CN102608565A - Direction-of-arrival estimation method on basis of uniform circular array - Google Patents
Direction-of-arrival estimation method on basis of uniform circular array Download PDFInfo
- Publication number
- CN102608565A CN102608565A CN2012100782940A CN201210078294A CN102608565A CN 102608565 A CN102608565 A CN 102608565A CN 2012100782940 A CN2012100782940 A CN 2012100782940A CN 201210078294 A CN201210078294 A CN 201210078294A CN 102608565 A CN102608565 A CN 102608565A
- Authority
- CN
- China
- Prior art keywords
- matrix
- array
- arrival
- coherent
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000001427 coherent effect Effects 0.000 claims abstract description 46
- 230000009466 transformation Effects 0.000 claims abstract description 14
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 60
- 238000004422 calculation algorithm Methods 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 8
- 230000003595 spectral effect Effects 0.000 claims description 6
- 238000012935 Averaging Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 5
- 238000003491 array Methods 0.000 description 11
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明涉及一种波达方向估计方法,具体涉及基于均匀圆阵列的独立信号和相干信号的波达方向估计方法。本发明的基于均匀圆阵列的波达方向估计方法,包括:波达方向估计参数预处理;去除模式空间噪声;提高阵列孔径,对独立信号进行波达方向估计;消除独立信号,对相干信号进行波达方向估计。本发明具有更高的估计精度,阵列孔径得到了更加充分的利用,弥补由于虚拟阵列变换带来的阵列孔径损失,估计性能得到进一步地提升,计算简便,运算量小。
The invention relates to a method for estimating a direction of arrival, in particular to a method for estimating a direction of arrival based on an independent signal and a coherent signal of a uniform circular array. The DOA estimation method based on a uniform circular array of the present invention includes: preprocessing DOA estimation parameters; removing pattern space noise; increasing the array aperture, performing DOA estimation on independent signals; eliminating independent signals, and performing DOA estimation on coherent signals Direction of arrival estimation. The invention has higher estimating precision, the array aperture is more fully utilized, the array aperture loss caused by the virtual array transformation is compensated, the estimation performance is further improved, the calculation is simple and the calculation amount is small.
Description
技术领域 technical field
本发明涉及一种波达方向(Direction of Arrival,简称DOA)估计方法,具体涉及基于均匀圆阵列(Uniform CircularArray,简称UCA)的独立信号和相干信号的波达方向估计方法。The present invention relates to a direction of arrival (Direction of Arrival, referred to as DOA) estimation method, in particular to a direction of arrival estimation method based on independent signals and coherent signals of a uniform circular array (Uniform Circular Array, referred to as UCA).
背景技术 Background technique
在实际信号环境当中,独立信号与相干信号往往是同时存在的,大多DOA估计算法主要是针对独立信号或者相干信号单独设计的,没有考虑独立信号和相干信号同时存在的情况,更没有充分利用独立信号和相干信号的特点来进行DOA估计。在文献:Ye Z F,Zhang Y F,LiuC.Direction-of-arrival estimation for uncorrelated and coherent signals with fewer sensors[J].IEEE Trans.on Microwaves,Antennas&Propagation,2009,3(3):473-482中,考虑了独立信号和相干信号的DOA估计问题,但其只适用于均匀线阵列(Uniform LinearArray,简称ULA)的DOA估计情况。In the actual signal environment, independent signals and coherent signals often exist at the same time. Most DOA estimation algorithms are mainly designed for independent signals or coherent signals. The characteristics of the signal and the coherent signal are used to estimate the DOA. In the literature: Ye Z F, Zhang Y F, LiuC.Direction-of-arrival estimation for uncorrelated and coherent signals with fewer sensors[J].IEEE Trans.on Microwaves, Antennas&Propagation, 2009, 3(3):473-482 , considering the DOA estimation of independent signals and coherent signals, but it is only applicable to the DOA estimation of Uniform Linear Array (ULA).
UCA阵列分布在一个平面上,它可以同时提供方位角和俯仰角信息,并且其提供的方位角信息是360°无模糊的。但是由于UCA阵列导向矢量不具有范德蒙德结构,很多基于ULA阵列的测向算法不能用于UCA阵列,尤其是在相干信号存在的情况下。为了让基于ULA阵列的测向算法适用于UCA阵列乃至任意阵列,广大学者提出了很多方法,将非ULA阵列虚拟变换为ULA阵列。其中比较经典的几种方法有:针对UCA阵列的模式空间变换,针对任意阵列的内插变换技术和流行分离技术。利用前述的阵列虚拟变换技术可以将任意阵列虚拟为ULA阵列,进而利用基于ULA阵列的DOA估计算法求出相应的波达方向。但是经过虚拟变换过后的阵列往往存在不同程度的阵列孔径损失,使得估计性能有所降低;而且噪声经过虚拟变换后可能会被非线性地放大,这将使得估计性能进一步的恶化,尤其是在信噪比较小的情况。The UCA array is distributed on a plane, it can provide azimuth angle and elevation angle information at the same time, and the azimuth angle information it provides is 360° without ambiguity. However, because the UCA array steering vector does not have a Vandermonde structure, many direction finding algorithms based on ULA arrays cannot be used for UCA arrays, especially in the presence of coherent signals. In order to make the direction-finding algorithm based on ULA arrays suitable for UCA arrays or even arbitrary arrays, many scholars have proposed many methods to virtually transform non-ULA arrays into ULA arrays. Some of the more classic methods are: pattern space transformation for UCA arrays, interpolation transformation technology for arbitrary arrays and popular separation technology. Using the aforementioned array virtual transformation technology, any array can be virtualized as a ULA array, and then the DOA estimation algorithm based on the ULA array can be used to obtain the corresponding direction of arrival. However, the array after virtual transformation often has different degrees of array aperture loss, which reduces the estimation performance; and the noise may be nonlinearly amplified after virtual transformation, which will further deteriorate the estimation performance, especially in the signal When the noise ratio is small.
发明内容 Contents of the invention
本发明的目的在于提出一种估计过程简单,计算量小的基于均匀圆阵列的波达方向估计方法。The purpose of the present invention is to propose a direction of arrival estimation method based on a uniform circular array with a simple estimation process and a small amount of calculation.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
本发明的基于均匀圆阵列的波达方向估计方法,包括如下步骤:The DOA estimation method based on the uniform circular array of the present invention comprises the following steps:
(1)波达方向估计参数预处理:(1) Direction of arrival estimation parameter preprocessing:
a.根据阵列输出数据矩阵X:X=AS+Z,求均匀圆阵列的接收数据协方差矩阵R:R=E[XXH]=ARSAH+σ2I;a. According to the array output data matrix X: X=AS+Z, seek the received data covariance matrix R of the uniform circular array: R=E[XX H ]=AR S A H +σ 2 I;
其中,A表示均匀圆阵列的M×N维阵列流型矩阵,M表示阵元个数,N表示信号个数,N中独立信号和相干信号个数分别为Ni和Nc,D为相干信源组数,nk为第k组相干信源的信号个数,S表示N×L维信号数据矩阵,L表示快拍数,Z表示M×L维高斯白噪声数据矩阵,XH表示X的共轭转置,RS为信号数据协方差矩阵,σ2为高斯白噪声的功率,I为与R相同维数的单位阵;Among them, A represents the M×N dimensional array flow pattern matrix of the uniform circular array, M represents the number of array elements, N represents the number of signals, and the numbers of independent signals and coherent signals in N are N i and N c , respectively. D is the number of coherent source groups, nk is the number of signals of the kth coherent source group, S represents the N×L dimensional signal data matrix, L represents the number of snapshots, Z represents the M×L dimensional Gaussian white noise data matrix, X H represents the conjugate transpose of X, RS is the signal data covariance matrix, σ 2 is the power of Gaussian white noise, and I is the identity matrix with the same dimension as R;
b.利用模式空间变换矩阵T:对均匀圆阵列的接收数据R进行变换,得到模式空间中均匀线阵列的接收数据协方差矩阵R1: b. Use the pattern space transformation matrix T: Transform the received data R of the uniform circular array to obtain the received data covariance matrix R 1 of the uniform linear array in the pattern space:
其中,J0为2K+1维对角阵,J0对角线位置上的元素为J0(k,k)=j(k-1-K)B(k-1-K)(-β),B(k-1-K)(·)为k-1-K阶的第一类Bessel函数,k=1,…,2K+1;F为离散傅里叶变换矩阵,F=[w-K w-K+1…wK],wq=[1e-jp…e-jp(M-1)]H,q=-K,…,K;A1为虚拟均匀线阵的(2K+1)×N维流型矩阵,A1=[a1 a2…aN],i=1,…,N;Among them, J 0 is a 2K+1-dimensional diagonal matrix, and the elements on the diagonal position of J 0 are J 0 (k, k)=j (k-1-K) B (k-1-K) (-β ), B (k-1-K) ( ) is the Bessel function of the first kind of k-1-K order, k=1,..., 2K+1; F is the discrete Fourier transform matrix, F=[w -K w -K+1 ...w K ], w q =[1e -jp ...e -jp(M-1) ] H , q=-K,...,K; A 1 is the (2K+1)×N-dimensional manifold matrix of the virtual uniform linear array, A 1 =[a 1 a 2 ... a N ], i=1,...,N;
(2)去除模式空间噪声:(2) Remove pattern space noise:
求不含噪声成分的数据协方差矩阵R2:噪声功率σ2通过对R进行特征值分解,并对其M-(Ni+D)个小特征值求平均得到;Find the data covariance matrix R 2 without noise components: The noise power σ 2 is obtained by decomposing the eigenvalues of R and averaging its M-(N i +D) small eigenvalues;
(3)提高阵列孔径,对独立信号进行波达方向估计:(3) Improve the array aperture and estimate the direction of arrival for independent signals:
用多重信号分谱峰搜索方法进行波达方向估计,搜索出Ni+D个大特征值对应的谱峰,其对应的估计角度包含了Ni个独立信号对应的波达方向角度和D组相干信号对应的波达方向角度,选择幅值最大的Ni个谱峰幅值对应的波达方向角度作为独立信号的波达方向估计结果;Use the multiple signal split spectrum peak search method to estimate the direction of arrival, search out the spectral peaks corresponding to N i + D large eigenvalues, and the corresponding estimated angles include the direction of arrival angles corresponding to N i independent signals and D groups The direction of arrival angle corresponding to the coherent signal, select the direction of arrival angle corresponding to the N i spectral peak amplitudes with the largest amplitude as the direction of arrival estimation result of the independent signal;
(4)消除独立信号,对相干信号进行波达方向估计:(4) Eliminate independent signals and estimate direction of arrival for coherent signals:
相干信号的数据协方差矩阵R3:其中,J为与R2同维数的反对角单位矩阵,A1c表示由相干信号的导向矢量组成的流型矩阵,RSc表示相干信号的信号协方差矩阵,表示RSc的转置,利用前后向矢量重构算法进行解相干,得到没有秩亏损的相干信号数据矩阵,并利用总体最小二乘-旋转不变子空间算法求解相干信号的波达方向。The data covariance matrix R 3 of the coherent signal: Among them, J is the anti-diagonal identity matrix with the same dimension as R 2 , A 1c represents the flow pattern matrix composed of the steering vector of the coherent signal, R Sc represents the signal covariance matrix of the coherent signal, Represent the transpose of R Sc , use forward-backward vector reconstruction algorithm to decoherence, obtain the coherent signal data matrix without rank deficit, and use the total least squares-rotation invariant subspace algorithm to solve the direction of arrival of the coherent signal.
本发明的有益效果在于:The beneficial effects of the present invention are:
与现有的基于均匀圆阵列的测向算法相比,本发明在DOA估计过程中没有受到噪声影响,具有更高的估计精度,尤其是信噪比较小时估计性能有很大提高;通过将独立信号和相干信号分开估计,阵列孔径得到了更加充分的利用,弥补由于虚拟阵列变换带来的阵列孔径损失,估计性能得到进一步地提升;由于采用模式空间变换,DOA估计中采用的都是适于均匀线阵的算法,计算简便,运算量小。Compared with the existing direction-finding algorithm based on the uniform circular array, the present invention is not affected by noise in the DOA estimation process, and has higher estimation accuracy, especially when the signal-to-noise ratio is small, the estimation performance is greatly improved; The independent signal and the coherent signal are estimated separately, the array aperture is more fully utilized, and the loss of the array aperture caused by the virtual array transformation is compensated, and the estimation performance is further improved; Based on the uniform linear array algorithm, the calculation is simple and the amount of calculation is small.
附图说明 Description of drawings
图1是本发明基于均匀圆阵列的波达方向估计方法流程图;Fig. 1 is the flow chart of the method for estimating the direction of arrival based on the uniform circular array of the present invention;
图2是在相同条件下,入射信号为独立信号时,本发明方法与未去噪的模式空间MUSIC算法估计均方根误差比较示意图;Fig. 2 is under the same condition, when the incident signal is an independent signal, the comparison schematic diagram of the root mean square error estimated by the method of the present invention and the model space MUSIC algorithm without denoising;
图3是在相同条件下,入射信号为独立信号和相干信号的混合时,本发明方法与基于Toeplitz解相干方法的TLS-ESPRIT算法的估计均方根误差比较示意图。Fig. 3 is a schematic diagram of the estimated root mean square error comparison between the method of the present invention and the TLS-ESPRIT algorithm based on the Toeplitz decoherence method when the incident signal is a mixture of independent signals and coherent signals under the same conditions.
具体实施方式 Detailed ways
本发明的核心思想是利用模式空间变换过程中数据结构特点,消除均匀高斯白噪声对DOA估计的影响,提高估计性能;并采用独立信号和相干信号分开估计的方法,消除UCA阵列经过模式空间变换后的噪声影响,增加UCA阵列经过模式空间变换后的有效阵列孔径。The core idea of the present invention is to use the characteristics of the data structure in the process of mode space transformation to eliminate the influence of uniform Gaussian white noise on DOA estimation and improve the estimation performance; The effect of the noise after the UCA array is increased after the mode space transformation of the effective array aperture.
UCA阵列因其能提供无模糊的方位角信息以及二维角度信息而具有很大的优越性。但由于其阵元位置的特殊性,使得很多传统的基于ULA阵列的测向算法对UCA阵列不适用,尤其是在存在相干信号的情况。随着模式空间变换方法的引入,可以将UCA阵列虚拟转换为ULA阵列,但是转换后存在阵列孔径损失,并且噪声功率在模式空间下会被放大,进而影响DOA估计的精度。The UCA array has great advantages because it can provide unambiguous azimuth information and two-dimensional angle information. However, due to the particularity of the position of its array elements, many traditional direction-finding algorithms based on ULA arrays are not suitable for UCA arrays, especially in the presence of coherent signals. With the introduction of the mode space transformation method, the UCA array can be virtually converted into a ULA array, but there is an array aperture loss after conversion, and the noise power will be amplified in the mode space, which will affect the accuracy of DOA estimation.
在独立信号与相干信号同时存在时,如果利用两种信号自身的特性,将其分开进行DOA估计,将有效地提高阵列孔径。在估计过程当中根据数据结构,设计合理的消除噪声的方法,将极大地提高DOA估计的精度。When independent signals and coherent signals exist at the same time, if the characteristics of the two signals are used to separate them for DOA estimation, the array aperture will be effectively improved. According to the data structure in the estimation process, designing a reasonable method to eliminate noise will greatly improve the accuracy of DOA estimation.
下面结合附图对本发明的波达方向估计方法进行详细描述。The method for estimating the direction of arrival of the present invention will be described in detail below with reference to the accompanying drawings.
图1是本发明基于UCA阵列的波达方向估计方法流程图。如图1所示,该方法包括如下步骤:Fig. 1 is a flow chart of the method for estimating the direction of arrival based on the UCA array in the present invention. As shown in Figure 1, the method includes the following steps:
(1)波达方向估计参数预处理:(1) Direction of arrival estimation parameter preprocessing:
一、由各个阵元接收的快拍数据,获得阵列输出数据矩阵X,X=AS+Z,其中,A表示UCA阵列的M×N维阵列流型矩阵,M表示阵元个数,N表示信号个数,其中独立信号和相干信号个数分别为Ni和D为相干信源组数,nk为第k组相干信源的信号个数);Z表示N×L维信号数据矩阵,L表示快拍数;N表示M×L维高斯白噪声数据矩阵。由X求出UCA阵列的接收数据协方差矩阵R:1. From the snapshot data received by each array element, the array output data matrix X is obtained, X=AS+Z, where A represents the M×N-dimensional array flow matrix of the UCA array, M represents the number of array elements, and N represents The number of signals, where the numbers of independent signals and coherent signals are N i and D is the number of coherent information source groups, n k is the number of signals of the kth coherent information source); Z represents the N×L dimensional signal data matrix, L represents the number of snapshots; N represents the M×L dimensional Gaussian white noise data matrix . Find the received data covariance matrix R of the UCA array from X:
R=E[XXH]=ARSAH+σ2IR=E[XX H ]=AR S A H +σ 2 I
其中,XH表示X的共轭转置,RS为信号数据协方差矩阵,σ2为高斯白噪声的功率,I为与R相同维数的单位阵。Among them, X H represents the conjugate transpose of X, RS is the signal data covariance matrix, σ 2 is the power of Gaussian white noise, and I is the identity matrix with the same dimension as R.
二、构造模式空间变换矩阵T如下:2. Construct the pattern space transformation matrix T as follows:
其中,J0为2K+1维对角阵,则J0对角线位置上的元素为J0(k,k)=j(k-1-K)B(k-1-K)(-β),B(k-1-K)(·)为k-1-K阶的第一类Bessel函数,k=1,…,2K+1;F为离散傅里叶变换矩阵,F=[w-K w-K+1…wK],wq=[1e-jp…e-jp(M-1)]H,q=-K,…,K。Wherein, J 0 is a 2K+1-dimensional diagonal array, and the elements on the diagonal position of J 0 are J 0 (k, k)=j (k-1-K) B (k-1-K) (- β), B (k-1-K) (.) is the Bessel function of the first kind of k-1-K order, k=1,..., 2K+1; F is the discrete Fourier transform matrix, F=[ w -K w -K+1 ...w K ], w q =[1e -jp ...e -jp(M-1) ] H , q=-K, . . . , K.
对R进行模式空间变换,得到模式空间中的数据协方差矩阵R1:The pattern space transformation is performed on R to obtain the data covariance matrix R 1 in the pattern space:
其中,A1为虚拟均匀线阵的(2K+1)×N维流型矩阵,A1=[a1 a2…aN],i=1,…,N。Among them, A 1 is the (2K+1)×N-dimensional manifold matrix of the virtual uniform linear array, A 1 =[a 1 a 2 ... a N ], i=1,...,N.
(2)去除模式空间噪声:(2) Remove pattern space noise:
由步骤三公式5可知,原来的空间白噪声在模式空间仍然是白噪声,但噪声功率会变大且不均匀,这严重影响了估计性能。由R1求出不含噪声成分的数据协方差矩阵R2:From Equation 5 in
由公式6可知,只要知道了噪声功率σ2和T即可求得不含噪声的数据协方差矩阵R2。噪声功率σ2可以通过对R进行特征值分解,并对其M-(Ni+D)个小特征值求平均得到;而T在步骤二当中已经求出。It can be known from
(3)提高阵列孔径,对独立信号进行波达方向估计:(3) Improve the array aperture and estimate the direction of arrival for independent signals:
对R2进行奇异值分解,得到M-(Ni+D)个小特征值对应的噪声子空间UN。采用MUSIC谱峰搜索方法进行DOA估计:Singular value decomposition is performed on R 2 to obtain the noise subspace U N corresponding to M-(N i +D) small eigenvalues. Using the MUSIC peak search method for DOA estimation:
可以搜索出Ni+D个大特征值对应的谱峰,其对应的估计角度包含了Ni个独立信号对应的DOA角度和D组相干信号对应的DOA角度。由于一组相干信号对应的导向矢量不是标准形式,因而其与噪声子空间的正交性不如独立信号好,对应的谱峰幅值更小。可以选择幅值最大的Ni个谱峰幅值对应的DOA角度作为独立信号的波达方向估计结果。Spectrum peaks corresponding to N i +D large eigenvalues can be searched out, and the corresponding estimated angles include DOA angles corresponding to N i independent signals and DOA angles corresponding to D groups of coherent signals. Since the steering vector corresponding to a group of coherent signals is not in the standard form, its orthogonality with the noise subspace is not as good as that of independent signals, and the corresponding spectral peak amplitude is smaller. The DOA angles corresponding to the Ni spectral peak amplitudes with the largest amplitudes can be selected as the DOA estimation results of the independent signals.
(4)消除独立信号,对相干信号进行波达方向估计:(4) Eliminate independent signals and estimate direction of arrival for coherent signals:
步骤五中已经对独立信号进行了DOA估计,为了避免重复估计以提高阵列利用率,有必要去除全部独立信号的信息。根据公式6,并利用独立信号和噪声数据协方差矩阵的Toeplitz特征,得到相干信号的数据协方差矩阵R3:In step five, DOA estimation has been performed on independent signals. In order to avoid repeated estimation and improve array utilization, it is necessary to remove information of all independent signals. According to
其中,J为与R2同维数的反对角单位矩阵,A1c表示由相干信号的导向矢量组成的流型矩阵,RSc表示相干信号的信号协方差矩阵,表示RSc的转置。显然,R3中不含有任何的独立信号和噪声的信息。Among them, J is the anti-diagonal identity matrix with the same dimension as R 2 , A 1c represents the flow pattern matrix composed of the steering vector of the coherent signal, R Sc represents the signal covariance matrix of the coherent signal, Indicates the transpose of R Sc . Obviously, R3 does not contain any independent signal and noise information.
利用前后向矢量重构算法进行解相干,对R3进行奇异值分解,得到2D个大特征值对应的信号子空间US。对R4进行奇异值分解,取D个大特征值对应的信号子空间US1=[u1,u2,…,uD],构造列满秩的相干信号数据矩阵:The forward and backward vector reconstruction algorithm is used for decoherence, and the singular value decomposition is performed on R 3 to obtain the signal subspace U S corresponding to 2D large eigenvalues. Singular value decomposition is performed on R 4 , and the signal subspace U S1 =[u 1 , u 2 ,...,u D ] corresponding to D large eigenvalues is taken to construct a full-rank coherent signal data matrix:
其中,k=1,…,D。为由uk构成的M0×Lfk维数据矩阵,M0=M+1-max{Lfk}, 为由构成的M0×Lfk维数据矩阵,Lfb=nk-Lfk。in, k=1,...,D. is a M 0 ×L fk dimensional data matrix composed of u k , M 0 =M+1-max{L fk }, for the reason The formed M 0 ×L fk dimensional data matrix, L fb =n k -L fk .
利用总体最小二乘-旋转不变子空间算法(TLS-ESPRIT)求解相干信号的波达方向:R51和R52分别对应R5的前M0-1行和后M0-1行组成的矩阵,R6=[R51,R52]。对R6进行奇异值分解,Q为其右奇异矩阵中Nc个小特征值对应的特征矢量矩阵,维数为2N×N,且Q=[Q1;Q2],Q1和Q2均为N×N的矩阵,根据TLS-ESPRIT原理Use the total least squares-rotation invariant subspace algorithm (TLS-ESPRIT) to solve the direction of arrival of the coherent signal: R 51 and R 52 correspond to the front M 0 -1 line and the back M 0 -1 line of R 5 respectively matrix, R 6 =[R 51 , R 52 ]. Singular value decomposition is performed on R 6 , Q is the eigenvector matrix corresponding to N c small eigenvalues in the right singular matrix, the dimension is 2N×N, and Q=[Q 1 ; Q 2 ], Q 1 and Q 2 Both are N×N matrices, according to the TLS-ESPRIT principle
对Ψ进行特征分解,根据其特征值求得相干信号的波达方向Perform eigendecomposition on Ψ, and obtain the direction of arrival of the coherent signal according to its eigenvalues
式中,i=1,…,Nc,γi(Ψ)表示矩阵Ψ的第i个特征值。In the formula, i=1, ..., N c , γ i (Ψ) represents the ith eigenvalue of the matrix Ψ.
本发明提出的DOA估计方法不受到模式空间噪声的影响,极大地提高的测向算法的估计性能。通过将独立信号和相干信号分开进行估计,使得阵列孔径得到有效利用,弥补了模式空间变换带来阵列孔径损失的不足。以上两点的实施有效的解决了UCA阵列在DOA估计当中的两个缺陷,极大地扩展了UCA阵列的应用领域。The DOA estimation method proposed by the invention is not affected by the pattern space noise, and greatly improves the estimation performance of the direction finding algorithm. By separately estimating the independent signal and the coherent signal, the array aperture is effectively utilized, which makes up for the shortage of the array aperture loss caused by the mode space transformation. The implementation of the above two points effectively solves the two defects of the UCA array in DOA estimation, and greatly expands the application field of the UCA array.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210078294.0A CN102608565B (en) | 2012-03-23 | 2012-03-23 | A Direction of Arrival Estimation Method Based on Uniform Circular Array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210078294.0A CN102608565B (en) | 2012-03-23 | 2012-03-23 | A Direction of Arrival Estimation Method Based on Uniform Circular Array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102608565A true CN102608565A (en) | 2012-07-25 |
CN102608565B CN102608565B (en) | 2014-01-08 |
Family
ID=46526077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210078294.0A Expired - Fee Related CN102608565B (en) | 2012-03-23 | 2012-03-23 | A Direction of Arrival Estimation Method Based on Uniform Circular Array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102608565B (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091661A (en) * | 2013-02-01 | 2013-05-08 | 西安科技大学 | Broadband signal arriving direction estimation method based on iteration spectral reconfiguration |
CN103308877A (en) * | 2013-05-21 | 2013-09-18 | 西安电子科技大学 | Segregated type dipole pair array-based method for estimating multi-parameter |
CN103323811A (en) * | 2013-05-21 | 2013-09-25 | 西安电子科技大学 | Parameter estimation method based on virtual concentric annulus array |
CN103731189A (en) * | 2014-01-08 | 2014-04-16 | 桂林电子科技大学 | Conformal antenna array dynamic subarray partitioning method and direction of arrival estimation method |
CN104021293A (en) * | 2014-06-09 | 2014-09-03 | 哈尔滨工业大学深圳研究生院 | DOA and frequency combined estimation method based on structure least square method |
CN104049234A (en) * | 2014-03-18 | 2014-09-17 | 电子科技大学 | Method for adopting uniform circular arrays to quickly determine spatial spectrums |
CN104598732A (en) * | 2015-01-19 | 2015-05-06 | 西安交通大学 | Semi-parameter number estimation method for coherent and incoherent mixed signals |
CN104678350A (en) * | 2015-03-10 | 2015-06-03 | 重庆邮电大学 | TLS-ESPRTT algorithm-based 2D DOA estimation in large scale MIMO system |
WO2015096099A1 (en) * | 2013-12-26 | 2015-07-02 | 华为技术有限公司 | Method and apparatus for estimating angle of arrival, and electronic device |
CN104833957A (en) * | 2015-04-03 | 2015-08-12 | 西北大学 | Arbitrary array multi-direction virtual transformation two-dimensional AOA detection rotation algorithm |
CN105824002A (en) * | 2016-04-15 | 2016-08-03 | 西安电子科技大学 | Direction-of-arrival estimation method based on nested subarray array |
CN106501765A (en) * | 2016-12-02 | 2017-03-15 | 南京邮电大学 | A kind of Maximum Likelihood DOA Estimation based on quadratic sum and Semidefinite Programming |
CN106584207A (en) * | 2016-11-28 | 2017-04-26 | 南京工程学院 | Online monitoring method for abrasion of sliding bonding surface |
CN106932087A (en) * | 2017-03-21 | 2017-07-07 | 陕西理工大学 | Circular acoustic vector-sensor array row near field sources Multiple Parameter Estimation Methods |
CN107290709A (en) * | 2017-05-05 | 2017-10-24 | 浙江大学 | The relatively prime array Wave arrival direction estimating method decomposed based on vandermonde |
CN107907853A (en) * | 2017-11-07 | 2018-04-13 | 中国人民解放军信息工程大学 | A kind of single distributed source DOA estimation method based on uniform circular array differential phase |
CN108663654A (en) * | 2018-06-26 | 2018-10-16 | 哈尔滨工程大学 | A kind of 360 degrees omnidirection dynamic direction-finding method based on continuous quantum dove group |
CN108828502A (en) * | 2018-06-05 | 2018-11-16 | 哈尔滨工程大学 | Coherent source direction determining method based on uniform circular array centre symmetry |
CN109375154A (en) * | 2018-10-23 | 2019-02-22 | 哈尔滨工程大学 | A Coherent Signal Parameter Estimation Method Based on Uniform Circular Array in Impulsive Noise Environment |
CN109507634A (en) * | 2018-11-08 | 2019-03-22 | 中国电子科技集团公司第二十八研究所 | A kind of blind far-field signal Wave arrival direction estimating method based on sensing operator under any sensor array |
CN109709510A (en) * | 2018-12-24 | 2019-05-03 | 贵州航天计量测试技术研究所 | A kind of estimation method and system of coherent 2-d direction finding |
CN110082708A (en) * | 2019-02-25 | 2019-08-02 | 西安电子科技大学 | Nonuniform noise design and Wave arrival direction estimating method |
CN110109053A (en) * | 2019-04-02 | 2019-08-09 | 华南理工大学 | Quick DOA estimation method under a kind of unknown velocity of sound environment |
CN110907887A (en) * | 2019-10-21 | 2020-03-24 | 成都大公博创信息技术有限公司 | Super-resolution direction-finding device based on uniform circular array and processing system |
CN111273219A (en) * | 2020-02-17 | 2020-06-12 | 华南理工大学 | A one-dimensional underwater DOA estimation method based on circular and non-circular mixed signals |
CN112346005A (en) * | 2020-10-30 | 2021-02-09 | 哈尔滨工程大学 | Airspace rotation orientation estimation method applied to uniform circular hydrophone array |
WO2021248792A1 (en) * | 2020-06-08 | 2021-12-16 | 浙江大学 | Single-bit quantized signal virtual domain statistic reconstruction-based co-prime array direction of arrival estimation method |
CN114428225A (en) * | 2022-04-06 | 2022-05-03 | 中国电子科技集团公司第二十九研究所 | Multi-radiation-source arrival angle measuring method and device based on quasi-matched filtering |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102175989A (en) * | 2010-12-30 | 2011-09-07 | 电子科技大学 | Method for measuring incoherently distributed signal two-dimensional DOA (direction of arrival) |
CN102385048A (en) * | 2011-08-10 | 2012-03-21 | 西安交通大学 | Mixed signal direction estimation method based on even linear array |
-
2012
- 2012-03-23 CN CN201210078294.0A patent/CN102608565B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102175989A (en) * | 2010-12-30 | 2011-09-07 | 电子科技大学 | Method for measuring incoherently distributed signal two-dimensional DOA (direction of arrival) |
CN102385048A (en) * | 2011-08-10 | 2012-03-21 | 西安交通大学 | Mixed signal direction estimation method based on even linear array |
Non-Patent Citations (2)
Title |
---|
刁鸣等: "非圆信号的四阶累积量测向新方法", 《哈尔滨工程大学学报》, vol. 33, no. 1, 31 January 2012 (2012-01-31), pages 112 - 116 * |
韩晓东等: "冲击噪声背景下均匀圆阵相干信源的DOA估计", 《应用科技》, vol. 39, no. 1, 29 February 2012 (2012-02-29), pages 35 - 38 * |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091661A (en) * | 2013-02-01 | 2013-05-08 | 西安科技大学 | Broadband signal arriving direction estimation method based on iteration spectral reconfiguration |
CN103091661B (en) * | 2013-02-01 | 2014-09-10 | 西安科技大学 | Broadband signal arriving direction estimation method based on iteration spectral reconfiguration |
CN103323811B (en) * | 2013-05-21 | 2014-10-22 | 西安电子科技大学 | Parameter estimation method based on virtual concentric annulus array |
CN103308877A (en) * | 2013-05-21 | 2013-09-18 | 西安电子科技大学 | Segregated type dipole pair array-based method for estimating multi-parameter |
CN103323811A (en) * | 2013-05-21 | 2013-09-25 | 西安电子科技大学 | Parameter estimation method based on virtual concentric annulus array |
CN103308877B (en) * | 2013-05-21 | 2015-11-18 | 西安电子科技大学 | Based on the Multiple Parameter Estimation Methods of separate type dipole pair arrays |
CN104937856B (en) * | 2013-12-26 | 2018-06-05 | 华为技术有限公司 | A kind of method, apparatus and electronic equipment for estimating angle of arrival |
WO2015096099A1 (en) * | 2013-12-26 | 2015-07-02 | 华为技术有限公司 | Method and apparatus for estimating angle of arrival, and electronic device |
CN104937856A (en) * | 2013-12-26 | 2015-09-23 | 华为技术有限公司 | Method and apparatus for estimating angle of arrival, and electronic device |
CN103731189B (en) * | 2014-01-08 | 2016-10-12 | 桂林电子科技大学 | The dynamic Antenna Subarray Division of conformal array antenna and Wave arrival direction estimating method |
CN103731189A (en) * | 2014-01-08 | 2014-04-16 | 桂林电子科技大学 | Conformal antenna array dynamic subarray partitioning method and direction of arrival estimation method |
CN104049234A (en) * | 2014-03-18 | 2014-09-17 | 电子科技大学 | Method for adopting uniform circular arrays to quickly determine spatial spectrums |
CN104049234B (en) * | 2014-03-18 | 2017-01-25 | 电子科技大学 | Method for adopting uniform circular arrays to quickly determine spatial spectrums |
CN104021293A (en) * | 2014-06-09 | 2014-09-03 | 哈尔滨工业大学深圳研究生院 | DOA and frequency combined estimation method based on structure least square method |
CN104598732B (en) * | 2015-01-19 | 2018-03-02 | 西安交通大学 | A kind of relevant half number of parameters method of estimation with incoherent mixed signal |
CN104598732A (en) * | 2015-01-19 | 2015-05-06 | 西安交通大学 | Semi-parameter number estimation method for coherent and incoherent mixed signals |
CN104678350B (en) * | 2015-03-10 | 2017-07-28 | 重庆邮电大学 | Arrival direction estimation based on TLS ESPRIT algorithms in extensive mimo system |
CN104678350A (en) * | 2015-03-10 | 2015-06-03 | 重庆邮电大学 | TLS-ESPRTT algorithm-based 2D DOA estimation in large scale MIMO system |
CN104833957A (en) * | 2015-04-03 | 2015-08-12 | 西北大学 | Arbitrary array multi-direction virtual transformation two-dimensional AOA detection rotation algorithm |
CN105824002A (en) * | 2016-04-15 | 2016-08-03 | 西安电子科技大学 | Direction-of-arrival estimation method based on nested subarray array |
CN106584207A (en) * | 2016-11-28 | 2017-04-26 | 南京工程学院 | Online monitoring method for abrasion of sliding bonding surface |
CN106501765A (en) * | 2016-12-02 | 2017-03-15 | 南京邮电大学 | A kind of Maximum Likelihood DOA Estimation based on quadratic sum and Semidefinite Programming |
CN106932087B (en) * | 2017-03-21 | 2019-07-05 | 陕西理工大学 | Round acoustic vector-sensor array column near field sources Multiple Parameter Estimation Methods |
CN106932087A (en) * | 2017-03-21 | 2017-07-07 | 陕西理工大学 | Circular acoustic vector-sensor array row near field sources Multiple Parameter Estimation Methods |
CN107290709A (en) * | 2017-05-05 | 2017-10-24 | 浙江大学 | The relatively prime array Wave arrival direction estimating method decomposed based on vandermonde |
CN107290709B (en) * | 2017-05-05 | 2019-07-16 | 浙江大学 | Direction of Arrival Estimation Method for Coprime Array Based on Vandermonde Decomposition |
CN107907853A (en) * | 2017-11-07 | 2018-04-13 | 中国人民解放军信息工程大学 | A kind of single distributed source DOA estimation method based on uniform circular array differential phase |
CN108828502A (en) * | 2018-06-05 | 2018-11-16 | 哈尔滨工程大学 | Coherent source direction determining method based on uniform circular array centre symmetry |
CN108663654A (en) * | 2018-06-26 | 2018-10-16 | 哈尔滨工程大学 | A kind of 360 degrees omnidirection dynamic direction-finding method based on continuous quantum dove group |
CN108663654B (en) * | 2018-06-26 | 2022-03-18 | 哈尔滨工程大学 | 360-degree all-dimensional dynamic direction finding method based on continuous quantum pigeon group |
CN109375154A (en) * | 2018-10-23 | 2019-02-22 | 哈尔滨工程大学 | A Coherent Signal Parameter Estimation Method Based on Uniform Circular Array in Impulsive Noise Environment |
CN109375154B (en) * | 2018-10-23 | 2023-04-28 | 哈尔滨工程大学 | A Coherent Signal Parameter Estimation Method Based on Uniform Circular Array in Impulsive Noise Environment |
CN109507634A (en) * | 2018-11-08 | 2019-03-22 | 中国电子科技集团公司第二十八研究所 | A kind of blind far-field signal Wave arrival direction estimating method based on sensing operator under any sensor array |
CN109507634B (en) * | 2018-11-08 | 2020-08-11 | 中国电子科技集团公司第二十八研究所 | Blind far-field signal direction-of-arrival estimation method based on propagation operator under any sensor array |
CN109709510A (en) * | 2018-12-24 | 2019-05-03 | 贵州航天计量测试技术研究所 | A kind of estimation method and system of coherent 2-d direction finding |
CN110082708A (en) * | 2019-02-25 | 2019-08-02 | 西安电子科技大学 | Nonuniform noise design and Wave arrival direction estimating method |
CN110109053A (en) * | 2019-04-02 | 2019-08-09 | 华南理工大学 | Quick DOA estimation method under a kind of unknown velocity of sound environment |
CN110109053B (en) * | 2019-04-02 | 2021-01-19 | 华南理工大学 | Rapid DOA estimation method under unknown sound velocity environment |
CN110907887A (en) * | 2019-10-21 | 2020-03-24 | 成都大公博创信息技术有限公司 | Super-resolution direction-finding device based on uniform circular array and processing system |
CN110907887B (en) * | 2019-10-21 | 2021-02-23 | 成都大公博创信息技术有限公司 | Super-resolution direction-finding processing system based on uniform circular array |
CN111273219A (en) * | 2020-02-17 | 2020-06-12 | 华南理工大学 | A one-dimensional underwater DOA estimation method based on circular and non-circular mixed signals |
CN111273219B (en) * | 2020-02-17 | 2023-04-21 | 华南理工大学 | A 1D Underwater Direction of Arrival Estimation Method Based on Circular and Noncircular Mixed Signals |
WO2021248792A1 (en) * | 2020-06-08 | 2021-12-16 | 浙江大学 | Single-bit quantized signal virtual domain statistic reconstruction-based co-prime array direction of arrival estimation method |
US11567161B2 (en) | 2020-06-08 | 2023-01-31 | Zhejiang University | Method for estimating the direction-of-arrival of a coprime array based on virtual domain statistics reconstruction of single-bit quantized signal |
CN112346005B (en) * | 2020-10-30 | 2022-07-12 | 哈尔滨工程大学 | Airspace rotation orientation estimation method applied to uniform circular hydrophone array |
CN112346005A (en) * | 2020-10-30 | 2021-02-09 | 哈尔滨工程大学 | Airspace rotation orientation estimation method applied to uniform circular hydrophone array |
CN114428225A (en) * | 2022-04-06 | 2022-05-03 | 中国电子科技集团公司第二十九研究所 | Multi-radiation-source arrival angle measuring method and device based on quasi-matched filtering |
CN114428225B (en) * | 2022-04-06 | 2022-06-14 | 中国电子科技集团公司第二十九研究所 | Multi-radiation source arrival angle measuring method and device based on quasi-matched filtering |
Also Published As
Publication number | Publication date |
---|---|
CN102608565B (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102608565B (en) | A Direction of Arrival Estimation Method Based on Uniform Circular Array | |
CN110031794B (en) | Coherent information source DOA estimation method based on difference common matrix reconstruction | |
CN104698433B (en) | DOA Estimation in Coherent Signal method based on single snapshot data | |
CN104931931B (en) | Bistatic MIMO radar angle estimating method based on tensor real value subspace under array mutual-coupling condition | |
CN111049556B (en) | A Robust Adaptive Beamforming Method for Coprime Matrix Based on Interference Covariance Matrix Reconstruction | |
CN104020469B (en) | A kind of MIMO radar distance-angle two-dimensional super-resolution rate imaging algorithm | |
CN104991236B (en) | A kind of single base MIMO radar not rounded signal coherence source Wave arrival direction estimating method | |
CN112615801B (en) | Channel estimation method, medium, and apparatus based on compressed sensing and deep learning | |
CN107340512B (en) | A passive localization method for near-far-field hybrid sources based on sub-array division | |
CN107290730A (en) | Bistatic MIMO radar angle evaluation method under array mutual-coupling condition | |
CN105403874B (en) | Nonuniform noise owes standing wave arrival direction estimating method | |
CN104898085A (en) | Dimension-reduction MUSIC algorithm for parameter estimation of polarization sensitive array | |
CN102621527B (en) | Broad band coherent source azimuth estimating method based on data reconstruction | |
CN104865556B (en) | Based on real domain weight minimization l1The MIMO radar system DOA estimation method of Norm Method | |
CN111693937B (en) | Near-field signal source positioning method based on sparse reconstruction and without meshing | |
CN106019214A (en) | DOA Estimation Method for Broadband Coherent Signal Source | |
CN110749857A (en) | DOA estimation method for two-dimensional non-circular signal of uniform rectangular array based on rank loss method | |
CN104515969A (en) | Hexagonal array-based coherent signal two-dimensional DOA (Direction of Arrival) estimation method | |
WO2021068494A1 (en) | High-resolution, accurate, two-dimensional direction of arrival estimation method based on planar co-prime array virtual domain tensor space spectrum searching | |
CN103344940A (en) | Low-complexity DOA estimation method and system | |
CN109946663B (en) | A Linear Complexity Massive MIMO Target Spatial Orientation Estimation Method and Device | |
CN105335615A (en) | Low-complexity two-dimensional angle and polarization parameter joint estimation method | |
CN102866383B (en) | A Direction of Arrival Estimation Method Based on Spatial Adaptive Filtering | |
CN109521393A (en) | A kind of DOA estimation algorithm based on signal subspace revolving property | |
CN106483193B (en) | A kind of wave based on High-order Cumulant reaches method for quick estimating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140108 Termination date: 20200323 |
|
CF01 | Termination of patent right due to non-payment of annual fee |