 华为技术有限公司 Method and apparatus for estimating angle of arrival, and electronic device
CN104937856A (en) * 2013-12-26 2015-09-23 华为技术有限公司 Method and apparatus for estimating angle of arrival, and electronic device
CN103731189B (en) * 2014-01-08 2016-10-12 桂林电子科技大学 The dynamic Antenna Subarray Division of conformal array antenna and Wave arrival direction estimating method
CN103731189A (en) * 2014-01-08 2014-04-16 桂林电子科技大学 Conformal antenna array dynamic subarray partitioning method and direction of arrival estimation method
CN104049234A (en) * 2014-03-18 2014-09-17 电子科技大学 Method for adopting uniform circular arrays to quickly determine spatial spectrums
CN104049234B (en) * 2014-03-18 2017-01-25 电子科技大学 Method for adopting uniform circular arrays to quickly determine spatial spectrums
CN104021293A (en) * 2014-06-09 2014-09-03 哈尔滨工业大学深圳研究生院 DOA and frequency combined estimation method based on structure least square method
CN104598732B (en) * 2015-01-19 2018-03-02 西安交通大学 A kind of relevant half number of parameters method of estimation with incoherent mixed signal
CN104598732A (en) * 2015-01-19 2015-05-06 西安交通大学 Semi-parameter number estimation method for coherent and incoherent mixed signals
CN104678350B (en) * 2015-03-10 2017-07-28 重庆邮电大学 Arrival direction estimation based on TLS ESPRIT algorithms in extensive mimo system
CN104678350A (en) * 2015-03-10 2015-06-03 重庆邮电大学 TLS-ESPRTT algorithm-based 2D DOA estimation in large scale MIMO system
CN104833957A (en) * 2015-04-03 2015-08-12 西北大学 Arbitrary array multi-direction virtual transformation two-dimensional AOA detection rotation algorithm
CN105824002A (en) * 2016-04-15 2016-08-03 西安电子科技大学 Direction-of-arrival estimation method based on nested subarray array
CN106584207A (en) * 2016-11-28 2017-04-26 南京工程学院 Online monitoring method for abrasion of sliding bonding surface
CN106501765A (en) * 2016-12-02 2017-03-15 南京邮电大学 A kind of Maximum Likelihood DOA Estimation based on quadratic sum and Semidefinite Programming
CN106932087B (en) * 2017-03-21 2019-07-05 陕西理工大学 Round acoustic vector-sensor array column near field sources Multiple Parameter Estimation Methods
CN106932087A (en) * 2017-03-21 2017-07-07 陕西理工大学 Circular acoustic vector-sensor array row near field sources Multiple Parameter Estimation Methods
CN107290709A (en) * 2017-05-05 2017-10-24 浙江大学 The relatively prime array Wave arrival direction estimating method decomposed based on vandermonde
CN107290709B (en) * 2017-05-05 2019-07-16 浙江大学 Direction of Arrival Estimation Method for Coprime Array Based on Vandermonde Decomposition
CN107907853A (en) * 2017-11-07 2018-04-13 中国人民解放军信息工程大学 A kind of single distributed source DOA estimation method based on uniform circular array differential phase
CN108828502A (en) * 2018-06-05 2018-11-16 哈尔滨工程大学 Coherent source direction determining method based on uniform circular array centre symmetry
CN108663654A (en) * 2018-06-26 2018-10-16 哈尔滨工程大学 A kind of 360 degrees omnidirection dynamic direction-finding method based on continuous quantum dove group
CN108663654B (en) * 2018-06-26 2022-03-18 哈尔滨工程大学 360-degree all-dimensional dynamic direction finding method based on continuous quantum pigeon group
CN109375154A (en) * 2018-10-23 2019-02-22 哈尔滨工程大学 A Coherent Signal Parameter Estimation Method Based on Uniform Circular Array in Impulsive Noise Environment
CN109375154B (en) * 2018-10-23 2023-04-28 哈尔滨工程大学 A Coherent Signal Parameter Estimation Method Based on Uniform Circular Array in Impulsive Noise Environment
CN109507634A (en) * 2018-11-08 2019-03-22 中国电子科技集团公司第二十八研究所 A kind of blind far-field signal Wave arrival direction estimating method based on sensing operator under any sensor array
CN109507634B (en) * 2018-11-08 2020-08-11 中国电子科技集团公司第二十八研究所 Blind far-field signal direction-of-arrival estimation method based on propagation operator under any sensor array
CN109709510A (en) * 2018-12-24 2019-05-03 贵州航天计量测试技术研究所 A kind of estimation method and system of coherent 2-d direction finding
CN110082708A (en) * 2019-02-25 2019-08-02 西安电子科技大学 Nonuniform noise design and Wave arrival direction estimating method
CN110109053A (en) * 2019-04-02 2019-08-09 华南理工大学 Quick DOA estimation method under a kind of unknown velocity of sound environment
CN110109053B (en) * 2019-04-02 2021-01-19 华南理工大学 Rapid DOA estimation method under unknown sound velocity environment
CN110907887A (en) * 2019-10-21 2020-03-24 成都大公博创信息技术有限公司 Super-resolution direction-finding device based on uniform circular array and processing system
CN110907887B (en) * 2019-10-21 2021-02-23 成都大公博创信息技术有限公司 Super-resolution direction-finding processing system based on uniform circular array
CN111273219A (en) * 2020-02-17 2020-06-12 华南理工大学 A one-dimensional underwater DOA estimation method based on circular and non-circular mixed signals
CN111273219B (en) * 2020-02-17 2023-04-21 华南理工大学 A 1D Underwater Direction of Arrival Estimation Method Based on Circular and Noncircular Mixed Signals
WO2021248792A1 (en) * 2020-06-08 2021-12-16 浙江大学 Single-bit quantized signal virtual domain statistic reconstruction-based co-prime array direction of arrival estimation method
US11567161B2 (en) 2020-06-08 2023-01-31 Zhejiang University Method for estimating the direction-of-arrival of a coprime array based on virtual domain statistics reconstruction of single-bit quantized signal
CN112346005B (en) * 2020-10-30 2022-07-12 哈尔滨工程大学 Airspace rotation orientation estimation method applied to uniform circular hydrophone array
CN112346005A (en) * 2020-10-30 2021-02-09 哈尔滨工程大学 Airspace rotation orientation estimation method applied to uniform circular hydrophone array
CN114428225A (en) * 2022-04-06 2022-05-03 中国电子科技集团公司第二十九研究所 Multi-radiation-source arrival angle measuring method and device based on quasi-matched filtering
CN114428225B (en) * 2022-04-06 2022-06-14 中国电子科技集团公司第二十九研究所 Multi-radiation source arrival angle measuring method and device based on quasi-matched filtering

Also Published As

Publication number Publication date
CN102608565B (en) 2014-01-08

Similar Documents

Publication Publication Date Title
CN102608565B (en) A Direction of Arrival Estimation Method Based on Uniform Circular Array
CN110031794B (en) Coherent information source DOA estimation method based on difference common matrix reconstruction
CN104698433B (en) DOA Estimation in Coherent Signal method based on single snapshot data
CN104931931B (en) Bistatic MIMO radar angle estimating method based on tensor real value subspace under array mutual-coupling condition
CN111049556B (en) A Robust Adaptive Beamforming Method for Coprime Matrix Based on Interference Covariance Matrix Reconstruction
CN104020469B (en) A kind of MIMO radar distance-angle two-dimensional super-resolution rate imaging algorithm
CN104991236B (en) A kind of single base MIMO radar not rounded signal coherence source Wave arrival direction estimating method
CN112615801B (en) Channel estimation method, medium, and apparatus based on compressed sensing and deep learning
CN107340512B (en) A passive localization method for near-far-field hybrid sources based on sub-array division
CN107290730A (en) Bistatic MIMO radar angle evaluation method under array mutual-coupling condition
CN105403874B (en) Nonuniform noise owes standing wave arrival direction estimating method
CN104898085A (en) Dimension-reduction MUSIC algorithm for parameter estimation of polarization sensitive array
CN102621527B (en) Broad band coherent source azimuth estimating method based on data reconstruction
CN104865556B (en) Based on real domain weight minimization l1The MIMO radar system DOA estimation method of Norm Method
CN111693937B (en) Near-field signal source positioning method based on sparse reconstruction and without meshing
CN106019214A (en) DOA Estimation Method for Broadband Coherent Signal Source
CN110749857A (en) DOA estimation method for two-dimensional non-circular signal of uniform rectangular array based on rank loss method
CN104515969A (en) Hexagonal array-based coherent signal two-dimensional DOA (Direction of Arrival) estimation method
WO2021068494A1 (en) High-resolution, accurate, two-dimensional direction of arrival estimation method based on planar co-prime array virtual domain tensor space spectrum searching
CN103344940A (en) Low-complexity DOA estimation method and system
CN109946663B (en) A Linear Complexity Massive MIMO Target Spatial Orientation Estimation Method and Device
CN105335615A (en) Low-complexity two-dimensional angle and polarization parameter joint estimation method
CN102866383B (en) A Direction of Arrival Estimation Method Based on Spatial Adaptive Filtering
CN109521393A (en) A kind of DOA estimation algorithm based on signal subspace revolving property
CN106483193B (en) A kind of wave based on High-order Cumulant reaches method for quick estimating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140108

Termination date: 20200323

CF01 Termination of patent right due to non-payment of annual fee