CN102600882B - 一种直接水热法合成Ti-SBA-15催化剂的方法及其制备的催化剂 - Google Patents

一种直接水热法合成Ti-SBA-15催化剂的方法及其制备的催化剂 Download PDF

Info

Publication number
CN102600882B
CN102600882B CN201210053160.3A CN201210053160A CN102600882B CN 102600882 B CN102600882 B CN 102600882B CN 201210053160 A CN201210053160 A CN 201210053160A CN 102600882 B CN102600882 B CN 102600882B
Authority
CN
China
Prior art keywords
sba
catalyst
stirring
hours
teos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210053160.3A
Other languages
English (en)
Other versions
CN102600882A (zh
Inventor
董林
张洪亮
汤常金
高飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201210053160.3A priority Critical patent/CN102600882B/zh
Publication of CN102600882A publication Critical patent/CN102600882A/zh
Application granted granted Critical
Publication of CN102600882B publication Critical patent/CN102600882B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

一种直接水热法合成Ti-SBA-15催化剂的制法,它是将三嵌段共聚物表面活性剂EO20PO70EO20(P123,Aldrich)溶解于水中,并在35℃下搅拌使之完全溶解,在溶液中加入一定量的TiCl4水溶液并搅拌,然后加入正硅酸四乙酯(TEOS),在35℃下继续搅拌24h,最后装入聚四氟乙烯高压釜中,在100℃水热结晶化24h,样品经过滤并用去离子水和无水乙醇洗涤,最后在空气中干燥,所得固体粉末在500℃空气中焙烧5h去除模板剂得TiO2掺杂的Ti-SBA-15催化剂。制得的TiO2掺杂的Ti-SBA-15催化剂,它们具有规整的二维六方结构,孔容为0.6-0.8cm3/g,比表面为700-750m2/g,孔径为7-8nm。Ti的质量百分含量为2.6-6.2%。本发明方法制备过程采用一步法,方法简便,设备简单,环境污染小;本发明制备的催化材料具有较高的光催化活性。

Description

一种直接水热法合成Ti-SBA-15催化剂的方法及其制备的催化剂
技术领域
本发明涉及一类功能化的介孔材料催化剂及其制备方法。
背景技术
1972年Fujishima和K. Honda在“Nature”上发表了关于n型半导体TiO2电极光解水的结果,揭开了光催化技术研究的序幕。1976年Carey等在光催化降解水中污染物方面进行了开拓性的工作,开辟了光催化技术在环保领域的应用,从此掀起了全世界范围内对半导体光催化技术这一新兴领域的研究热潮。
以半导体纳米材料为催化剂,利用光催化氧化降解有毒污染物是一种有效的污染治理方法,近十几年来,在环保、卫生保健和太阳能电池等方面的应用研究发展迅速,纳米光催化成为国际上最活跃的研究领域之一。常见的半导体光催化剂主要有金属硫化物、氧化物和复合氧化物如:TiO2、ZnO、SnO2、WO3、CdS、ZnS、PbS、Cu2O、Fe3O4、SrTiO3等。其中纳米TiO2光催化剂因其光催化活性高,化学性能稳定,无毒无害,无腐蚀性,原料来源丰富,成本低等优点,成为光催化领域中研究最多,最具潜力的光催化材料。但是纳米TiO2光催化剂一般比表面较小,对污染物的吸附能力较低,分散不均匀、易失活、易团聚和回收难等缺点,限制了其在实际中的应用。其中,将TiO2 颗粒固定于介孔SiO材料表面可以在一定程度上克服纯TiO2的上述缺点。 一方面,利用介孔材料大的比表面积和孔容来增强TiO2 对污染物的吸附能力, 大大提高TiO2的光催化性能;另一方面,利用SiO2 材料对紫外-可见光透明的性质,TiO2 颗粒受光强度变化不大,光催化活性不会因负载而降低。在众多介孔分子筛材料中,SBA-15分子筛具有更厚的孔壁,因而其水热稳定性和热稳定性比较高,具有潜在的工业应用前景。
目前制备TiO2-SBA-15介孔材料的方法主要有两种:后处理法(如浸渍法和嫁接法)和直接合成法。后处理方法制备的TiO2颗粒在介孔材料上分布不均匀,容易造成孔道的阻塞,从而造成反应物分子无法与活性位接触进行反应。而直接合成法则克服了后处理方法的缺点,TiO2颗粒在介孔材料上分布均匀,不易造成孔道的阻塞。然而直接合成法在制备过程中使用了大量盐酸,容易造成设备的腐蚀和环境的污染。因此,寻找一种既简便又环保的方法来合成Ti-SBA-15介孔材料具有一定的理论和现实意义。
我们通过直接水热法在不加入盐酸的条件下成功合成出了一系列Ti-SBA-15催化剂。由于该方法合成原料易得,操作简单,无特殊设备要求,环境污染小,使其在催化领域有着良好的应用前景。
发明内容
本发明的目的是提供一种直接水热法合成TiO2掺杂的SBA-15催化剂的方法及其制得的催化剂。
本发明的原理如下:通过TiCl4自身水解产生的盐酸,使得TiO2的前躯体和硅物种的前躯体同时水解,由于正负电荷的静电作用和脱羟基作用,从而促进TiO2在SBA-15骨架中的嵌入或分散。
本发明的目的是这样实现的: 
一种直接水热法合成Ti-SBA-15催化剂的方法,它是将三嵌段共聚物表面活性剂EO20PO70EO20 (P123, Aldrich)溶解于水中,并在35℃下搅拌使之完全溶解,在溶液中加入1.8 ml-5.5 ml的TiCl4水溶液(0.182 mol/L)并搅拌,然后加入正硅酸四乙酯(TEOS),在35℃下继续搅拌24 h,最后装入聚四氟乙烯高压釜中,在100℃水热结晶化24 h,各原料的摩尔比为: P123: TEOS: TiCl4: H2O=0.012-0.015: 1: 0.03-0.1: 210-230,样品经过滤并用去离子水和无水乙醇洗涤数次,最后在空气中干燥,所得固体粉末在500℃空气中焙烧5 h去除模板剂得TiO2掺杂的Ti-SBA-15催化剂。样品标记为Ti(x)-SBA-15,其中x代表Ti原子的质量百分含量。
上述的直接水热法合成Ti-SBA-15催化剂的方法合成的催化剂,它是TiO2掺杂的SBA-15,它具有规整的二维六方结构,孔容为0.6-0.8 cm3/g,比表面为700-750 m2/g,孔径为7-8 nm,Ti的质量百分含量为2.6-6.2%。
 本发明所采用的制备方法的优点是:
1.      制备过程采用一步法,方法简便,设备简单,环境污染小;
2.      本发明制备的催化材料具有较高的光催化活性。
附图说明
图1为制备的TiO2掺杂的介孔材料的小角XRD图谱:(a) Ti(2.6)-SBA-15;(b) Ti(3.2)-SBA-15;(c) Ti(4.2)-SBA-15;(d) Ti(6.2)-SBA-15。
图2为制备的TiO2掺杂的介孔材料的N2-吸附图:(a) Ti(2.6)-SBA-15;(b) Ti(3.2)-SBA-15;(c) Ti(4.2)-SBA-15;(d) Ti(6.2)-SBA-15。
图3为制备的Ti(2.6)-SBA-15催化剂的透射电镜照片。
图4为制备的Ti-SBA-15催化剂在光催化降解罗丹明B反应中的性能。
具体实施方法
1. 催化剂的制备
实施例1.Ti(2.6)-SBA-15
0.75g三嵌段共聚物表面活性剂EO20PO70EO20 (P123, Aldrich)溶解于35ml水中,并在35℃下搅拌使之完全溶解。然后,在溶液中加入1.8 ml的TiCl4水溶液(0.182 mol/L)并搅拌。然后加入2.1g正硅酸四乙酯(TEOS),在35℃下继续搅拌24 h,最后装入聚四氟乙烯高压釜中,在100℃水热结晶化24 h。样品经过滤并用去离子水和无水乙醇洗涤数次,最后在空气中干燥。所得固体粉末在500℃空气中焙烧5 h去除模板剂得Ti(2.6)-SBA-15催化剂。
实施例2.Ti(3.2)-SBA-15
0.75g三嵌段共聚物表面活性剂EO20PO70EO20 (P123, Aldrich)溶解于35ml水中,并在35℃下搅拌使之完全溶解。然后,在溶液中加入2.8 ml的TiCl4水溶液(0.182 mol/L)并搅拌。然后加入2.1g正硅酸四乙酯(TEOS),在35℃下继续搅拌24 h,最后装入聚四氟乙烯高压釜中,在100℃水热结晶化24 h。样品经过滤并用去离子水和无水乙醇洗涤数次,最后在空气中干燥。所得固体粉末在500℃空气中焙烧5 h去除模板剂得Ti(3.2)-SBA-15催化剂。
实施例3.Ti(4.2)-SBA-15
0.75g三嵌段共聚物表面活性剂EO20PO70EO20 (P123, Aldrich)溶解于35ml水中,并在35℃下搅拌使之完全溶解。然后,在溶液中加入3.6 ml的TiCl4水溶液(0.182 mol/L)并搅拌。然后加入2.1g正硅酸四乙酯(TEOS),在35℃下继续搅拌24 h,最后装入聚四氟乙烯高压釜中,在100℃水热结晶化24 h。样品经过滤并用去离子水和无水乙醇洗涤数次,最后在空气中干燥。所得固体粉末在500℃空气中焙烧5 h去除模板剂得Ti(4.2)-SBA-15催化剂。
实施例4.Ti(6.2)-SBA-15
0.75g三嵌段共聚物表面活性剂EO20PO70EO20 (P123, Aldrich)溶解于35ml水中,并在35℃下搅拌使之完全溶解。然后,在溶液中加入5.5 ml的TiCl4水溶液(0.182 mol/L)并搅拌。然后加入2.1g正硅酸四乙酯(TEOS),在35℃下继续搅拌24 h,最后装入聚四氟乙烯高压釜中,在100℃水热结晶化24 h。样品经过滤并用去离子水和无水乙醇洗涤数次,最后在空气中干燥。所得固体粉末在500℃空气中焙烧5 h去除模板剂得Ti(6.2)-SBA-15催化剂。
2. 催化剂的表征
样品的XRD表征在Philips X’pert X射线衍射仪上进行,其结果见图1。样品的N2-吸附表征在Micromeritics ASAP-2020型比表面和孔径测定仪上进行,其结果见图2。TEM表征是将样品分散于乙醇中,超声处理一段时间后置于铜网上观察,所用仪器为JEM-2100,其结果见图3。
3. 催化剂的活性测试
通过降解罗丹明B(RhB)水溶液研究Ti-SBA-15的光催化性质。光催化装置主要由两部分组成:一个空心的圆柱环形石英管(管壁两层,大约1 cm的夹层中通冷凝水)和一个125 W的高压汞灯(全波段,最大波长为365 nm)。高压汞灯放置在石英管的空腔内。反应过程如下,将5 mg光催化剂加入到100 mL浓度为10 mg/L的RhB水溶液中,在避光的情况下搅拌60 min,以确保在紫外灯照射前RhB在催化剂表面的吸-脱附平衡。然后,将装有上述悬浮液的烧杯置于紫外灯下照射反应。整个反应过程中不停的搅拌,悬浮液的液面距离装有紫外灯的石英管约10 cm。每隔15 min取出少量的悬浮液经过5500 rpm离心8 min后得到反应后的RhB水溶液进行分析。通过紫外分光光度剂测试反应后溶液的吸光度,以蒸馏水为参比,紫外光波长为552 nm。然后通过Lambert-Beer’s 定律:A = εbC, (其中A 代表吸光度, ε为比例常数, b为光波长, C为溶液浓度)计算分别得到降解不同时间后的RhB水溶液的浓度。其结果见图4。

Claims (1)

1.一种直接水热法合成Ti-SBA-15催化剂的方法,其特征是:它是将Aldrich公司生产的三嵌段共聚物表面活性剂EO20PO70EO20 (P123)溶解于水中,并在35℃下搅拌使之完全溶解,在溶液中加入1.8 mL-5.5 mL浓度为0.182 mol/L的TiCl4水溶液并搅拌,然后加入正硅酸四乙酯(TEOS),在35℃下继续搅拌24 h,最后装入聚四氟乙烯高压釜中,在100℃水热结晶化24 h,各原料的摩尔比为: P123: TEOS: TiCl4: H2O= 0.012-0.015: 1: 0.03-0.1: 210-230,产物经过滤并用去离子水和无水乙醇洗涤,最后在空气中干燥,所得固体粉末在500℃空气中焙烧5 h去除模板剂得TiO2掺杂的Ti-SBA-15催化剂。
CN201210053160.3A 2012-03-02 2012-03-02 一种直接水热法合成Ti-SBA-15催化剂的方法及其制备的催化剂 Expired - Fee Related CN102600882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210053160.3A CN102600882B (zh) 2012-03-02 2012-03-02 一种直接水热法合成Ti-SBA-15催化剂的方法及其制备的催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210053160.3A CN102600882B (zh) 2012-03-02 2012-03-02 一种直接水热法合成Ti-SBA-15催化剂的方法及其制备的催化剂

Publications (2)

Publication Number Publication Date
CN102600882A CN102600882A (zh) 2012-07-25
CN102600882B true CN102600882B (zh) 2014-12-31

Family

ID=46518869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210053160.3A Expired - Fee Related CN102600882B (zh) 2012-03-02 2012-03-02 一种直接水热法合成Ti-SBA-15催化剂的方法及其制备的催化剂

Country Status (1)

Country Link
CN (1) CN102600882B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019626B (zh) * 2017-06-12 2020-07-28 中国石油化工股份有限公司 一种全硅介孔材料及其制备方法和在重排反应中的应用
CN107961776B (zh) * 2017-12-15 2020-06-30 沈阳理工大学 一种三维Ti-Sr氧化物骨架结构介孔材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139227A (zh) * 2011-02-25 2011-08-03 华东理工大学 一种丙烯液相环氧化反应制环氧丙烷的催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139227A (zh) * 2011-02-25 2011-08-03 华东理工大学 一种丙烯液相环氧化反应制环氧丙烷的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水热一步法合成Ti-SBA-15 分子筛及其催化性能研究;朱金华等;《化学学报》;20031231;第61卷(第2期);第202~207页 *

Also Published As

Publication number Publication date
CN102600882A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
Zhou et al. Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light
CN105800674B (zh) 一种硫化锡材料的制备方法及应用
Yang et al. Removing Cr (VI) in water via visible-light photocatalytic reduction over Cr-doped SrTiO3 nanoplates
Yan et al. Photocatalytic nanocomposite membranes for high-efficiency degradation of tetracycline under visible light: An imitated core-shell Au-TiO2-based design
Wang et al. Ag NPs decorated C–TiO2/Cd0. 5Zn0. 5S Z-scheme heterojunction for simultaneous RhB degradation and Cr (VI) reduction
Divakaran et al. Photocatalytic degradation of tetracycline under visible light using TiO2@ sulfur doped carbon nitride nanocomposite synthesized via in-situ method
CN103521163B (zh) 一种菊花结构纳米复合材料的制备方法
CN102180515B (zh) 具有高可见光催化活性的纳米二氧化钛及其水分散液的制备方法
Gnanasekaran et al. Photocatalytic degradation of 2, 4-dichlorophenol using bio-green assisted TiO2–CeO2 nanocomposite system
CN103599802A (zh) 一种磷酸银/石墨烯纳米复合材料的制备方法
CN102701276B (zh) 一种中空TiO2微球的合成方法
Han et al. Chapter green nanotechnology: development of nanomaterials for environmental and energy applications
Alshaikh et al. Templated synthesis of CuCo2O4-modified g-C3N4 heterojunctions for enhanced photoreduction of Hg2+ under visible light
CN106622271A (zh) 一种镍掺杂纳米钨酸铋可见光催化剂及其制备和应用
Chen et al. Fabrication of tunable oxygen vacancies on BiOCl modified by spiral carbon fiber for highly efficient photocatalytic detoxification of typical pollutants
CN107935103A (zh) 一种银基复合光催化剂降解印染废水的处理工艺
Liu et al. Construction of ternary hollow TiO2-ZnS@ ZnO heterostructure with enhanced visible-light photoactivity
Yu et al. Interfacial structure and photocatalytic degradation performance of graphene oxide bridged chitin-modified TiO2/carbon fiber composites
Deng et al. Versatile iodine-doped BiOCl with abundant oxygen vacancies and (110) crystal planes for enhanced pollutant photodegradation
Ali et al. Fe2O3 incorporated anatase/brookite biphasic TiO2 for degradation of phenol under simulated solar light
Wu et al. Self-floating biomass charcoal supported flower-like plasmon silver/carbon, nitrogen co-doped defective TiO2 as robust visible light photocatalysts
Sanni et al. Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline
CN108144599A (zh) 一种铋基复合光催化剂降解印染废水的处理工艺
CN108640149B (zh) 二氧化钛纳米空心球及其制备方法
CN102600882B (zh) 一种直接水热法合成Ti-SBA-15催化剂的方法及其制备的催化剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141231

Termination date: 20150302

EXPY Termination of patent right or utility model