CN102598566B - 波长交换光网络的路由选择和波长分配信息编码方法 - Google Patents

波长交换光网络的路由选择和波长分配信息编码方法 Download PDF

Info

Publication number
CN102598566B
CN102598566B CN201180004334.0A CN201180004334A CN102598566B CN 102598566 B CN102598566 B CN 102598566B CN 201180004334 A CN201180004334 A CN 201180004334A CN 102598566 B CN102598566 B CN 102598566B
Authority
CN
China
Prior art keywords
tlv
field
list
wavelength
wson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180004334.0A
Other languages
English (en)
Other versions
CN102598566A (zh
Inventor
李勇
伯恩斯坦·格雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Li Li
Wan Xiaohui
Wang Wei
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN102598566A publication Critical patent/CN102598566A/zh
Application granted granted Critical
Publication of CN102598566B publication Critical patent/CN102598566B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/026Optical medium access at the optical channel layer using WDM channels of different transmission rates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0269Optical signaling or routing using tables for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0271Impairment aware routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种设备,包括:网络元件(NE),用于以波长交换光网络(WSON)节点类型-长度-值(TLV)的形式传达与网络节点关联的多个资源块(RB)的至少一个信号约束和处理能力,以及以WSON链路TLV的形式传达与链路关联的信号约束和处理能力,其中所述WSON节点TLV包括节点标识符(ID)、一个或多个通用多协议标签交换(GMPLS)TLV、连接矩阵TLV,以及资源库TLV,且其中所述WSON链路TLV包括链路ID、一个或多个GMPLSTLV,以及端口波长限制TLV。

Description

波长交换光网络的路由选择和波长分配信息编码方法
相关申请案的交叉参考
本发明要求2010年12月10日由李扬(Young Lee)等人递交的发明名称为“波长交换光网络的路由选择和波长分配信息编码方法”的第12/965,217号美国专利申请案的优先权,要求2010年2月11日由李扬(Young Lee)等人递交的发明名称为“波长交换光网络的路由选择和波长分配信息编码方法”的第61/303,380号美国临时专利申请案的在先申请优先权,且是2010年10月6日由李扬(Young Lee)等人递交的发明名称为“用于突出波长交换光网络信号特征和用于通用多协议标签交换的网络元件兼容性约束的方法”的第12/898,778号美国专利申请案的部分继续申请案,要求2009年10月6日由李扬(Young Lee)等人递交的发明名称为“用于突出WSON信号特征和用于GMPLS的网络元件兼容性约束的方法”的第61/249,206号美国临时专利申请案的在先申请优先权,以及2009年10月19日由李扬(Young Lee)等人递交的发明名称为“支持信号兼容性和处理约束的路径计算单元通信协议(PCEP)方法”的第61/252,982号美国临时专利申请案的在先申请优先权,所有所述申请案的内容以引入的方式全文并入本文本中。
关于联邦政府赞助的研究或开发的声明
不适用。
缩微胶片附录的参考
不适用。
技术领域
背景技术
根据预期,波分复用(WDM)技术能够用于提高带宽性能,并在光网络中实现双向通信。在WDM网络中,可使用单光纤在网络元件(NE)之间同时传输多种数据信号。具体而言,可分配给各种信号不同的传输波长,以使信号之间不会互相干扰或碰撞。信号在网络中传输的路径称为光路。波长交换光网络(WSON)是一种WDM网络,在这种网络中,交换基于光信号的波长而选择性地进行。相对于现有的光网络,WSON旨在减少光信号交换时光路中的光-电-光(OEO)转换,例如各个NE处的所述转换。在实施WSON时,其中一个问题在于,确定在任何给定的时间中经由网络传送的各种信号的路由选择和波长分配(RWA)。为了实施RWA,可从诸如NE等路径计算用户端(PCC)转发与NE相关的各种信息,并在路径计算元件(PCE)处接收并处理所述信息。
发明内容
在一项实施例中,本发明包括一种设备,所述设备包括NE,用于以WSON节点类型-长度-值(TLV)的形式传达与网络节点关联的多个资源块(RB)的至少一个信号约束和处理能力,以及以WSON链路TLV的形式传达与链路关联的信号约束和处理能力,其中所述WSON节点TLV包括节点标识符(ID)、一个或多个通用多协议标签交换(GMPLS)TLV、连接矩阵TLV,以及资源库TLV,且其中所述WSON链路TLV包括链路ID,一个或多个GMPLS TLV,以及端口波长限制TLV。
在另一项实施例中,本发明包括一种网络部件,所述网络部件包括发射器单元,用于经由GMPLS路由选择来发射RB描述符类型-长度-值(TLV)、RB可访问性TLV、资源范围限制TLV,以及资源使用状态TLV,这些TLV均包括RB设置字段。
在又一项实施例中,本发明包括一种方法,所述方法包括:接收包括RB设置字段的RB描述符TLV,其指示与对应于资源库或NE的多个RB关联的信号约束和处理能力,接收指示所包括的RB数目的RB数目字段,调制类型列表TLV,前向纠错(FEC)类型列表TLV,用户端信号类型TLV,位速率范围列表TLV,以及处理能力列表TLV;以及基于所述RB描述符TLV、RB可访问性TLV、资源范围限制TLV,以及资源使用状态TLV中的信息,执行路径计算。
结合附图和所附权利要求书而进行的以下详细描述有助于更清楚地了解本发明的这些和其它特征。
附图说明
为了更透彻地理解本发明,现参阅结合附图和具体实施方式而描述的以下简要说明,其中的相同参考标号表示相同部分。
图1是WSON系统的一项实施例的示意图。
图2是组合RWA结构的一项实施例的示意图。
图3是单独RWA结构的一项实施例的示意图。
图4是分布式波长分配结构的一项实施例的示意图。
图5是PCC和PCE通信方法的一项实施例的协议图。
图6是调制格式头的一项实施例的示意图。
图7是调制类型列表TLV的一项实施例的示意图。
图8是调制类型列表TLV的另一项实施例的示意图。
图9是FEC类型列表TLV的一项实施例的示意图。
图10是FEC类型列表TLV的另一项实施例的示意图。
图11是FEC类型列表TLV的另一项实施例的示意图。
图12是通用协议标识符(GPID)类型TLV的一项实施例的示意图。
图13是调制类型TLV的一项实施例的示意图。
图14是FEC类型TLV的一项实施例的示意图。
图15是再生点TLV的一项实施例的示意图。
图16是位速率范围字段的一项实施例的示意图。
图17是位速率范围列表TLV的一项实施例的示意图。
图18是用户端信号列表TLV的一项实施例的示意图。
图19是处理能力列表TLV的一项实施例的示意图。
图20是RB设置TLV(RB set TLV)的一项实施例的示意图。
图21是RB描述符TLV的一项实施例的示意图。
图22是RB可访问性TLV的一项实施例的示意图。
图23是资源范围限制TLV的一项实施例的示意图。
图24是资源使用状态TLV的一项实施例的示意图。
图25是资源使用状态TLV的另一项实施例的示意图。
图26是资源使用状态TLV的另一项实施例的示意图。
图27是波长转换器池结构的一项实施例的示意图。
图28是波长转换器可访问性TLV的一项实施例的示意图。
图29是波长转换范围TLV的一项实施例的示意图。
图30是发射器/接收器单元的一项实施例的示意图。
图31是通用计算机系统的一项实施例的示意图。
具体实施方式
首先应理解,尽管下文提供一项或多项实施例的说明性实施方案,但可使用任何数目的技术,不管是当前已知还是现有的,来实施所揭示的系统和/或方法。本发明决不应限于下文所说明的说明性实施方案、附图和技术,包括本文所说明并描述的示例性设计和实施方案,而是可在所附权利要求书的范围以及其等效物的完整范围内修改。
WSON的GMPLS可支持多种类型的波长交换系统。但是,对于某些透明或多波长光系统和混合电光系统,GMPLS控制面可能限于处理具有特定特征或属性的WSON信号。混合电光系统可包括光-电-光(OEO)转换器、再生器,和/或波长转换器。例如,WSON可包括有限数量的NE,用于处理一种兼容类信号。这种情况可能限制WSON的灵活性,且无法有效利用某些NE,例如再生器、OEO转换器和波长转换器。在某些情况下,在信号的路由选择过程中,无法直接支持或使用某些NE的处理能力。例如,为了对信号执行再生功能,可能需要在建立光路径的过程中进行设置。
本文所揭示的是一种系统和方法,用于扩展GMPLS的控制面,基于兼容性约束,以在WSON或WDM网络中支持不同的信号类型。可通过提供WSON信号定义和属性表征来扩展GMPLS控制面。所述系统和方法也描述了例如混合电光或再生器系统等NE组的NE兼容性约束。兼容性约束包括信号表征和NE兼容性约束,可用于在网络中增强服务支持,并实现针对NE的GMPLS路由选择和信号传输。兼容性约束也可用于使PCE能够根据信号兼容性约束来计算光路。本文还揭示了一种方法,用于针对WSON在PCE协议(PCEP)中支持信号兼容性和处理约束。因此,PCE可基于兼容性约束而进行路径计算,从而让多个NE能够处理具有特定特征和属性的信号。
此外,为了在WSON中进行路径计算并建立标签交换路径(LSP),可能需要多个信息元件,例如在互联网工程任务组(Internet Engineering TaskForce)文档draft-ietf-ccamp-rwa-info.txt中所描述的那样,其中所述文档以引入方式并入本文本中。所述文档描述了可能需要在WSON中的某些点(例如节点)上提供的信息模型。信息模型的某些部分可包括对不同网络技术的普遍适用性方面。信息模型的其他部分可以是专门针对WSON的。本文所揭示的是一种系统和方法,用于对WSON的多个信息元件进行信息编码。信息编码可用于路由选择和波长分配,且可扩展WSON中的GMPLS信号发送和路由选择协议。路由选择和波长分配信息编码可用于在NE之间传达路由选择和波长分配,和/或将路由选择和波长分配传达到负责进行路径计算的PCE,或穿过各WSON节点的LSP。路由选择和波长分配信息编码可提供关于控制面通信和/或处理负载的WSON精确分析。
图1所示是WSON系统100的一项实施例。系统100可包括WSON 110、控制面控制器120,以及PCE 130。WSON 110、控制面控制器120,以及PCE 130可经由光学方式、电气方式或无线方式而与彼此通信。WSON 110可为使用有源部件或无源部件来传送光信号的任何光网络。例如,WSON 110可以是远程传输网络、城域网络,或居民接入网络的一部分。WSON 110可实施WDM以经由WSON 110来传送光信号,且可包括经由光纤而彼此耦接的各种光学部件,包括多个NE 112。在一项实施例中,光纤也可认为是NE 112。可在穿过某些NE 112的光路上经由WSON 110传送光信号。此外,某些NE 112,例如位于WSON 110各端的NE 112可用于在来源于外部信源的电信号与用于WSON 110中的光信号之间进行转换。尽管图中的WSON 110中包括四个NE 112,但WSON 110可包括任何数量的NE 112。
NE 112也称为节点,可为经由WSON 110传送信号的任何装置或部件。在一项实施例中,NE 112主要由光学处理部件组成,例如线路端口、分端口、插端口、发射器、接收器、放大器、光学分接头等,且不包括任何电处理部件。或者,NE 112可包括光学处理部件和电气处理部件的组合。至少一些NE 112可用波长转换器、光-电(OE)转换器、电-光(EO)转换器、OEO转换器,或这些项的组合来进行配置。但是,建议不对至少一些NE 112设置此类转换器,因为这样会降低WSON 110的成本和复杂性。在特定实施例中,NE 112可包括诸如光交叉连接(OXC)、光子交叉连接(PXC)等光转换器,I型或II型可重新配置光分插复用器(ROADM)、波长选择转换器(WSS)、静态光分插复用器(FOADM),或这些项的组合。
某些NE 112可转发、添加或舍弃用于发射光信号的任何或全部波长,因此可用于基于波长的交换中。例如,NE 112可包括多个输入端口,例如线路侧输入端口或分端口,以及多个输出端口,例如线路侧输出端口或插端口,或这两项的组合。分端口和插端口也可称为支路端口。由这些端口处理的光信号可包括一个或多个光波长。线路侧输入端口可接收光信号,并将部分或全部光信号发送到线路侧输出端口,所述线路侧输出端口可转而发射光信号。或者,线路侧输入端口可将部分或全部光信号引导到插端口,例如,所述插端口可通过将光信号发射到光纤的外部而舍弃光信号。分端口可接收额外的光信号,且将光信号发送到某些线路侧输出端口,所述线路输出端口可转而发射光信号。
在某些情况下,NE 112可包括至少一个有色端口,所述有色端口可以是输入端口或输出端口,可分别接收或发射具有固定光波长的光信号,或光波长在有限范围内的光信号,例如小于诸如常规WDM(CWDM)或密集WDM(DWD)标准等标准所定义的全波长范围,所述标准将在下文进行介绍。附加地或替代地,NE可包括至少一个无色端口,所述无色端口可以是输入端口或输出端口,可分别接收或发射具有多个不同波长中的任意一个波长的光信号,例如诸如CWDM或DWDM等标准所定义的全波长范围中的波长。包括无色端口,且支持任何或多个不同波长的NE 112可称为无色NE。或者,不包括无色端口,且支持一个或多个预定(或指定)波长的NE 112可称为有色NE。此外,NE 112可包括一个或多个波长转换器(WC),其可在至少一个输入端口与一个输出端口之间转换一个或多个波长。例如,WC可置于输入端口与输出端口之间,且可用于将在输入端口接收的第一波长转换成第二波长,且随后将在输出端口发射所述第二波长。WC可包括可针对波长转换进行配置的任何数目的光学和/或电气部件,例如OEO转换器和/或激光器。
NE 112可经由光纤而彼此耦接,所述光纤也称为链路。光纤可用于建立光链路,并在NE 112之间传送光信号。光纤可包括国际电信联盟(ITU)远程通信标准化组(ITU-T)标准G.652中定义的标准单模光纤(SMF)、ITU-T标准G.653中定义的色散位移SMF、ITU-T标准G.654中定义的截止位移SMF、ITU-T标准G.655中定义的非零色散位移SMF、ITU-T标准G.656中定义的宽带非零色散位移SMF,或这些项的组合。可通过光损特性来区分这些光纤类型,例如衰减、色散、偏振模色散、四波混频,或这些项的组合。这些效果可取决于波长、信道间隔、输入功率电平,或这些项的组合。可使用光纤来传送WDM信号,例如ITU-T G.694.2中定义的CWDM信号,或ITU-T G.694.1中定义的DWDM信号。本发明所描述的所有标准以引入方式并入本文本中。
控制面控制器120可在WSON 110内对各种活动进行协调。具体而言,控制面控制器120可接收光连接请求,并经由诸如通用多协议标签交换(GMPLS)等内部网关协议(IGP)向WSON 110提供光路信令,从而协调各NE 112,以使数据信号在通过WSON 110进行路由选择时极少或不会出现争用情况。此外,控制面控制器120可使用PCEP与PCE 130通信,以向PCE 130提供用于RWA、从PCE 130接收RWA,和/或将RWA转发到NE 112的信息。控制面控制器120可位于诸如外部服务器等WSON 110外部的部件中,或者可位于诸如NE 112等WSON 110内的部件中。
PCE 130可对WSON系统100执行全部或部分RWA。具体而言,PCE 130从控制面控制器120、WSON 110,或同时从这两者接收可用于RWA的波长和/或其他信息。波长信息可包括NE 112的端口波长限制,例如包括有色端口的有色NE的端口波长限制。PCE 130可对信息进行处理以实现RWA,方法是,例如,计算光信号的路由,例如光路;指定用于每个光路的光波长;以及确定光路中用于将光信号转换成电信号或不同波长的NE 112。RWA数据可包括每个输入信号的至少一个路由,以及与每个路由关联的至少一个波长。随后,PCE 130可将全部或部分RWA数据发送到控制面控制器120,或直接发送到NE 112。为了在该过程中协助PCE 130,PCE 130可包括全球通信业务工程数据库(globaltraffic-engineering database,TED)、RWA信息数据库、光性能监视器(OPM)、物理层约束(PLC)信息数据库,或这些项的组合。PCE 130可位于诸如外部服务器等WSON 110外部的部件中,或位于诸如NE 112等WSON 110内的部件中。
在某些实施例中,可通过PCC将RWA信息发送到PCE 130。PCC可以是请求PCE 130进行路径计算的任何用户端应用程序。PCC也可以是发出此类请求的任何网络部件,例如控制面控制器120,或任何NE 112,例如ROADM或FOADM。
图2所示为组合RWA结构200的一项实施例。在组合RWA结构200中,PCC 210将RWA请求和所请求的信息传达给PCE 220,所述PCE 220则使用诸如处理器等单个计算实体,执行路由分配和波长分配。例如,处理器可使用单个或多个算法来处理RWA信息,以计算光路,以及为每个光路分配光波长。PCE 220对RWA进行计算所需的RWA信息量可随着所用算法的不同而改变。如果需要,PCE 220可能无法对RWA进行计算,除非NE之间建立了足够的网络链路,或者提供了关于NE以及网络拓扑的充足RWA信息。组合RWA结构200可能更适用于网络优化、较小的WSON,或者这两者。
图3所示为单独RWA结构300的一项实施例。在单独RWA结构300中,PCC 310将RWA请求和所请求的信息传达给PCE 320,所述PCE 320使用诸如处理器322和324等单独的计算实体,执行路由选择功能和波长分配功能。或者,单独RWA结构300可包括两个单独的PCE 320,每个PCE 320包括处理器322或324。单独执行路由分配和波长分配可卸去处理器322和324上的部分计算负担,从而缩短处理时间。在一项实施例中,PCC 310可能仅检测到两个处理器322、324(或两个PCE)中的一个,且可能仅与该处理器322、324(或PCE)通信。例如,PCC 310可将RWA信息发送到处理器322,所述处理器322可对光路路由进行计算,并将路由分配发送到处理器324,以在其中执行波长分配。随后,可将RWA返回给处理器322,并接着返回给PCC 310。此类实施例也可反向实施,即PCC 310与处理器324通信,而不是与处理器322通信。
在结构200或300中,PCC 210或310可接收从信源到信宿的路由,以及用于路径各部分的波长,例如GMPLS标签。GMPLS信令支持显式路由对象(ERO)。在ERO中,可使用ERO标签子对象来指示用于特定NE的波长。在使用了本地标签变换法时,可能必需翻译ERO中的标签子对象条目。
图4所示是分布式波长分配结构400。在分布式波长分配结构400中,PCE410可能经由直接链路,从NE 420、430和440接收部分或全部RWA信息,并执行路由分配。随后,PCE 410直接或间接地将路由分配传送到各个NE 420、430和440,这些NE将基于本地信息,分配NE 420、430和440之间的本地链路上的波长。具体而言,NE 420可从NE 430和440接收本地RWA信息,并将部分或全部RWA信息发送到PCE 410。PCE 410可使用所接收到的RWA信息来计算光路,并将光路的列表发送到NE 420。NE 420可使用光路的列表来确定NE 430为光路中的下一个NE。NE 420可建立指向NE 430的链路,并使用所接收到的可能包括额外约束的本地RWA信息来分配用于在链路上传输的波长。NE430可从NE 420接收光路的列表;使用光路的列表来确定NE 440为光路中的下一个NE;建立指向NE 440的链路;以及分配用于在链路上传输的相同或不同的波长。因此,可通过分布式方式在网络中的剩余NE之间对信号进行路由选择,并分配波长。在各NE中分配波长可减少必需发送到PCE 410的RWA信息量。
图5所示是PCC与PCE之间的通信方法500的一项实施例。在方法500中,PCC将消息502发送到PCE,其中消息502包括下文描述的RWA信息的至少一部分。消息502也可包含状态指示符,用于指示RWA信息是静态的还是动态的。在一项实施例中,状态指示符可指示静态或动态状态的持续时间,以便PCE了解RWA信息保持有效的时间和/或预计进行更新的时间。附加地或替代地,消息502可包含类型指示符,用于指示RWA信息是否与包括NE、诸如WDM链路等链路,或这两者的节点相关联。在某些情况下,例如,可在接收到消息502后,从PCE向PCC发送用于确认接收到消息502的确认消息。
方法500可使用任何合适的协议,例如IGP来实施。IGP是一种路由选择协议,用于在自治型网络中,在网关之间,例如主机计算机或路由器之间交换路由信息。互联网络可分成多个域或多个自治型系统,其中一个域中聚集了使用相同路由选择协议的一批主机计算机和路由器。在此类情况下,可提供IGP以在域中对路由进行选择。IGP可以是链路状态路由选择协议,其中每个节点均拥有关于完整网络拓扑的信息。在此类情况下,每个节点可使用拓扑的本地信息,针对网络中每个可能的终点,独立地计算以自身为起点的最佳下一跃点。最佳下一跃点的集合可形成该节点的路由选择表。在链路状态协议中,在节点之间传送的唯一信息是用于构建连接图的信息。合适的IGP的实例包括GMPLS、开放最短路径优先(OSPF),以及中间系统到中间系统(IS-IS)。
如上所述,消息502包括可在PCC和PCE之间交换的RWA信息。例如,RWA信息也可经由信号传输面在任意NE和/或NE与PCE之间进行交换。在一项实施例中,所交换的RWA信息包括关于WSON信号定义或特性的信息,例如关于多个信号属性的信息。RWA信息也可包括多个NE兼容性约束。例如,在支持的信号类型方面,WSON中的某些NE可能具有相应约束。兼容性约束包括信号属性和NE兼容性约束,例如,可针对路径计算等目的,用于确定可由不同NE处理的不同信号。
NE处的某些交换系统可同时处理多个波长。但是,NE中的各端口、发射器和/或接收器一次仅发射/接收单个波长,这对应于单信道接口。例如,NE可包括具有多个端口的光转换器,其中每个端口一次发射/接收单个波长,因此对应于单信道接口。WSON可包括基于单信道接口的DWDM网络,例如ITU-T建议G.698.1和G.698.2中定义的网络,这两份文件均以引入的方式并入本文本中。G.698.1和G.698.2还定义了涉及到非衰减的参数,包括:(a)以千兆赫(GHz)为单位的最小信道间隔;(b)支路信号的位速率/线路编码(调制);以及(c)最小和最大中心频率。最小信道间隔以及最小和最大中心频率可能涉及到链路性质,且建模于IETF文档draft-ietf-ccamp-gmpls-g-694-1ambda-labels-04.txt、draft-bernstein-ccamp-wson-g-info-03.txt和draft-ietf-ccamp-rwa-wson-framework-06.txt(本文中统称为WSON框架)中,这些文档均以引入的方式并入本文本中。支路信号的位速率/线路编码或调制可能涉及到在NE之间交换的信号性质。
单信道接口在ITU-T规范G.698.1、G.698.2和G.959.1中也有描述,所述规范也以引入方式并入本文本中。G.698.1、G.698.2和G.959.1定义了“光支路信号”这样一种概念,作为置于光信道内的单信道信号,用以在光网络中传输。本文所用术语“支路”是指单信道实体,而不是多信道光信号。所定义的光支路信号有多种,称为“光支路信号类”。光支路信号在G.959.1中以调制格式和位速率范围进行区分,包括:(a)光支路信号类不归零调制(NRZ)1.25GHz(G);(b)光支路信号类NRZ 2.5G;(c)光支路信号类NRZ 10G;(d)光支路信号类NRZ 40G;以及(e)光支路信号类归零调制(RZ)40G。此外,G.698.2要求指定光支路信号的位速率。随着技术的进一步发展,所述标准中将加入更多的光支路信号类。例如,40G速率下采用了多个非标准化高级调制格式,包括差分相移键控(DPSK)和相位整形二进制传输(PSBT)。
例如,可针对WSON中的链路或NE,将光支路信号分配给光通信信道。光支路信号可对应于GMPLS中的标签交换路径(LSP)。所分配的WSON信号可具有多个特性或属性,包括:(1)光支路信号类或调制格式;(2)FEC,例如数字流中是否使用了FEC,以及所用的是哪种类型的FEC;(3)中心频率或波长;(4)位速率;以及(5)信息格式的GPID。例如,可能需要此类信号特性或属性来进行路径选择和/或RWA实施,以选择兼容路径。因此,WSON信号属性或特性可以是使用IGP或GMPLS等在PCC、PCE和/或NE之间交换的RWA信息的一部分。例如,WSON信号属性或特性可在消息502中交换。
随着信号穿过网络,并经过发电机、OEO转换器,和/或WC的处理或转换,光支路信号类、FEC和中心频率可能变化。GMPLS中可支持波长转换。位速率和GPID可能不会变化,因为它们均描述所编码的位流。可针对λ或波长交换而定义一组GPID值,例如IETF请求注释文档(Request for Comments,RFC)3471和RFC 4328中所描述的值,这两份文档均以引入的方式并入本文本中。此外,可能有多种“预标准”或专有调制格式和FEC码用于WSON中。可针对某些位流,例如ITU-T G.707中描述的位流而检测FEC在信号中的状态,其中所述文档以引入方式并入本文本中。FEC在信号中的状态可通过信号中的FEC状态指示(FSI)字节来指示,或者根据以引入方式并入本文本中的ITU-T G.709来指示,且可通过验证光信道传送单元-k(OTUk)是否包括所有零而推断出。
某些透明光系统和/或混合电光系统,例如OEO转换器、WC和再生器可具有多种相同性质。此类NE可能对光信号“透明”,具体取决于它们的功能和/或实施方案。再生器可实施各种再生方案,例如以引入方式并入本文本中的ITU-T G.872附录A中所描述的。基于各自的功能,再生器可对应于不同类别或类的发生器:1R、2R和3R,如下面的表1所述。
1R再生器可独立于信号调制格式(或线路编码),但可在相对有限的波长/频率范围上运行。2R发生器可基于调制格式而应用于信号数字流,且在某种程度上限于一定的位速率范围,但并不一定限于特定位速率。3R发生器可基于调制格式而应用于信号信道,且易受数字信号的位速率的影响。例如,3R发生器可用于处理特定的位速率,或者可进行编程以接收和再生成特定的位速率。
1R、2R和3R再生器可能未充分地修改光信号或电信号中的位流。但是,为了进行性能监测和故障管理,可对位流稍加修改。诸如同步光网络(SONET)、同步数字系统(SDH),以及基于ITU-T G.709的网络等现有网络可针对3R再生器之间的位流而应用数字信号包络。数字信号包络可能指SONET中的区间信号,SDH中的再生器区间信号,以及G.709中的OTUk。可保留信号中的帧结构的一部分(例如系统开销),供再生器使用。表2对系统开销部分进行了概述。
表1:再生器类和关联的功能
表2所示是对在WSON层上的帧同步、信号识别和FEC的当前支持。但是,GMPLS控制面不会在WSON层上实现交换或多路复用,从而简化GMPLS控制面。GMPLS控制面可在WSON层中提供表2中的管理功能,但需要多层实施,以提供交换功能。因此,支持额外管理层的现有技术可能会被GMPLS控制面所忽略,例如,转而在管理面实施。在一项实施例中,GMPLS控制面的WSON层可用于支持再生器和其他NE的至少一些功能,以进行交换和/或多路复用。例如,可用额外支持的功能进行替换,以在管理层而不是控制面层使用多层或较高层交换。
表2:涉及SONET、SDH和G.709再生器的系统开销
WSON层可支持某些再生器功能,方法是指定或指明针对不同类再生器1R、2R和3R的多个再生器兼容性约束。表3列出了多个再生器兼容性约束,包括有限的波长范围、调制类型限制、位速率范围限制、特定或确切的位速率限制,以及用户端信号相关性。例如,1R、2R和3R再生器可具有有限的波长范围,2R和3R再生器也可具有调制类型限制和位速率限制,此外,3R再生器可具有确切或特定的位速率限制和用户点信号相关性。有限的波长范围约束可建模于现行GMPLS实施方案中,且调制类型限制约束可指示FEC支持。
  约束   1R   2R   3R
  有限的波长范围   X   X   X
  调制类型限制   X   X
  位速率范围限制   X   X
  确切位速率限制   X
  用户端信号相关性   X
表3:再生器兼容性约束。
使用或包括再生器的WSON转换器也可执行OEO处理或交换,例如OEO转换器。供应商可将再生器添加到交换系统中,用于多种用途。例如,再生器可在光学处理(例如交换)之前或之后,恢复信号质量。光信号也可转换成电信号以进行交换,并随后重新转换成光信号,再从转换器中输出。因此,可通过信号再生来使得信号适用于交换结构,例如,无论是否需要再生来维持信号质量。在任何此类情况下,OEO转换器可具有与上述的再生器兼容性约束大体相同的兼容性约束。因此,可使用上述的兼容性约束(表3中)来在GMPLS控制面层中同时支持再生器和OEO交换功能。
WC可用于接收一个或多个光信道,例如特定波长的光信道,且将其转换成对应的新特定波长。WC可能并未被广泛采用。例如,在某些当前系统中,波长转换器的原理在于,例如,使用OEO处理,将输入光信号解调成电信号,并将电信号重新调制成新的光信号。此类过程与再生器的相应过程相似,除了输出信号波长可能与输入信号波长不同以外。因此,WC可具有与再生器和OEO转换器大体相同的信号处理限制。因此,也可使用上述NE兼容性约束(表3中)来在GMPLS控制面层中支持WC功能。此外,WC兼容性约束可包括输入频率(或波长)范围限制和输出频率限制,这些限制可能比所支持的WDM链路范围更具限制性。此类限制的模型如draft-ietf-ccamp-gmpls-g-694-lambda-labels-04.txt和draft-ietf-ccamp-rwa-wson-framework-06.txt中所述,这两份文档均以引入方式并入本文本中。
上述再生器兼容性约束包括额外的WC兼容性约束,可用于进行路径选择和/或RWA实施。因此,可使用IGP或GMPLS在WSON中,例如在消息502中交换再生器或NE兼容性约束。此外,再生器、OEO转换器、WC和/或其他NE可使用多个NE功能约束来进行区分,所述约束也可为所交换的RWA信息的一部分。额外的功能约束可包括输入约束、输出约束,以及处理能力。输入约束可与所接收到的信号关联,且包括:(1)可接受的调制限制;(2)用户端信号(例如GPID)限制;(3)位速率限制;(4)FEC编码限制;以及(5)可配置性,其可指示(a)无、(b)自配置和(c)必需这三项中的一项。
NE可能需要进行设置,以接收具有某些属性的信号,并拒绝具有其他属性的信号。例如,可对2R发生器进行设置,以仅接收符合相应的位速率限制的信号。或者,某些NE可用于自动检测某些信号属性,并对自身进行相应地配置。例如,3R发生器可使用检测机制和/或相位锁定电路来检测信号的位速率并进行相应的改造。可使用可配置性功能约束来区分NE的可配置性。可针对所传送的信号将上述输入限制应用到信源NE或信宿NE。
输出约束可与从NE发射的信号关联,其不会修改信号位速率或用户端信号的类型。但是,NE可能修改信号的FEC码的调制格式。输出限制可包括:(1)可能在默认情况下与输入调制相同的输出调制;(2)可用输出调制的有限集合;(3)可能与输入FEC相同的输出FEC;以及(4)可用输出FEC码的有限集合。如果具有一种以上可能的输出调制和/或输出FEC码,则可针对每种可能,基于每个LSP对NE进行配置。
处理功能可与NE的功能关联。在一项实施例中,处理功能可规定再生器、OEO转换器和/或WC的再生能力。处理能力可包括:(a)再生,例如针对不同的再生器类;(b)故障和性能监测;(c)波长转换;以及(d)交换。GMPLS和WSON框架可支持波长转换和交换功能。再生能力可指示以下内容:NE是否能够进行信号再生。对于穿过NE的特定信号而言,某些NE的再生能力可能有限,例如在共享NE池中的NE。
指定每个链路或节点的再生能力的方法是,指明以下项中的至少一项:
(1)再生能力,可对应于(a)固定、(b)选择性和(c)无这三项中的一项;(2)再生类型,例如1R、2R或3R;以及(3)针对选择性再生的再生池性质,可包括输入限制和输出限制以及可用性。例如共享再生器池等共享NE池的性质可与draft-ietf-ccamp-rwa-wson-framework-06.txt中的WC池的性质大体相同。
故障和性能监测能力可在GMPLS控制面外进行处理。但是,在基于LSP而进行NE操作时,控制面可在故障和性能监测配置过程中提供协助。例如,故障和性能监测可包括在每个LSP和/或节点的两个NE之间,例如在发生器系统开销标识符中,建立区段踪迹。故障和性能监测也可包括路径中所选节点上的中间光性能监测。
WSON再生器、OEO转换器和/或WC可用于不同的联网方案中,包括固定再生点、共享再生池和可重新配置的再生器。对于固定再生点,基本上穿过链路或节点的所有信号均可以再生。例如,固定再生点可包括在相应端口上实现信号再生的OEO转换器。此类再生器NE包括再生器、OEO转换器和WC中的任意一者,可能需要遵守输入约束和/或输出约束,例如上述的相应约束。可能需要此类再生约束来进行路径选择和/或RWA实施。
例如,再生约束和/或信息可使用IGP或GMPLS,在PCC、PCE和/或NE之间,在例如消息502等消息中进行交换。此外,可能需要再生约束来支持衰减感知路由选择和波长分配(IA-RWA)。例如,在路径选择过程中,可能需要关于哪个NE能够进行信号再生的信息来进行IA-RWA。WC等的再生信息也可用于典型RWA中,以放宽波长连续性约束。在固定再生点方案中,可能不需要更改WSON信号传输机制,因为可重新配置的再生器选项可能不会用于输入、输出和处理。
对于共享的再生池,多个NE可共享再生器池。例如,可在网络中的节点内共享多个再生器,且可选择性地将任意再生器应用到穿过该节点的信号。在共享的再生池中,可重新配置的再生器可能不会用于输入和输出,但可能用于处理。在这种情况下,可使用再生信息来进行路径计算,以选择确保符合兼容性和/或IA-RWA要求的路径。在一项实施例中,为了建立某个LSP,使其使用与共享再生器池关联的节点中的再生器,可对GMPLS信令进行修改,以指示需要在信号路径中的所述节点上进行再生。
对于可重新配置的再生器,在处理光信号之前,可能需要对NE进行配置。例如,再生器可用于接收具有不同特性的信号;从输出属性的选择集中选择输出属性(例如调制或FEC);或执行具有额外处理能力的再生。因此,可使用GMPLS而通过信号发送关于再生器的再生性质的信息,以选择使用再生器和/或IA-RWA计算的可兼容路径。此外,在建立LSP的过程中,可使用再生性质来配置沿路径的节点中的再生器。
包括诸如可重新配置光分插复用器(ROADM)和OEO NE等透明NE,例如发生器或OEO转换器的网络有时称为半透明网络。半透明网络可实施不同的GMPLS控制面机制或方法。半透明网络可包括(1)四周设有再生器的透明“岛”,例如在从城域光子网络向远程传输光子网络过渡时。半透明网络还可包括(2)大体透明的网络,其中包括有限数目的OEO(或“不透明”)节点,这些节点可置于关键位置。此类网络可利用OEO转换器所固有的再生能力,并由此而确定OEO转换器的最佳位置。此外,半透明网络可包括(3)大体透明的网络,其中包括有限数目的光交换节点,其具有共享再生器池,这些节点可选择性地应用于穿过所述转换器的信号。转换器有时可称为半透明节点。上述半透明网络类型可使用固定再生点和/或共享再生池方案,所述方案可通过对GMPLS信令进行扩展而获得支持。
WSON框架和draft-bernstein-ccamp-wson-g-info-03.txt(均以引入方式并入本文本中)中提供了某些NE模型,从而包括交换不对称性和端口波长限制。在一项实施例中,可将多个NE兼容性参数用于当前的节点/链路模型,从而考虑到上述的输入约束、输出约束和信号处理能力。所述参数可用于GMPLS路由选择,且可经由GMPLS信令进行交换。输入约束参数可包括(1)所允许的光支路信号类,例如可由NE处理或在链路上传送的光支路信号类的列表。例如,相应输入参数所指定的配置类型能够指示所允许的光支路类。
输入约束参数也可包括(2)可接受的FEC码,其可由配置类型决定。输入约束参数可包括(3)可接受的位速率集合,例如NE可接受的特定位速率或位速率范围的列表。例如,可包括具有光支路类限制的不精确的位速率信息。输入约束参数也可包括(4)可接受的GPID,例如对应于可与NE兼容的用户端数字流的GPID的列表。由于信号的位速率不会因LSP而改变,因此信号的位速率可用作LSP参数,且该信息可供与LSP关联的任何NE使用,以进行配置。在这种情况下,不需要提供与NE关联的位速率配置类型。
输出约束参数可包括:(1)输出调制,其指示(a)与输入相同或(b)可用类型的列表这两项中的一项;以及(2)FEC选项,其也对应于(a)与输入相同或(b)可用码的列表。处理能力参数可包括:(1)再生,其可指示(a)1R、(b)2R和(c)3R和(d)可选择再生类型的列表这四项中的一项;以及(2)故障和性能监测,其可对应于(a)GPID特殊能力或(b)光性能监测能力。可基于(a)网络、(b)每个端口或(c)每个再生器或NE来指定上述参数。通常情况下,例如可使用RFC 4202中所述的GMPLS接口交换能力描述符来基于每个端口提供此类信息,其中所述RFC 4202以引入的方式并入本文本中。但是,WSON框架中的WC可基于子系统而用于交换系统或节点内,因此无法仅基于每个端口而有效地提供此类信息。
如上所述,可在路径中的任意点上用调制格式、FEC、波长、位速率和/或GPID来描述WSON信号的特性。RFC 3471和RFC 3473(均以引入方式并入本文本中)中支持GPID、波长(或标签)和位速率,其中在LSP中的节点处的波长变化是可以接受的,且可实现对WC的显式控制。在固定再生点方案中,可使用当前GMPLS信令来提供WSON信号属性或特性。对于共享再生池,可对GMPLS进行扩展,以指导节点对特定信号进行再生,或者指定LSP中执行再生过程的某些节点。对于可重新配置再生器,也可对GMPLS进行扩展,以基于每个节点或每个LSP而进行再生。可使用多个属性或参数来指示WSON信号特性,例如记录路由对象(RRO)和/或ERO中的LSP属性。例如,可将RFC 5420中指出的实现在RRO中记录LSP属性的技术进行扩展,以实现在ERO中记录额外的LSP属性,其中所述RFC 5420以引入方式并入本文本中。因此,可使用LSP属性来指示以下内容:可在路径中的哪些位置进行选择性3R再生;对诸如调制格式等WSON特性的任何修改;和/或诸如性能监测等任何处理能力。
在PCE和PCC可进行通信的情况下,例如在方法500中,PCC可将以下任意信息传达给PCE:LSP的GPID类型、发射器(信源)可接受的信号属性,和/或接收器(信宿)可接受的信号属性。信源处的信号属性,以及同样地,信宿处的信号属性可包括调制类型和/或FEC类型。PCC也可指示以下能力:规定计算得出的路径中是否允许进行再生。如果允许所述能力,则PCC也可指示计算得出的路径中所允许的再生器或再生器NE的最大数目。随后,PCE以关于以下内容的信息对PCC做出响应:所得到的LSP的请求光特性与信源、信宿以及LSP中的任何NE的符合度。PCE也可以额外的LSP属性而做出响应,所述属性可沿路径进行修改,例如调制格式变化。
在PCE和PCC可进行通信的情况下,例如在方法500中,PCC可将以下任意信息传达给PCE:LSP的GPID类型、发射器(信源)的信号属性,和/或接收器(信宿)的信号属性。信源处的信号属性,以及同样地,信宿处的信号属性可包括调制类型和/或FEC类型。随后,PCE以关于以下内容的信息对PCC做出响应:与所得到的LSP关联的请求光特性与信源、信宿以及LSP中的任何NE的符合度。PCE也可以额外的LSP属性而做出响应,所述属性可沿路径进行修改,例如调制格式变化,和/或与所得到的LSP关联的特殊或特定节点处理信息(例如再生点)。
以引入方式并入本文本中的RFC 4655定义了基于PCE的结构,并介绍了在收到PCC的请求后,PCE如何在多协议标签交换通信业务工程(MPLS-TE)或GMPLS网络中计算LSP。PCC可以是提出此类请求的任何网络元件,例如WDM网络内的光交换元件。PCE可位于网络内的任何位置,例如位于NE、网络管理系统(NMS)、操作支持系统(OSS)内,或者可为独立的网络服务器。PCEP是用于PCC和PCE之间的通信协议,在某些实施例中,也可用于协同操作的各PCE之间。以引入方式并入本文本中的RFC 4657指定了针对PCEP的一些常规协议要求。
在一项实施例中,可对PCEP进行扩展,例如,基于上述信号属性、NE兼容性约束、NE功能约束,和/或NE兼容性参数,而支持兼容性约束。因此,WSON中的路径计算可使用特定信号特性和属性来支持NE处理。WSON中所用的某些信号可能不与某些NE兼容,包括再生器、OEO转换器,和/或WC。因此,PCE可能需要上述兼容性约束来计算满足信号兼容性和处理约束的约束路径。在一项实施例中,PCE所用的兼容性约束可包括输入兼容性,例如NE可接收的信号类型(例如调制类型、位速率,和/或FEC类型)。兼容性约束可包括再生能力,例如NE可执行的处理/再生类型(例如,针对1R、2R或3R),以及NE可执行的转换类型(例如,调制类型和/或FEC类型)。兼容性约束可包括输出格式,例如NE可发射的信号类型(例如调制类型、位速率和/或FEC类型)。
在一项实施例中,PCC可向PCE发送指示兼容性约束的请求参数(RP)对象,例如在请求消息(消息502)中。RP对象可包括信号兼容性检查(SC)位,其可进行设置(例如,设置成约为1),以从PCE发送请求,从而支持信号兼容性和处理约束。RP对象可包括多个TLV或子TLV,例如调制类型列表TLV、FEC类型列表TLV,和/或GPID类型TLV。PCE也可将回复消息发送到PCC,以指定与所计算得出的路径关联的兼容性信息。兼容性信息可在回复消息中的对象中发送,所述对象包括多个TLV,例如调制类型TLV、FEC类型TLV,和/或再生点TLV。
如上所述,WSON中的RB集合可具有多个信号能力约束。RB集合可包括再生器、WC和/或OEO,且可形成或对应于WSON中的一个或多个NE。例如,对应于单个NE的单个RB的性质可包括:(a)输入约束(例如调制、FEC、位速率、GPID);(b)处理能力(例如再生、性能监测、供应商特有);以及(c)输出约束(例如调制、FEC)。可使用以下任意TLV来对单个RB的此类性质进行编码。
图6所示是调制类型或格式TLV的调制类型或格式头600的一项实施例,其可从PCC转发到PCE,或在NE之间转发。调制格式头600可包括标准化调制(S)位602、输入调制格式(I)位604、调制ID 606,以及长度字段608。在一项实施例中,调制格式头600的大小可为约32位。例如,可将S位602设置成约为1,以指示标准化调制格式,或者,例如,可将其设置成约为零,以指示供应商特有调制格式。例如,可将I位604设置成约为1,以指示输入调制格式和/或信宿调制类型,或者,例如,可不将其设置成约为零,以指示输出调制格式和/或信源调制类型。调制ID 606可包括与一个调制格式/类型关联的唯一ID。长度字段608可指示调制格式字段的完整大小。
可在调制类型或格式列表TLV中转发一个或多个调制格式字段。调制格式列表TLV可以是输入调制格式列表TLV,其包括可接受的输入格式的列表。因此,调制格式列表TLV的类型可指示输入调制格式列表,且调制格式列表TLV的值可指示调制格式字段的列表。或者,调制格式列表TLV可以是输出调制格式列表TLV,其包括可接受的输出调制格式的列表。因此,调制格式列表TLV的类型可指示输出调制格式列表,且调制格式列表TLV的值可指示调制格式字段的列表。如果未指定输出调制,则输出调制可与调制类型列表TLV中指出的输入调制相同,因此关联的NE中不执行任何调制转换。
图7所示是调制格式列表TLV 700的一项实施例,其可包括调制格式头600。调制格式列表TLV 700可在RP对象中发送,例如在已设置RP对象中的SC位的情况下。调制格式列表TLV 700可包括S位702、I位704、调制ID 706、长度字段708,其可与调制格式头600中的对应字段相同。调制格式列表TLV 700也可包括至少一个字段710,其包括基于调制ID 706的额外调制参数。具体而言,调制格式列表TLV 700可对应于标准化调制格式。因此,例如,可将S位702设置成约为1。调制ID 706可包括以下值:约1,用以指示光支路信号类NRZ 1.25G;约2,用以指示光支路信号类NRZ 2.5G;约3,用以指示光支路信号类NRZ 10G;约4,用以指示光支路信号类NRZ40G;或约5,用以指示光支路信号类RZ 40G。或者,调制ID 706可包括约为零的预备值。其他调制类型可具有所分配的其他值和/或可使用额外参数进行区分。字段710可指示信源(发射器)和/或信宿(接收器)中可允许的调制类型。
图8所示是调制格式列表TLV 800的另一项实施例,其可包括调制格式头600。调制格式列表TLV 800可在RP对象中发送,例如在已设置RP对象中的SC位的情况下。调制格式列表TLV 800可包括S位802、I位804,以及长度字段808,其可与调制格式头600中的相应字段相同。调制格式列表TLV 800也可包括供应商调制ID 806、企业编号810,以及至少一个字段812,所述字段812包括供应商特定的额外调制参数。具体而言,调制格式列表TLV800可对应于供应商特有调制格式。因此,例如,可将S位802设置成约为零。供应商调制ID 806可包括针对调制类型,例如针对供应商而分配的ID。企业编号810可包括某个组织的唯一标识符,且可包括约32位。例如根据RFC 2578,企业编号可由互联网编号分配机构(Internet Assigned NumbersAuthority,IANA)进行分配,且可通过IANA注册表进行管理。字段812可包括描述供应商特有调制的特性的额外参数。
图9所示是FEC类型列表TLV 900的一项实施例,所述FEC类型列表TLV 900可从PCC转发到PCE,或在NE之间转发。FEC类型列表TLV 900可在RP对象中发送,例如在已设置RP对象中的SC位的情况下。FEC类型列表TLV 900可以是输入FEC类型列表TLV,其包括可接受的FEC类型的列表。因此,FEC类型列表TLV 900的类型可指示输入FEC类型字段列表,且FEC类型列表TLV 900的值可指示FEC类型字段的列表。或者,FEC类型列表TLV 900可以是输出FEC类型列表TLV,其包括输出FEC类型的列表。因此,FEC类型列表TLV 900的类型可指示输出FEC类型字段列表,且FEC类型列表TLV 900的值可指示FEC类型字段的列表。
FEC类型列表TLV 900可包括S位902、I位904、FEC ID 906、长度字段908,以及至少一个字段910,所述字段910包括基于FEC ID 906的FEC参数。例如,可将S位902设置成约为1,以指示标准化FEC格式,或者,例如,可将其设置成包括约为零,以指示供应商特有的FEC格式。例如,可将I位904设置成约1,以指示输入FEC格式和/或信宿FEC类型,或者,例如,可将其设置成约零,以指示输出FEC格式和/或信源FEC类型。FEC ID906可包括与一个FEC格式/类型关联的唯一ID。长度字段908可指示FEC类型字段900的完整大小。
图10所示是FEC类型列表TLV 1000的另一项实施例,所述FEC类型列表TLV 1000可从PCC转发到PCE,或者可在NE之间转发。FEC类型列表TLV 1000可包括S位1002、I位1004,以及长度字段1008,其可与FEC类型列表TLV 900的对应部分相同。FEC类型列表TLV 1000也可包括FEC ID1006和至少一个字段1010。具体而言,FEC类型列表TLV 1000可对应于标准化FEC格式。因此,例如,可将S位1002设置成约为1。FEC ID 1006可包括以下值:约1,用以指示ITU-T G.709里德-所罗门(Reed-Solomon)FEC;或约2,用以指示兼容ITU-T G.907V的超FEC。FEC 1006可包括以下值:约3,用以指示ITU-T G.975.1连接FEC(RS(255,239)/CSOC(n0/k0=7/6,j=8));约4,用以指示G.975.1连接FEC(Bose-Chaudhuri-Hocquengham或BCH(3860,3824)/BCH(2040,1930));约5,用以指示G.975.1连接FEC(RS(1023,1007)/BCH(2407,1952));或约6,用以指示G.975.1连接FEC(RS(1901,1855)/扩展汉明(Hamming)乘积码(512,502)X(510,500))。FEC 1006可包括以下值:约7,用以指示G.975.1低密度奇偶校验(LDPC)码;约8,用以指示G.975.1连接FEC(两个正交连接的BCH码);约9,用以指示G.975.1RS(2720,2550);或约10,用以指示G.975.1连接FEC(两个交错延伸的BCH(1020,988)码)。标准G.709V和G.975.1均以引入方式并入本文本中。或者,FEC ID 1006可包括约为零的预备值。字段1010可指示信源(发射器)和/或信宿(接收器)中可允许和/或额外的FEC类型。
图11所示是FEC类型列表TLV 1100的另一项实施例,所述FEC类型列表TLV 1100可从PCC转发到PCE,或者可在NE之间转发。FEC类型列表TLV 1100可包括S位1102、I位1104,以及长度字段1108,其可与FEC类型列表TLV 900的相应部分相同。FEC类型列表TLV 1100也可包括供应商FEC ID 1106、企业编号1100,以及至少一个字段1112,所述字段112包括供应商特有的额外FEC参数。具体而言,FEC类型列表TLV 1100可对应于供应商特有的FEC格式。因此,例如,可将S位1102设置成约为零。供应商FEC ID 1106可包括供应商针对FEC类型而分配的ID。企业编号1110可包括某个组织的唯一标识符,且可包括约32位。例如根据RFC 2578,企业编号可由IANA分配,且通过IANA注册表进行管理。字段1112可包括描述供应商特有FEC的特性的额外参数。
图12所示是GPID类型TLV 1200的一项实施例,所述TLV 1200可从PCC转发到PCE,或者可在NE之间转发。GPID类型TLV 1200可在RP对象中发送,例如在已设置RP对象中的SC位的情况下。GPID类型TLV 1200可包括可由IANA分配的GPID,例如RFC 3471和RFC 4328中指定的GPID中的一个。
图13所示是调制类型TLV 1300的一项实施例,所述调制类型TLV 1300可从PCE转发到PCC,或者可在NE之间转发。调制类型TLV 1300可作为对RP对象的回复而从PCC发送,例如在已设置RP对象中的SC位的情况下。调制类型TLV 1300可包括调制ID 1302和长度字段1304。调制ID 1302可包括与PCE所计算的路径关联的唯一ID,其可与在调制ID 706或供应商调制ID 806中发送的ID相同。长度字段1302可指示调制类型TLV 1300的长度,其可约等于32位。
图14所示是FEC类型TLV 1400的一项实施例,所述FEC类型TLV 1400可从PCE转发到PCC,或者可在NE之间转发。FEC类型TLV 1400可作为对RP对象的回复而从PCC发送,例如在已设置RP对象中的SC位的情况下。FEC类型TLV 1400可包括FEC ID 1402和长度字段1404。FEC ID 1402可包括与PCE所计算的路径关联的唯一ID,其可与在FEC ID 1006或供应商FEC ID 1106中发送的ID相同。长度字段1402可指示FEC类型TLV 1400的长度,其可约等于32位。
图15所示是再生点TLV 1500的一项实施例,所述再生点TLV 1500可从PCE转发到PCC,或者可在NE之间转发。再生点TLV也可称为能力参数TLV。再生点TLV 1500可作为对RP对象的回复而从PCC发送,例如在已设置RP对象中的SC位的情况下。再生点TLV 1500可包括再生器类型(T)字段1502、再生器能力(C)字段1504,以及预备字段1506。T字段1502可指示再生器类型。T字段1502可包括以下值:约1,用以指示1R再生器;约2,用以指示2R再生器;以及约3,用以指示3R再生器。或者,T字段1502可包括约为零的预备值。C字段1504可指示生成器能力。C字段1504可包括以下值:约1,用以指示固定再生点;以及约2,用以指示选择性再生池。当所指示的是选择性再生池时,可指定再生池性质,例如输入和输出约束和可用性,例如在来自PCE的另一TLV中进行指定。或者,C字段1504可包括约为零的预备值。预备字段1506可保留且不使用。
图16所示是位速率范围字段1600的一项实施例,所述位速率范围字段1600可从PCC转发到PCE,或者可在NE之间转发。可在位速率范围列表TLV中转发一个或多个位速率范围字段1600。位速率范围字段1600可在RP对象中发送,例如在已设置RP对象中的SC位的情况下。位速率范围字段1600可包括起始位速率1602和终止位速率1604。起始位速率1602可指示位速率范围中的起始位速率,且终止位速率1604可指示位速率范围中的终止位速率。因此,起始位速率1602的值可小于终止位速率1604的值。起始位速率1602和终止位速率1604可分别包括约32位的电气和电子工程师协会(IEEE)浮点数。
图17所示是位速率范围列表TLV 1700的一项实施例,其可包括一个或多个位速率范围字段1702,例如位速率范围字段1600。位速率范围列表TLV1700可为输入位速率范围列表TLV,包括可接受的输入位速率范围的列表。因此,位速率范围列表TLV的类型可指示输入位速率范围列表,且位速率范围列表TLV的值可指示位速率范围字段的列表。
图18所示是用户端信号列表TLV 1800的一项实施例,所述用户端信号列表TLV 1800可从PCC转发到PCE,或者可在NE之间转发。用户端列表TLV 1800可以是输入用户端信号列表TLV,包括可接受的输入用户端信号类型的列表。因此,用户端信号列表TLV的类型可指示输入用户端信号列表,且用户端信号列表TLV的值可指示GPID的列表。用户端信号列表TLV 1800可在RP对象中发送,例如在已设置RP对象中的SC位的情况下。用户端信号列表TLV 1800可包括GPID编号字段1802和GPID列表1804。GPID列表1804可包括一个或多个GPID字段或GPID类型TLV 1200,例如GPID#1,…,GPID#N(N是整数)。
图19所示是处理能力列表TLV 1900的一项实施例,所述处理能力列表TLV 1900可从PCC转发到PCE,或者可在NE之间转发。处理能力列表TLV1900可在RP对象中发送,例如在已设置RP对象中的SC位的情况下。处理能力列表TLV 1900可以是输入处理能力列表TLV,包括资源块处理能力的列表。资源块可对应于NE或者共享NE池中的OEO、再生器或WC。处理能力列表TLV 1900的类型可指示处理能力列表,且处理能力列表TLV 1900的值可指示处理能力字段的列表。处理能力列表TLV 1900可以是可执行信号处理功能的WSON NE的列表,所述信号处理功能包括再生能力、故障和性能监测,以及供应商特定的功能。这些能力将分别用所分配的代码来表示。
处理能力列表TLV 1900可包括处理能力ID 1902、长度字段1904,以及至少一个字段1906,其中所述字段1906包括基于处理能力ID 1902的额外处理能力参数。处理能力ID 1902可包括指示再生能力的唯一ID。长度字段1902可指示处理能力字段1900。字段1906可包括额外的能力参数,例如一个或多个能力参数TLV或再生点TLV 1500。如果所指示的再生器的能力是选择性再生池,则还需要再生池性质,例如输入或输出限制和可用性。可对此类信息进行编码,并通过处理能力列表TLV 1900发送,例如在不同字段或TLV中。
此外,例如,可使用RB设置字段或TLV,对多个NE的资源库的RB集合的性质进行编码。所述RB集合可在下述的RB描述符TLV、RB可访问性TLV、资源范围限制TLV,或资源使用状态TLV中发送。不同的TLV可与不同类型的资源库关联,且可包括描述相应资源库性质的RB设置字段或TLV。RB设置字段或TLV可配置成与λ标签相同,如RFC 3471中所述。
图20所示是RB设置TLV(RB set TLV)2000的一项实施例,所述RB设置TLV 2000可从PCC转发到PCE,或者可在NE之间转发。RB设置TLV2000可在RP对象中发送,例如在已设置RP对象中的SC位的情况下。RB设置TLV 2000可包括动作字段2002、事件(E)位2004、连接性(C)位2006、预备字段2008、长度字段2010,以及一个或多个RB标识符(或ID)2012。动作字段2002可包括约为零的值,用以指示包括的列表,其中一个或多个RB元件可包括在RB设置TLV 2000中。或者,动作字段2002可包括约为2的值,用以指示包括的范围,其中RB设置字段2000可指示资源的范围。因此,RB设置TLV 2000可包括两个WC元件。第一WC元件可指示范围的起点,且第二WC元件可指示范围的终点。如果相应的范围没有界限,则第二WC元件可设置成约为零。
例如,可将E位2004设置成约为1,以指示偶数的RB标识符2012,或者,例如,可将其设置成约为零,以指示奇数的RB标识符。例如对于组播的情况,可将C位2006设置成约为零,以指示固定连接性,或者,可将其设置成约为1,以指示切换的连接性。C位2006可用于RB可访问性TLV中,且可在其他TLV中被忽略。预备字段2008可保留且不使用,其中预备字段2008中的位可设置成约为零,且可在接收后被忽略。长度字段2010可指示RB设置TLV 2000的长度,例如以字节为单位。每个RB标识符2012可包括与一个RB元件关联的唯一ID。动作字段2002的长度可为约8位,预备字段2008的长度可为约6位,且长度字段2010和RB标识符2012的长度均可为约16位。如果RB设置TLV 2000中具有奇数的RB标识符2012,则可填充在最近RB标识符2012之后的RB设置TLV 2000的最后32位中的剩余约16位,例如设置成约零位。
图21所示是RB描述符TLV 2100的一项实施例,所述RB描述符TLV2100可包括RB设置字段或TLV。可使用RB描述符TLV 2100来发送关于各RB,例如关于资源库性质以及所包括RB数的相对静态的信息。RB描述符TLV 2100可使用上述的某些TLV,指示每个所指示的RB的一个或多个性质。RB描述符TLV 2100可包括与RB设置TLV 2000大体相同的RB设置字段2102,指示所包括的RB数目的RB数目字段2104,以及例如,对应于每个RB的TLV。TLV可包括输入调制类型列表TLV 2106,其可包括或对应于调制格式列表TLV 700或800;输入FEC类型列表TLV 2108,其可包括或对应于FEC类型列表TLV 900、1000或1100;输入用户端信号类型TLV2110,其可包括或对应于用户端信号列表TLV 1800;和/或输入位速率范围列表TLV 2112,其可包括或对应于位速率范围列表TLV 1700。RB描述符TLV 2100中的TLV也可包括处理能力列表TLV 2114,其可包括或对应于处理能力列表TLV 1900;输出调制类型列表TLV 2116,其可包括或对应于调制格式列表TLV 700或800;和/或输出FEC类型列表TLV 2120,其可包括或对应于FEC类型列表TLV 900、1000或1100。
图22所示是RB可访问性TLV 2200的一项实施例,所述RB可访问性TLV 2200可包括RB设置字段或TLV。可使用RB可访问性TLV 2200来描述与交换装置或NE关联的资源库的结构。RB可访问性TLV 2200可指示输入端口获取RB的能力,以及RB到达输出端口的能力。该信息可对应于draft-ietf-ccamp-rwa-info.txt中的PoolIngressMatrix和PoolEgressMatrix信息。RB可访问性TLV 2200可包括输入链路设置字段2202(例如,输入链路设置字段A#1)以及相应的RB设置字段2204(例如,RB设置字段A#1)。输入链路设置字段2202可指示一组输入端口的连接性,且可包括方向参数(未显示),其指示链路集合是输入链路集合还是输出链路集合。方向参数可能不具有双向的值。RB设置字段2204可能与RB设置TLV 2000大体相同。同样地,RB可访问性TLV 2200可根据指定PoolIngressMatrix的需要而包括额外的输入链路设置字段和RB设置字段对2206。
RB可访问性TLV 2200也可包括输出链路设置字段2208(例如输入链路设置字段B#1)和相应的RB设置字段2210(例如RB集合字段B#1)。输出链路设置字段2208可指示一组输出端口的连接性,且可包括方向参数(未显示),其指示链路集合是输入链路集合还是输出链路集合。RB设置字段2210可与RB设置TLV 2000大体相同。同样地,RB可访问性TLV 2200可根据指定PoolEgressMatrix的需要而包括额外的输出链路设置字段和RB设置字段对2212。
图23所示是资源范围限制TLV 2300的一项实施例,所述资源范围限制TLV 2300可包括RB设置字段或TLV。可使用资源范围限制TLV 2300来指示一组RB,例如WC的输入和/或输出波长范围。资源范围限制TLV 2300也可指示在所支持的RB波长中,可使用或获取的RB波长。资源范围限制TLV 2300可包括RB设置字段2302,其可与RB设置TLV 2000大体相同;输入波长设置字段2304;以及输出设置字段2306。RB设置字段2302可指示具有相同波长限制的RB集合。输入波长设置字段2304可指示RB的波长输入限制,且输出设置字段2306可指示RB的波长输出限制。
图24所示是资源使用状态TLV 2400的一项实施例,所述资源使用状态TLV 2400可包括RB设置字段或TLV。资源使用状态TLV 2400可包括约16位整数值的列表,或包括位图,用以指示资源集合中的每个资源是否处于待用状态或者正在使用状态。资源使用状态TLV 2400所指示的信息可以是相对动态的,例如,可在建立连接或移除连接时改变。资源使用状态TLV 2400可包括动作字段2402、预备字段2404、RB设置字段2406,以及RB使用状态字段2408。动作字段2402可设置成约为零,以指示RB使用状态字段2408中的约16位整数值的列表。或者,动作字段2402可设置成约为1,以指示RB使用状态字段2408中的位图。在这两种情况中,RB设置字段2406中的RB元件可与RB使用状态字段2408中的值一一对应。预备字段2404可保留且不使用。可根据动作字段2402对RB使用状态字段2408进行配置,如下所述。
图25所示是资源使用状态TLV 2500的另一项实施例,所述资源使用状态TLV 2500可与资源使用状态TLV 2400配置相同。资源使用状态TLV 2500可包括动作字段2502、预备字段2504、RB设置字段2506,以及RB状态集合2508。具体而言,动作字段2502可设置成约为零,且RB状态集合2508可对应于多个约16位的整数值,例如RB使用状态字段2408中的值。RB状态集合2508中的每个RB状态可对应于RB设置字段2506中的一个RB元件,且指示RB的状态,例如待用或不可用。例如,如果RB状态的数目是奇数,则可(用零)填充最后一个RB状态。
图26所示是资源使用状态TLV 2600的另一项实施例,所述资源使用状态TLV 2600可与资源使用状态TLV 2400配置相同。资源使用状态TLV 2600可包括动作字段2602、预备字段2604、RB设置字段2606,以及RB使用状态位图2608。具体而言,动作字段2602可设置成约为1,且RB使用状态位图2608中的位可对应于RB设置字段2606中的RB元件,且指示相应RB的状态。例如,每个位可在RB待用时设置成约为零,或者在RB正在使用时设置成约为1。RB使用状态位图2608中位的序列可对应于RB设置字段2606中的RB的序列。如果必要,可填充RB使用状态位图2608中最后剩余的位,例如,以填充资源使用状态TLV 2600中最后剩余的32位。
在一项实施例中,上述的某些TLV和字段可用作针对NE或资源库的编码约束和处理能力的复合TLV中的子TLV。复合TLV可以是WSON节点TLV,包括TLV列表中的以下信息:
<Node Info>=<Node_ID>[Other GMPLS sub-TLVs][<ConnectivityMatrix>…][<ResourcePool>][<RBPoolState>],
其中<ResourcePool>=<ResourceBlockDescriptor>*<ResourceBlockAccessibility>*
<ResourceRangeRestrictions>*[<RBPoolState>]。
此外,如果WSON协议支持将动态信息与相对静态的信息分离,则WC池的状态可从WSON节点TLV中分离出来,且并入包括以下信息的WSON动态节点TLV中:
<NodeInfoDynamic>=<Node_ID>[<RBPoolState>]。
目前,使用节点TLV建模的动态信息可与WC池的状态关联。
此外,上述的某些链路相关TLV和字段可在WSON链路TLV中进行组合,所述WSON链路TLV可以是复合TLV,包括以下信息:
<LinkInfo>=<LinkID>[Other GMPLS sub-TLVs][<PortWavelengthRestriction>…][<AvailableWavelengths>][<SharedBackupWavelengths>]。
此外,如果WSON协议支持将动态信息与相对静态的信息分离,则可用波长和共享的备份状态信息可从WSON链路TLV中分离出来,且并入包括以下信息的WSON动态链路TLV中:
<DynamicLinkInfo>=<LinkID><AvailableWavelengths>[<SharedBackupWavelengths>]。
图27所示是可用于例如NE或多个NE等WSON中的WC池结构2700的一项实施例。WC池结构2700可包括第一多路分解器(Demux)2702、第二Demux 2703、光转换器2704、WC池2706、第一组合器或多路复用器2708,以及第二组合器2709,这些部件的布局如图27所示。WC池结构2700是一种示例性结构,其他实施例中可使用包括相同和/或不同部件的其他资源库结构。
第一Demux 2702可耦接到第一输入端口(例如I1),且第二Demux 2703可耦接到第二输入端口(例如I2)。两个多路分解器中的每个多路分解器均可在相应的输入端口上接收组合信号,所述组合信号可能包括多个波长信道。多路分解器可将波长信道分离,并将相应链路上的每个信道发送到光转换器2704。光转换器2704可对应于OXC、PXC、ROADM、WSS、FOADM或其他NE部件,且可经由多个输入端口接收波长信道。例如,光转换器2704可基于相应波长而转换波长信道,且可正确封装和/或标记波长信道中的数据。随后,光转换器2704经由相应的输出端口将所处理的部分波长信道发送到第一组合器2708和第二组合器2709,且可将其他波长信道发送到WC池2706。
第一组合器2708可耦接到第一输出端口(例如E1),且第二组合器2709可耦接到第二输出端口(例如E2)。两个组合器中的每个组合器可接收相应的波长信道,将波长信道进行组合,且在相应的输出端口上发送组合波长信道。WC池2706可包括一个或多个WC,例如第一WC 2710(例如WC#1)和第二WC 2711(例如WC#2)。两个WC中的每个WC可从光转换器2704接收一个或多个波长信道,且基于WC的约束和能力,例如再生或波长转换,对波长信道进行处理。随后,第一WC 2710和第二WC 2711可将经过处理的相应波长信道分别转发到第一组合器2708和第二组合器2709。
在WSON中,WC的性质、约束和能力可使用多个TLV,包括上述某些TLV和字段来进行编码并用信号发送。图28所示是WC可访问性TLV 2800的一项实施例,所述WC可访问性TLV 2800可指示WC池结构2700中各部件的可访问性或可用性。WC可访问性TLV 2800可包括第一动作字段2802、第一位对2804、第一预备字段2806、第一长度字段2808、第一链路本地标识符2810,以及第二链路本地标识符2812。第一链路本地标识符2810和第二链路本地标识符2812可分别与第一输入端口I1和第二输入端口I2关联,且指示端口与WC池结构2700中的各WC的连接性。
上述字段合起来指第一RB设置字段或TLV,例如与RB设置TLV 2000相同。第一动作字段2802可设置成约为零,以指示包括的RB元件的列表,例如第一链路本地标识符2810和第二链路本地标识符2812。第一位对2804可对应于C位2006和E位2004,且可分别设置成约为零和约为1,以指示固定连接性和偶数的RB元件。第一链路本地标识符2810可包括与I1关联的值(例如#1),且第二链路本地标识符2812可包括与I2关联的值(例如#2)。
此外,WC可访问性TLV 2800可包括第二动作字段2814、第一位标志2816、第二预备字段2818、第二长度字段2820、第一WC ID 2822,以及第二WC ID 2824。第一WC ID 2822和第二WC ID 2824可分别与第一WC 2710和第二WC 2712关联,且指示WC与WC池结构2700中各端口的连接性。上述字段合起来指第二RB设置字段或TLV,例如与RB设置TLV 2000相同。第二动作字段2814可设置成约为零,以指示包括的RB元件的列表,例如第一WC ID 2822和第二WC ID 2824。第一位标志2816可对应于E位2004,且可设置成约为1,以指示偶数的RB元件。第一WC ID 2822可包括与第一WC 2710关联的值(例如#1),且第二WC ID 2824可包括与第二WC 2712关联的值(例如#2)。
WC可访问性TLV 2800也可包括第三动作字段2826、第二位标志2828、第三预备字段2830、第三长度字段2832,以及第三WC ID 2834,其可与第一WC 2710关联,且指示WC与WC池结构2700中第一输出端口E1的连接性。上述字段合起来指第三RB设置字段,例如与RB设置TLV 2000相同。第三动作字段2826可设置成约为零,以指示包括的RB元件的列表,例如第三WC ID 2834。第二位标志2828可对应于E位2004,且设置成约为零,以指示奇数的RB元件。第三WC ID 2834可包括与第一WC 2710关联的值(例如#1)。第三RB设置字段中剩余的位2836可用约为零的值填充。
WC可访问性TLV 2800也可包括第四动作字段2838、第二位对2840、第四预备字段2842、第四长度字段2844,以及第三链路本地标识符2846,其可与第一输出端口E1关联,且指示端口与WC池结构2700中第一WC 2710的连接性。上述字段合起来指第四RB设置字段,例如与RB设置TLV 2000相同。第四动作字段2838可设置成约为零,以指示包括的RB元件的列表,例如第三链路本地标识符2846。第二位对2840可对应于C位2006和E位2004,且可分别设置成约为1和约为零,以指示切换的连接性和奇数的RB元件。第三链路本地标识符2846可包括与E1关联的值(例如#1)。
WC可访问性TLV 2800也可包括第五动作字段2848、第三位标志2850、第五预备字段2852、第五长度字段2854,以及第四WC ID 2856,其可与第二WC 2712关联,且指示WC与WC池结构2700中第二输出端口E2的连接性。上述字段合起来指第五RB设置字段,例如与RB设置TLV 2000相同。第五动作字段2850可设置成约为零,以指示包括的RB元件的列表,例如第四WC ID 2856。第三位标志2850可对应于E位2004,且可设置成约为零,以指示奇数的RB元件。第四WC ID 2856可包括与第二WC 2712关联的值(例如#2)。第三RB设置字段中剩余位2858可用约为零的值填充。
WC可访问性TLV 2800也可包括第六动作字段2860、第三位对2862、第六预备字段2864、第六长度字段2866,以及第四链路本地标识符2868,其可与第二输出端口E2关联,且指示端口与WC池结构2700中第二WC 2712的连接性。上述字段合起来指第六RB设置字段,例如与RB设置TLV 2000相同。第六动作字段2860可设置成约为零,以指示包括的RB元件的列表,例如第四链路本地标识符2868。第三位对2862可对应于C位2006和E位2004,且可分别设置成约为1和约为零,以指示切换的连接性和奇数的RB元件。第四链路本地标识符2868可包括与E2关联的值(例如#2)。
图29所示是波长转换范围TLV 2900的一项实施例,所述波长转换范围TLV 2900可用于表示WC池结构2700中各部件的约束和能力。具体而言,波长转换范围TLV 2900可表示第一WC 2710和第二WC 2712的波长转换范围。例如,第一WC 2710和第二WC 2712的输入的波长范围可为从L1到L2(L2≥L1),且输出的范围可为从L3到L4(L4≥L3),其中L1、L2、L3和L4是波长值。
波长转换范围TLV 2900可包括动作字段2902、位标志2904、预备字段2906、长度字段2908、第一WC ID 2910,以及第二WC ID 2912,其可与WC池结构2700中的第一WC 2710与第二WC 2712关联。这些字段合起来指RB设置字段,例如与RB设置TLV 2000相同。动作字段2902可设置成约为零,以指示包括的RB元件的列表,例如第一WC ID 2910和第二WC ID2912。位标志2904可对应于E位2004,且可设置成约为1,以指示偶数的RB元件。第一WC ID 2910可包括与第一WC 2710关联的值(例如#1),且第二WC ID 2912可包括与第二WC 2712关联的值(例如#2)。
此外,波长转换范围TLV 2900可包括第二动作字段2914、第一波长数目字段2916、第二长度字段2918、第一网格字段2920、第一信道间隔(CS)字段2922、第二预备字段2924,以及第一编号(n)字段2926。这些字段合起来指与第一WC ID 2910关联的第一波长集合TLV,且包括第一λ标签。第一λ标签标签可包括第一网格字段2920、第一CS字段2922、第二预备字段2924,以及第一n字段2926。第二动作字段2914可设置成约为2,以指示以下内容:第一λ字段表示包括的波长范围,且确定第一波长(例如L1)和波长范围中包括的波长的总数目。第一波长数目字段2916可指示在第一波长集合TLV中指示的波长的数量,可约等于4(例如,L1、L2、L3和L4)。
第一网格字段2920可指示所用的WDM网格规格。例如,第一网格字段2920可设置成1,以指示ITU-T DWDM波长网格,或者可设置成2,以指示ITU-TCWDM波长网格。第一CS字段2922可指示波长信道之间的间隔。例如,第一CS字段2922可设置成1,以指示约12.5千兆赫(GHz)的信道间隔;可设置成2,以指示约25GHz的信道间隔;或者可设置成3,以指示约50GHz的信道间隔。或者,第一CS字段2922可设置成4,以指示约100GHz的信道间隔;或者可设置成5,以指示约200GHz的信道间隔。第一n字段2926可用于指定特定频率或波长。例如,n可以是用于使用以下公式来指定频率的整数:
频率=183.1兆兆赫(THz)±n*(信道间隔)
其中信道间隔在第一CS字段2922中定义。要了解关于λ标签的更多信息,请参阅draft-otani-ccamp-gmpls-lambda-labels-02.txt,其以引入方式并入本文本中。
波长转换范围TLV 2900也可包括第三动作字段2928、第二波长数目字段2930、第三长度字段2932、第二网格字段2934、第二CS字段2936、第三预备字段2938,以及第二n字段2940。这些字段合起来指与第二WC ID 2912关联且包括第二λ标签的第二波长集合TLV。第二λ标签可包括第二网格字段2934、第二CS字段2936、第三预备字段2938,以及第二n字段2940。第三动作字段2928可设置成约为2,以指示以下内容:第二λ字段表示包括的波长范围,且确定第一波长(例如L1)和波长范围中包括的波长的总数目。第二波长数目字段2930可指示第二波长集合TLV中的波长的数量,可约等于4(例如L1、L2、L3和L4)。第二网格字段2934可指示所用的WDM网格规格,例如与第一网格2920相同。第二CS字段2936可指示波长信道之间的间隔,例如与第一CS字段2922相同。第二n字段2940可用于指定特定的频率或波长,例如与第一n字段2926相同。
图30所示是发射器/接收器单元3000的一项实施例,其可位于或耦接到WSON中的任意NE或控制面的一部分。发射器/接收器单元3000可以是经由WSON传送帧的任何装置。例如,发射器/接收器单元3000可对应于网络节点或者可位于网络节点中,例如再生器、OEO转换器、WC、OXC、PXC、I型或II型ROADM、WSS、FOADM,以及这些项的组合。节点可包括网桥、转换器、路由器,或者此类装置的各种组合。发射器/接收器单元3000可包括多个输入端口或单元3010,用以从其他节点、逻辑电路3020接收帧、对象或TLV,从而确定发送帧的目标节点;以及多个输出端口或单元3030,用以将帧发送到其他节点。
上述网络部件可在任何通用网络部件上实施,例如计算机或特定网络部件,其具有足够的处理能力、存储资源和网络吞吐能力来处理其上的必要工作量。图31所示是典型的通用网络部件3100,其适用于实施本文所揭示的部件的一项或多项实施例。网络部件3100包括处理器3102(可称为中央处理器单元或CPU),其与包括以下项的存储装置通信:辅助存储器3104、只读存储器(ROM)3106、随机存取存储器(RAM)3108、输入/输出(I/O)装置3110,以及网络连接装置3112。处理器3102可作为一个或多个CPU芯片实施,或者可为一个或多个专用集成电路(ASIC)的一部分。
辅助存储器3104通常包括一个或多个磁盘驱动器或磁带驱动器,且用于对数据进行非易失性存储,且如果RAM 3108的容量不足以存储所有工作数据,则用作溢流数据存储装置。辅助存储器3104可用以在选择执行载入到RAM 3108中的程序时存储此类程序。ROM 3106用于存储在程序执行期间读取的指令以及可能的数据。ROM 3106是非易失性存储装置,与辅助存储器相比,它的存储容量相对较小。RAM 3108用于存储易失性数据,且可能存储指令。访问ROM 3106和RAM 3108通常比访问辅助存储器3104要快。
本发明公开了至少一项实施例,而且所属领域的一般技术人员对实施例和/或实施例的特征做出的变化、组合和/或修改均在本发明的范围内。通过组合、整合和/或忽略各项实施例的特征而得到的替代性实施例也在本发明的范围内。在明确说明数字范围或限制的情况下,此类表达范围或限制应被理解成包括在明确说明的范围或限制内具有相同大小的迭代范围或限制(例如,从约为1到约为10包括2、3、4等;大于0.10包括0.11、0.12、0.13等)。例如,只要公开具有下限R1和上限Ru的数字范围,则明确公开了此范围内的任何数字。具体而言,在所述范围内的以下数字是明确公开的:R=R1+k*(Ru-R1),其中k为从1%到100%范围内以1%递增的变量,即,k为1%、2%、3%、4%、5%、……、50%、51%、52%、……、95%、96%、97%、98%、99%或100%。此外,由上文所定义的两个数字R定义的任何数字范围也是明确公开的。相对于权利要求的任一元素使用术语“选择性地”意味着所述元素是需要的,或者所述元素是不需要的,两种替代方案均在所述权利要求的范围内。使用诸如“包括”、“包含”和“具有”等范围较大的术语应理解为提供对诸如“由…组成”、“基本上由…组成”以及“大体上由…组成”等范围较小的术语的支持。因此,保护范围不受上文所陈述的说明限制,而是由所附权利要求书界定,所述范围包含所附权利要求书的标的物的所有等效物。每一和每条权利要求作为进一步揭示内容并入说明书中,且所附权利要求书是本发明的实施例。对所述揭示内容中的参考进行的论述并非承认其为现有技术,尤其是具有在本申请案的在先申请优先权日期之后的公开日期的任何参考。本发明中所引用的所有专利、专利申请案和公开案的揭示内容特此以引用的方式并入本文中,其提供补充本发明的示例性、程序性或其它细节。
虽然本发明中已提供若干实施例,但应理解,在不脱离本发明的精神或范围的情况下,所揭示的系统和方法可以许多其它特定形式来实施。本发明的实例应视为说明性的而非限制性的,且本发明不限于本文所给出的细节。举例来说,各种元件或部件可在另一系统中组合或集成,或某些特征可省略或不实施。
另外,在不脱离本发明的范围的情况下,各种实施例中描述和说明为离散或单独的技术、系统、子系统和方法可与其它系统、模块、技术或方法组合或合并。所描绘或论述的彼此耦接、直接耦接或通信的其他项目可以电气方式、机械方式或其他方式经由某些接口、装置或中间部件而间接耦接或通信。改变、替换和更改的其他实例可由所属领域的技术人员确定,且在不脱离本文中所公开的精神和范围的情况下做出。

Claims (21)

1.一种设备,应用于透明或多波长光系统和混合电光系统,用于扩展GMPLS控制面,基于兼容性约束,以在WSON或WDM网络中支持不同的信号类型,包括:
网络元件(NE),用于以波长交换光网络(WSON)节点类型-长度-值(TLV)的形式传达与网络节点关联的多个资源块(RB)的至少一个信号约束和处理能力,以及以WSON链路TLV的形式传达与链路关联的信号约束和处理能力,
所述WSON节点TLV包括节点标识符(ID),一个或多个通用多协议标签交换(GMPLS)TLV、连接矩阵TLV,以及资源库TLV,以及
所述WSON链路TLV包括链路ID、一个或多个GMPLS TLV,以及端口波长限制TLV。
2.根据权利要求1所述的设备,所述WSON节点TLV进一步包括RB池状态TLV,且所述WSON链路TLV进一步包括可用波长TLV和共享备份波长TLV。
3.根据权利要求1所述的设备,所述NE进一步用于在允许将动态信息与静态信息分离时,传达包括节点ID和RB池状态TLV的WSON动态节点TLV。
4.根据权利要求1所述的设备,所述NE进一步用于在允许将动态信息与静态信息分离时,传达包括节点ID、可用波长TLV和共享备份波长TLV的WSON动态链路TLV。
5.根据权利要求1所述的设备,所述资源库TLV包括RB描述符TLV、RB可访问性TLV、资源范围限制TLV,以及RB池状态TLV。
6.根据权利要求1所述的设备,其中所述RB的所述信号约束和处理能力在RB设置类型-长度-值(TLV)中进行编码,所述RB设置类型-长度-值(TLV)包括动作字段、事件(E)位、连接(C)位、长度字段,以及一个或多个RB标识符(ID)。
7.根据权利要求6所述的设备,其中所述动作字段具有为零的值,用以指示RB设置TLV(RB set TLV)中包括的RB的列表;或者为2的值,用以指示所述RB设置TLV中包括的RB的范围。
8.根据权利要求6所述的设备,其中所述E位等于1,且指示所述RB设置TLV中偶数的RB,或者等于零,且指示所述RB设置TLV中奇数的RB;且其中所述C位等于零,且指示固定连接性,或者等于1,且指示切换的连接性。
9.根据权利要求6所述的设备,其中所述RB IDs中的每个RB ID具有与一个RB元件关联的唯一值,且其中所述RB元件对应于波长转换器(WC)、再生器,或光-电-光(OEO)转换器。
10.一种网络部件,位于或耦接到WSON中的任意NE或控制面的一部分,包括:
发射器单元,用于经由通用多协议标签交换(GMPLS)路由来发射资源块(RB)描述符类型-长度-值(TLV)、RB可访问性TLV、资源范围限制TLV,以及资源使用状态TLV,这些TLV均包括RB设置字段。
11.根据权利要求10所述的网络部件,其中所述RB描述符TLV指示关于对应于资源库的多个RB的相对静态的信息,且所述RB描述符TLV包括所述RB设置字段和指示所包括RB的数目的RB数目字段、调制类型列表TLV、前向纠错(FEC)类型列表TLV、用户端信号类型TLV、位速率范围列表TLV,以及处理能力列表TLV。
12.根据权利要求10所述的网络部件,其中所述RB可访问性TLV描述与网络元件(NE)关联的资源库的结构,且所述RB可访问性TLV包括RB设置字段以及输入链路设置字段,其指示多个端口以及每个端口的输入或输出链路方向上的连接性。
13.根据权利要求10所述的网络部件,其中所述资源范围限制TLV指示RB的输入和/或输出波长范围,且所述资源范围限制TLV包括所述RB设置字段、指示所述RB的波长输入限制的输入波长设置字段,以及指示所述RB的波长输出限制的输出设置字段。
14.根据权利要求10所述的网络部件,其中所述资源使用状态TLV指示每个RB是否处于待用或正在使用状态,且所述资源使用状态TLV包括所述RB设置字段,动作字段,动作字段设置成为零,用以指示16位整数值的列表,或设置成为1,用以指示位图,以及RB使用状态字段,所述RB使用状态字段与所述RB设置字段中的RB元件一一对应。
15.一种路径选择方法,包括:
接收包括指示与对应于资源库或网络元件(NE)的多个RB关联的信号约束和处理能力的RB设置字段以及指示所包括的RB的数目的RB数目字段的资源块(RB)描述符类型-长度-值(TLV),RB可访问性TLV、资源范围限制TLV,以及资源使用状态TLV;以及
基于所述RB描述符TLV、所述RB可访问性TLV、所述资源范围限制TLV,以及所述资源使用状态TLV中的信息,进行路径计算。
16.根据权利要求15所述的方法,其中所述RB描述符TLV还包括调制类型列表TLV、前向纠错(FEC)类型列表TLV、用户端信号类型TLV、位速率范围列表TLV,以及处理能力列表TLV。
17.根据权利要求16所述的方法,其中所述调制类型列表TLV包括标准化调制(S)位、输入调制格式(I)位、调制标识符(ID)、长度字段,以及包括基于所述调制标识符(ID)的调制参数的额外字段。
18.根据权利要求16所述的方法,其中所述FEC类型列表TLV包括标准化调制(S)位、输入调制格式(I)位、FEC标识符(ID)、长度字段,以及包括基于所述FEC标识符(ID)的FEC参数的额外字段。
19.根据权利要求16所述的方法,其中所述位速率范围列表TLV包括一个或多个位速率范围字段,所述位速率范围字段包括所述位速率范围的起始位速率和终止位速率。
20.根据权利要求16所述的方法,其中所述用户端信号类型TLV包括若干个通用协议标识符(GPID)字段,以及包括一个或多个GPID TLV的GPID列表。
21.根据权利要求16所述的方法,其中所述处理能力列表TLV包括处理能力标识符(ID)、长度字段,以及包括基于所述处理能力ID的处理能力参数的额外字段。
CN201180004334.0A 2010-02-11 2011-02-11 波长交换光网络的路由选择和波长分配信息编码方法 Expired - Fee Related CN102598566B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US30338010P 2010-02-11 2010-02-11
US61/303,380 2010-02-11
US12/965,217 US8532484B2 (en) 2009-10-06 2010-12-10 Method for routing and wavelength assignment information encoding for wavelength switched optical networks
US12/965,217 2010-12-10
PCT/CN2011/070927 WO2011098041A1 (en) 2010-02-11 2011-02-11 Method for encoding routing and wavelength assignment information for wavelength switched optical networks

Publications (2)

Publication Number Publication Date
CN102598566A CN102598566A (zh) 2012-07-18
CN102598566B true CN102598566B (zh) 2015-01-21

Family

ID=44367285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180004334.0A Expired - Fee Related CN102598566B (zh) 2010-02-11 2011-02-11 波长交换光网络的路由选择和波长分配信息编码方法

Country Status (4)

Country Link
US (1) US8532484B2 (zh)
EP (1) EP2489143A4 (zh)
CN (1) CN102598566B (zh)
WO (1) WO2011098041A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208808B2 (en) * 2007-10-26 2012-06-26 Futurewei Technologies, Inc. Distributed wavelength assignment using signaling protocols in wavelength switched optical networks
US8442399B2 (en) 2009-07-08 2013-05-14 Futurewei Technologies, Inc. Port wavelength restriction encoding in wavelength switched optical network
US8452175B2 (en) * 2009-10-19 2013-05-28 Futurewei Technologies, Inc. Method for generalized multi-protocol label switching routing to support wavelength switched optical network signal characteristics and network element compatibility constraints
CN103222212B (zh) * 2010-09-15 2016-01-06 瑞典爱立信有限公司 在多速率光学网络中建立连接
WO2013007292A1 (en) * 2011-07-11 2013-01-17 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for photonic networks
CN103765803B (zh) * 2011-09-08 2017-11-24 瑞典爱立信有限公司 波长交换光网络中的路径计算
CN103248970B (zh) * 2012-02-13 2018-12-28 中兴通讯股份有限公司 一种路由洪泛方法及装置及路径计算方法及路径计算单元
EP2579481B1 (en) * 2012-02-22 2017-08-23 Huawei Technologies Co., Ltd. Method, system and node device for monitoring performance of wavelength channel
US8942557B2 (en) * 2012-03-05 2015-01-27 Infinera Corporation Super-channel optical parameters GMPLS signaling and routing extensions systems and methods
US9332323B2 (en) * 2012-10-26 2016-05-03 Guohua Liu Method and apparatus for implementing a multi-dimensional optical circuit switching fabric
WO2014139356A1 (en) * 2013-03-15 2014-09-18 Huawei Technologies Co., Ltd. Method of communicating for establishing path and network apparatus
CN108964829A (zh) * 2017-05-22 2018-12-07 中兴通讯股份有限公司 一种中继设备
CN107135157B (zh) * 2017-06-23 2018-07-13 清华大学 一种适用于天基光网的光波长交换方法
CN108763113B (zh) * 2018-05-23 2020-10-09 广东水利电力职业技术学院(广东省水利电力技工学校) 一种总线嵌入式工业控制系统及控制方法、信息处理终端
US11070896B1 (en) * 2019-02-22 2021-07-20 Level 3 Communications, Llc Dynamic optical switching in a telecommunications network
CN112118497B (zh) * 2019-06-19 2023-02-17 中兴通讯股份有限公司 资源管理及配置方法、装置、设备及存储介质
CN110392318B (zh) * 2019-07-29 2021-10-19 烽火通信科技股份有限公司 Ason中控制平面层lsp通道的校验方法及系统
CN113014407A (zh) * 2019-12-19 2021-06-22 中兴通讯股份有限公司 业务资源分析方法、电子设备以及存储介质
US12095642B2 (en) * 2022-07-25 2024-09-17 Hewlett Packard Enterprise Development Lp Remote reachability checks in a distributed tunnel fabric

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319700B1 (en) * 2000-12-29 2008-01-15 Juniper Networks, Inc. Communicating constraint information for determining a path subject to such constraints
US7103434B2 (en) 2003-10-14 2006-09-05 Chernyak Alex H PLM-supportive CAD-CAM tool for interoperative electrical and mechanical design for hardware electrical systems
US7761092B2 (en) 2004-02-06 2010-07-20 Sony Corporation Systems and methods for communicating with multiple devices
CN101163090B (zh) 2006-10-09 2010-08-04 华为技术有限公司 一种业务路径的计算方法
WO2008077420A1 (en) * 2006-12-22 2008-07-03 Telecom Italia S.P.A. Dynamic routing of optical signals in optical networks
US20080225723A1 (en) 2007-03-16 2008-09-18 Futurewei Technologies, Inc. Optical Impairment Aware Path Computation Architecture in PCE Based Network
US20080298805A1 (en) 2007-05-30 2008-12-04 Futurewei Technologies, Inc. System and Method for Wavelength Conversion and Switching
US8995829B2 (en) * 2007-06-05 2015-03-31 Cisco Technology, Inc. Optical link quality monitoring in a computer network
US8249451B2 (en) 2007-08-16 2012-08-21 Futurewei Technologies, Inc. Methods for characterizing optical switches and multiplexers/demultiplexers
US8290366B2 (en) 2007-09-21 2012-10-16 Futurewei Technologies, Inc. Extending path computation element protocol to accommodate routing and wavelength assignment in wavelength switched optical networks
US8059960B2 (en) 2007-10-26 2011-11-15 Futurewei Technologies, Inc. Path computation element method to support routing and wavelength assignment in wavelength switched optical networks
US8208808B2 (en) 2007-10-26 2012-06-26 Futurewei Technologies, Inc. Distributed wavelength assignment using signaling protocols in wavelength switched optical networks
US8200084B2 (en) 2007-11-01 2012-06-12 Futurewei Technologies, Inc. Encoding for information needed for routing and wavelength assignment in wavelength switched optical networks
US8051480B2 (en) 2008-10-21 2011-11-01 Lookout, Inc. System and method for monitoring and analyzing multiple interfaces and multiple protocols
US8521026B2 (en) 2009-01-19 2013-08-27 Cisco Technology, Inc. Registration of device characteristics with optical layer for use in establishing connections through an optical network
US8208405B2 (en) 2009-02-27 2012-06-26 Futurewei Technologies, Inc. Information encoding for impaired optical path validation
WO2010149395A1 (en) 2009-06-26 2010-12-29 Telefonaktiebolaget Lm Ericsson (Publ) Reserving a path using gmpls extensions for odu signalling
US20110022728A1 (en) * 2009-07-22 2011-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Link state routing protocols for database synchronization in gmpls networks
CN101621723B (zh) 2009-08-12 2012-07-25 烽火通信科技股份有限公司 一种wdm-pon系统的波长分配方法
BR112012003812A2 (pt) * 2009-08-21 2016-04-26 Ericsson Telefon Ab L M método para estabelecer caminhos ópticos para tráfego de usuário, e , entidade de nó
US8467681B2 (en) 2009-10-06 2013-06-18 Futurewei Technologies, Inc. Method for characterizing wavelength switched optical network signal characteristics and network element compatibility constraints for generalized multi-protocol label switching

Also Published As

Publication number Publication date
US8532484B2 (en) 2013-09-10
WO2011098041A1 (en) 2011-08-18
EP2489143A4 (en) 2012-12-05
US20110081148A1 (en) 2011-04-07
EP2489143A1 (en) 2012-08-22
CN102598566A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
CN102598566B (zh) 波长交换光网络的路由选择和波长分配信息编码方法
US8467681B2 (en) Method for characterizing wavelength switched optical network signal characteristics and network element compatibility constraints for generalized multi-protocol label switching
US9300428B2 (en) Extending routing protocols to accommodate wavelength switched optical networks
US8208808B2 (en) Distributed wavelength assignment using signaling protocols in wavelength switched optical networks
EP2774301B1 (en) Wson restoration
US8200084B2 (en) Encoding for information needed for routing and wavelength assignment in wavelength switched optical networks
US20080181605A1 (en) Multi-degree optical node architectures
US20110116790A1 (en) Wavelength path communication node apparatus, wavelength path communication control method, program, and recording medium
EP2661831A2 (en) Path computation element system and method of routing and wavelength assignment in a wavelength switched optical network
JP2013502864A (ja) 光通信ネットワークにおける物理的劣化の表現
EP2592790B1 (en) Method and device for obtaining route information of electro-optical multi-layer network
US8452175B2 (en) Method for generalized multi-protocol label switching routing to support wavelength switched optical network signal characteristics and network element compatibility constraints
CN108702330A (zh) 一种建立层间链路绑定关系的方法及装置
Bernstein et al. Extending GMPLS/PCE for use in wavelength switched optical networks
WO2011003355A1 (en) Port wavelength restriction encoding in wavelength switched optical network
CN1913526B (zh) 一种波分传输系统链路自动发现的方法
Xu et al. Emergent optical network integration and control of multi-vendor optical networks for quick disaster recovery
Huang et al. Multi-failure restoration demonstrations with multi-vendor interoperability in control plane enabled WSON
EP2573968B1 (en) Method, device and system for establishing wavelength connection
JP4962380B2 (ja) 光通信装置及び光通信システムにおけるパス設定方法
CN102439997B (zh) 一种建立波长交叉连接的方法和系统、节点设备
Lun Schemes for Building an Efficient All-Optical Virtual Private Network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170613

Address after: 510640 Guangdong City, Tianhe District Province, No. five, road, public education building, unit 371-1, unit 2401

Patentee after: Guangdong Gaohang Intellectual Property Operation Co., Ltd.

Address before: 518129 Bantian HUAWEI headquarters office building, Longgang District, Guangdong, Shenzhen

Patentee before: Huawei Technologies Co., Ltd.

CB03 Change of inventor or designer information

Inventor after: Wang Wei

Inventor after: Li Li

Inventor after: Wan Xiaohui

Inventor before: Li Yong

Inventor before: Bernstein Grey

CB03 Change of inventor or designer information
TR01 Transfer of patent right

Effective date of registration: 20171009

Address after: 253600, No. 170, No. 7 Zhenxing East Road, Leling, Shandong, Dezhou

Co-patentee after: Li Li

Patentee after: Wang Wei

Co-patentee after: Wan Xiaohui

Address before: 510640 Guangdong City, Tianhe District Province, No. five, road, public education building, unit 371-1, unit 2401

Patentee before: Guangdong Gaohang Intellectual Property Operation Co., Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150121

Termination date: 20180211

CF01 Termination of patent right due to non-payment of annual fee