CN102594457A - 一种针对复用信号的多功能可调谐全光码型转换器 - Google Patents

一种针对复用信号的多功能可调谐全光码型转换器 Download PDF

Info

Publication number
CN102594457A
CN102594457A CN2012100541732A CN201210054173A CN102594457A CN 102594457 A CN102594457 A CN 102594457A CN 2012100541732 A CN2012100541732 A CN 2012100541732A CN 201210054173 A CN201210054173 A CN 201210054173A CN 102594457 A CN102594457 A CN 102594457A
Authority
CN
China
Prior art keywords
polarization
sign indicating
indicating number
optical
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100541732A
Other languages
English (en)
Other versions
CN102594457B (zh
Inventor
姜恒云
闫连山
易安林
陈智宇
潘炜
罗斌
邹喜华
张志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201210054173.2A priority Critical patent/CN102594457B/zh
Publication of CN102594457A publication Critical patent/CN102594457A/zh
Application granted granted Critical
Publication of CN102594457B publication Critical patent/CN102594457B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

本发明公开了一种针对复用信号的多功能可调谐全光码型转换器。全光码型转换系统中,采用保证使光从正反两个方向同时以与主轴45°的夹角入射到可编程偏振模差分群时延(PDGD)单元(105)内的特定封装方式,逻辑上构成两个偏正态正交光信号的可调并行干涉结构;通过调节所述偏振控制器(101)和PDGD控制平台(106)来实现速率透明不同复用信号的多种不同种类的码型转换。本方案对速率透明、可调谐地实现单一结构下的不同复用信号的多种不同种类的码型转换,可应用于高速光交换网络中作为网络接口技术、3R全光再生以及高速信号的传输和接收等多个重要方面。

Description

一种针对复用信号的多功能可调谐全光码型转换器
技术领域
本发明涉及光学器件技术领域,尤其是一种针对复用信号的多功能可调谐全光码型转换器。适用于解决速率可调的光复用信号,如波分复用(WDM)信号、偏正复用(PDM)信号以及时分复用(TDM)信号等的归零码(RZ)到非归零码(NRZ)、非归零码(NRZ)到伪归零码(PRZ)、差分相移键控(DPSK)到开关键控码(OOK)、差分相移键控(DPSK)到双二进制载波抑制归零码(DCSRZ)的多种码型转换。
背景技术
随着超高速光交换网络的发展,大容量地高速传输技术一直是人们关注的热点。目前为了实现T比特级的大容量传输,复用技术已广泛应用于不同的光传输网络中,其中主要采用的复用技术为时分复用(TDM)技术、波分复用(WDM)技术和偏振复用(PDM)技术等。由于不同的传输网络具有不同的特性,为了满足不同网络的传输需求,需要采用不同传输特性的码型。例如,归零码(RZ)的平均光功率低、对光纤非线性、偏振模色散(PMD)的容忍度高、易于时钟恢复,适合于光时分复用系统等;非归零码(NRZ)简单、价格便宜、对带宽需求低、对时间抖动容忍度高等优点,适合于密集波分复用系统(DWDM)等。RZ到NRZ的码型转换将是光网络接口的一个重要技术。因此,通过码型转换可以满足网络对传输格式的需求,实现不同传输网络之间的透明传输;同时码型转换还可以应用于信号的3R再生,例如:将NRZ码转换为带有定时信息的PRZ码,提取出NRZ码的定时信号来实现再定时。另外,码型转换也可以应用于高速光信号传输和接收中等众多方面,如差分相移键控(DPSK)信号比开关键控(OOK)信号具有更高的接收灵敏度和非线性容忍度,但接收时必须将相位信息转换为幅度信息(OOK信号)才能被接收,则需要进行DPSK到OOK信号的转换,也称DPSK解调。而双进制载波抑制归零码(DCSRZ)作为一种新型码,比RZ和NRZ码具有更高的色散、非线性容忍度、窄带宽等优点,因此除了DPSK到NRZ的码型转换外,还可以考虑DPSK到DCSRZ的转换。目前码型转换的方式分为两种:光-电-光码型转换方式和全光码型转换方式,其中电域内的码型转换方式受到“速率瓶颈”的限制,不适合于大容量光传输网络中。因此,全光码型转换已经成为全光信息处理研究的重点之一。
目前实现全光码型转换的方案主要有以下几种:(1)基于半导体放大器(SOA)的码型转换,如利用半导体放大器的马赫-曾德尔(SOA-MZI)结构、利用SOA链路结构中的自相位调制效应(SPM)或利用SOA的环镜中SOA的交叉增益效应(XGM)和交叉相位调制(XPM)等的码型转换,这些方案均受到SOA载流子恢复时间的限制,不适合于高速信号;(2)基于高非线性光纤(HNLF)的码型转换,如高非线性光纤环型镜(NOLM)或高非线性光纤加选择滤波等方案,这些方案通过光纤的克尔效应来实现码型转换的,因此需要引入控制光,增加了器件的复杂程度和成本;(3)基于特殊光纤的码型转换,如基于保偏光纤或光子晶体光纤的结构、基于双折射光纤环境的结构(一个带偏振控制器的双折射环镜)等来实现,这些方案都是利用了非对称的马赫-曾德尔结构来实现的,与偏振相关、灵活性差,大多都针对单一码型的转换。
上述三种方案都只能针对单路信号进行一种或多种的归零码(RZ)到非归零码(NRZ)、非归零码(NRZ)到伪归零码(PRZ)、差分相移键控(DPSK)到开关键控码(OOK)、差分相移键控(DPSK)到双二进制载波抑制归零码(DCSRZ)码型转换,但都不能对复用信号直接进行码型转换,制约了超高速光交换网络的发展。
发明内容
鉴于现有技术的以上缺点,本发明的目的是提供一种基于复用信号的多功能可调谐全光码型转换器。
本发明的目的是基于如下分析和方案提出和实现的:
一种针对复用信号的多功能可调谐全光码型转换器,其特征在于,在包括偏振控制器101、环型器102、偏振分束单元103、法拉第旋转单元104、可编程偏振模差分群时延PDGD单元105和PDGD控制平台106构成的全光码型转换系统中;其中环型器102、偏振分束单元103、法拉第旋转单元104和可编程偏振模差分群时延PDGD单元105采用特定封装方式:使光从正反两个方向同时以与主轴45°的夹角入射到可编程偏振模差分群时延PDGD单元105内,逻辑上构成两个偏正态正交光信号的可调并行干涉结构;通过调节所述偏振控制器101和PDGD控制平台106来实现速率透明不同复用信号的多种不同种类的码型转换。
采用本发明基于复用信号的多功能可调谐全光码型转换器的方案的装置结构简单,速率透明,稳定性好。通过调节可编程偏振模差分群时延单元PDGD和偏正控制器可以实现波分复用WDM信号、偏正复用PDM信号以及时分复用TDM信号等复用信号的归零码RZ到非归零码NRZ、非归零码NRZ到伪归零码PRZ、差分相移键控DPSK到开关键控码OOK、差分相移键控DPSK到双二进制载波抑制归零码DCSRZ的多种全光码型转换。
偏振复用信号的码型转换,可通过调节偏振控制器使入射信号通过偏振分束单元解复用为两路沿相反方向传输的信号,然后分别以与可编程偏振模差分群时延单元的主光轴45°的固定角度反向同时入射到该单元。由于不同偏振模差分群时延DGD的引入,在偏振分束器的辅助下通过单路内的干涉分别实现了两路信号的多种码型转换。在法拉第旋转单元的作用下,码型转换后的两路信号在偏振分束器的入口处重新复用为偏振复用信号。
若入射光不是偏振复用信号,则不存在偏振解复用过程,在本发明结构中偏振分束单元将同一信号分为两部分同时进行相同的码型转换,再合二为一得到转换后的信号。调节偏振控制器则可以进一步控制转换后信号的偏振态。
波分复用信号的码型转换,由于本发明结构的传输函数是周期可调的三角函数,因此可以通过调节可编程偏振模差分群时延单元,达到信道间波长间隔和传输函数的合理匹配,则可同时实现多路信号的码型转换,即波分复用信号的码型转换。
时分复用信号的码型转换,在本发明结构中不同时序的信号需要采用相应信号速率的偏振模差分群时延DGD值来实现多种码型变换,通过用时钟信号来控制可编程偏振模差分群时延单元的变化,则可实现时分复用信号的码型转换。
采用本发明相比由双折射光纤环型镜来实现的码型转换,在码型转换上都采用的是干涉原理,但是本发明是针对复用信号的码型转换且单一结构下能实现多种码型转换,兼容了上述单路方案的情况;与偏振复用系统中非线性偏振分集环信息处理方案相比,本发明方案用可编程偏振模差分群时延单元代替了非线性介质,降低了成本和器件的复杂度,实现了不同的功能。本发明灵活性高,功能多,操作简单,可应用于高速光交换网络中作为网络接口技术、3R全光再生以及高速信号的传输和接收等多个重要方面。
附图说明:
图1为本发明的基于复用信号的全光码型转换器的结构示意图;
图2为本发明的固定封装方案,其中(a)为法拉第旋转单元(104)的功能;(b)为偏振分束单元(103)与可编程偏振模差分群时延单元(105)的特定封装要求;
图3为本发明的全光码型转换器的逻辑分析,其中(a)为逻辑结构图;(b)为偏振复用信号的逻辑分析;(c)为偏振无关复用信号的逻辑分析;
图4为本发明的码型转换原理,其中(a)为RZ到NRZ转换原理;(b)为NRZ到PRZ转换原理;(c)为DPSK到NRZ转换原理;(d)为DPSK到DCSRZ转换原理;
图5为本发明的传输函数与输入信号的速率和转换码型的频谱关系示意图,其中(a)为X-b/s的NRZ到PRZ转换;(b)为X-b/s的RZ到NRZ码型转换;(c)为2X-b/s的RZ到NRZ码型转换;(注:“X”为任意速率)
图6为本发明中波分复用信号码型转换的信道间波长间隔匹配示意图;
图7为本发明中时分复用信号码型转换的示意图;
图8为2×10和2×12.5-Gb/s偏振复用信号的RZ-OOK到NRZ-OOK码型转换的实验结果图;
图9为2×10-Gb/s偏振复用信号RZ-OOK到NRZ-OOK转换实验的误码率测试结果图;
图10为2×12.5-Gb/s偏振复用信号NRZ-OOK到PRZ-OOK转换的实验结果图;
具体实施方式
下面结合附图对本发明作进一步的描述。
如图1所示,本发明方案由偏振控制器101、环型器102、偏振分束单元103、法拉第旋转单元104、可编程偏振模差分群时延PDGD单105、PDGD控制平台106构成。其中环型器102、偏振分束单元103、法拉第旋转单元104和可编程偏振模差分群时延PDGD单元105可采用特定方案封装为固定单元107,提高转换器的稳定性。
图2为固定单元107的封装方案。偏振分束单元103将输入的光信号分为两路偏振态正交的反向传输信号,其中偏振分束器103的103-1口输出为垂直偏振态(⊥),顺时针方向的信号和103-2口输出为水平偏振态
Figure BDA0000140520100000071
逆时针方向的信号。如图2(a)所示,两路信号经过法拉第旋转单元104后,偏振态均被旋转了90°,可反射回偏振分束单元103的输入端由环型器端口102-1输出。固定封装时要求偏振分束单元103的103-2口的偏振态方向与可编程偏振模差分群时延PDGD单元105的主光轴成45°夹角,如图2(b)。由于可编程偏振模差分群时延单元由高双折射材料制成,光波以该角度入射可被等量地分解为沿慢轴方向和沿快轴方向传播的分量。由于慢轴和快轴的折射率不同,因此沿快轴方向和慢轴方向传输的光信号不仅产生相位差,而且产生一定的时延,这就是偏振模差分群时延DGD。由控制平台106可以调控可编程偏振模差分群时延PDGD单元105中DGD值的大小,产生码型转换所需的相位差和时延。
图3为本发明方案的逻辑分析,其中图3(a)为本发明方案的逻辑结构图。通过物理上的单环路、双通道,实现了逻辑上的两偏振态正交信号的并行干涉结构。当输入信号为偏振复用信号时,通过调节偏振控制器101使得输入信号经偏振分束器103偏振解复用为两路偏振态正交信号反向并行传输。在法拉第旋转单元104的辅助下,该两路信号经过可编程偏振模差分群时延单元105产生不同的DGD值,然后单路内干涉实现码型转换,再被反射回偏振分束器103的输入口复用为偏振复用信号,最后由环型器102-1口输出,如图3(b)。当输入信号为波分复用和时分复用信号时,在上述过程中调节偏振控制器101增加转换器的附加功能,而对码型转换无实际意义。由于输入信号为偏振无关的信号,偏振分束器103则起功分(合)器和起偏器的作用。将输入信号分为独立对等的两部分进行转换,再合为一路输出,如图3(c)所示。调节偏振分束器101附加功能为:1)输入为单偏振复用信号,调节偏振控制器101使得其与偏振分束器任意一个输出口的偏振态一致,则能实现转换输出后信号为单偏振复用信号;2)输入信号为偏振隔离的波分复用信号,调节偏振控制器101使得其与偏振分束器两输出口的偏振态一致,则能实现转换输出后信号为偏振隔离的波分复用信号。
图4为本发明中四种码型转换的原理图,其中(a)为RZ到NRZ的码型转换,通过时延差为1/2比特时间间隔、相位差为π的偶数倍的两路信号干涉实现;(b)为NRZ到PRZ的码型转换,通过1/2比特时间间隔的时延、相位差为π的奇数倍的两路信号干涉实现;(c)为NRZ-DPSK到NRZ-OOK的码型转换,图中DPSK码的相邻比特相位变化为“0”码,不变为“1”码,通过1比特时间间隔的时延相长干涉实现,同理可以实现RZ-DPSK到RZ-OOK的码型转换;(d)为DPSK到DCSRZ的码型转换,通过引入1/2比特的时延、π的奇数倍的相位差进行干涉,当相邻比特相位相同,相干抵消;相邻比特相位不同,相干加强,且连续两个相干加强的码之间存在π的相位差,这就转换为了DCSRZ码。
图5为本发明的传输函数与单波长输入信号的速率和转换码型的频谱关系示意图,其中(a)为X-Gb/s的NRZ到PRZ转换;(b)为X-Gb/s的RZ到NRZ码型转换;(c)为2X-Gb/s的RZ到NRZ码型转换;(X为任意速率,受可编程偏振模差分群时延单元105的可调性限制)。比较图(a)和(b),在相同速率下通过调节可编程偏振模差分群时延单元105使得本发明的传输函数抑制中间载波频率则产生NRZ到PRZ的转换,抑制边带频率则产生RZ到NRZ的转换。比较图(b)和(c),通过调节可编程偏振模差分群时延单元105,使得本发明的传输函数的宽度变换,可实现不同速率信号的相同码型转换。
图6为波分复用WDM信号的全光码型转换原理。本发明方案的传输函数为
Figure BDA0000140520100000091
其中Δτ为偏振模差分群时延DGD值,为三角函数型、具有周期性,适合多波长信号。当波分复用信号的中心波长间隔正好等于传输函数的周期的整数倍且满足图4中的干涉条件时,则可对WDM信号实现码型转换。
图7为时分复用TDM信号的全光码型转换。在控制平台106中通过时分复用信号的时钟信号来控制可编程偏振模差分群时延单元105的DGD值的变换。时钟信号每改变一次,DGD值也根据信号速率相应地改变一次,这样就对时分复用信号进行了码型转换。
根据上述原理,我们给出了由本发明构建的针对复用信号的多功能可调谐全光码型转换的部分实验结果。实验输入信号为2×10和2×12.5-Gb/s的偏振复用PDM信号。
图8为2×10和2×12.5-Gb/s偏振复用PDM信号的RZ到NRZ码型转换的实验结果图。其中(a)为不同速率的RZ-OOK PDM输入信号频谱图(光频谱分析仪的分辨率为0.02nm),(b)为本发明方案在相应码率和转换码型种类下的传输曲线图,(c)为转换后的NRZ码的频谱图。插图中对应的是单路偏振态信号转换前后的眼图(Agilent86100C高速示波器)。
图9为2×10-Gb/s RZ-OOK到NRZ-OOK PDM实验的误码率测试结果。排除了RZ码和NRZ码在接收灵敏度上的差异,该转换有大约1dB的功率代价。插图给出了转换后两个偏振态信号和输入信号的眼图。
图10为2×12.5-Gb/s NRZ-OOK到PRZ-OOK PDM的实验结果图。其中(a)~(c)分别为输入信号、传输函数和转换后信号的频谱图。插图中相应地给出了转换前后单路信号的眼图。
由以上实验结果中可以观察到本发明的传输函数具有周期性,且受PDGD控制平台的调控。因此能够对上述其他种类复用信号进行多种码型转换,且速率透明。

Claims (6)

1.一种针对复用信号的多功能可调谐全光码型转换器,其特征在于,在包括偏振控制器(101)、环型器(102)、偏振分束单元(103)、法拉第旋转单元(104)、可编程偏振模差分群时延PDGD单元(105)和PDGD控制平台(106)构成的全光码型转换系统中;其中环型器(102)、偏振分束单元(103)、法拉第旋转单元(104)和可编程偏振模差分群时延PDGD单元(105)采用特定封装方式:使光从正反两个方向同时以与主轴45°的夹角入射到可编程偏振模差分群时延PDGD单元(105)内,逻辑上构成两个偏正态正交光信号的可调并行干涉结构;通过调节所述偏振控制器(101)和PDGD控制平台(106)来实现速率透明不同复用信号的多种不同种类的码型转换。
2.根据权利要求1所述之一种针对复用信号的多功能可调谐全光码型转换器,其特征在于,所述可编程偏振模差分群时延单元可为任何偏振模差分群时延DGD可调的介质。
3.根据权利要求1所述之一种针对复用信号的多功能可调谐全光码型转换器,其特征在于,所述复用信号包括时分复用信号、波分复用信号、偏振复用信号,以及偏振隔离的波分复用信号、偏振波分复用信号。
4.根据权利要求1所述之一种针对复用信号的多功能可调谐全光码型转换器,其特征在于,所述法拉第旋转单元产生90度的偏振旋转。
5.根据权利要求1和4所述之一种针对复用信号的多功能可调谐全光码型转换器,其特征在于,所述法拉第旋转单元可以是各种需要实时调整的偏振控制器。
6.根据权利要求1所述之一种针对复用信号的多功能可调谐全光码型转换器,其特征在于,所有功能光学部件通过集成光学组合成为一体化单元。
CN201210054173.2A 2012-03-05 2012-03-05 一种针对复用信号的多功能可调谐全光码型转换器 Expired - Fee Related CN102594457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210054173.2A CN102594457B (zh) 2012-03-05 2012-03-05 一种针对复用信号的多功能可调谐全光码型转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210054173.2A CN102594457B (zh) 2012-03-05 2012-03-05 一种针对复用信号的多功能可调谐全光码型转换器

Publications (2)

Publication Number Publication Date
CN102594457A true CN102594457A (zh) 2012-07-18
CN102594457B CN102594457B (zh) 2014-05-28

Family

ID=46482697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210054173.2A Expired - Fee Related CN102594457B (zh) 2012-03-05 2012-03-05 一种针对复用信号的多功能可调谐全光码型转换器

Country Status (1)

Country Link
CN (1) CN102594457B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149633A (zh) * 2013-02-27 2013-06-12 华中科技大学 一种双偏振态信号处理集成芯片
CN103616766A (zh) * 2013-10-31 2014-03-05 佛山科学技术学院 Nrz到prz码型转换光纤光栅设计方法及其装置
CN107911189A (zh) * 2017-11-15 2018-04-13 西南交通大学 基于阵列波导光栅的光载无线通信波束赋形装置及其方法
CN109379143A (zh) * 2018-09-04 2019-02-22 武汉光迅科技股份有限公司 一种波长可调谐光接收组件
CN110351000A (zh) * 2019-08-15 2019-10-18 中国科学院半导体研究所 基于波分复用技术的全光串并转换系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018612A1 (en) * 2000-05-23 2002-02-14 Alcatel Optical NRZ-RZ format converter
CN1996134A (zh) * 2006-12-28 2007-07-11 华中科技大学 一种非归零码到归零码全光码型转换装置
CN101487738A (zh) * 2008-02-04 2009-07-22 北京高光科技有限公司 基于偏振分析的光谱特性测量方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018612A1 (en) * 2000-05-23 2002-02-14 Alcatel Optical NRZ-RZ format converter
CN1996134A (zh) * 2006-12-28 2007-07-11 华中科技大学 一种非归零码到归零码全光码型转换装置
CN101487738A (zh) * 2008-02-04 2009-07-22 北京高光科技有限公司 基于偏振分析的光谱特性测量方法及其装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JIANJUN YU: "40Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer", 《OPTICS COMMUNICATIONS》 *
XIAOFAN ZHAO: "Investigation of all-optical nonreturn-to-zero-to-return-to-zero format converter based on a semiconductor optical amplifier and a reconfigurable delayed interferometer", 《APPLIED OPTICS》 *
YU YU: "Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20Gb/s", 《OPTICS EXPRESS》 *
卢媛媛: "高速全光调制码型转换的研究与应用", 《上海交通大学-硕士学位论文》 *
张晓媛: "偏振延时干涉仪型CSRZ-Duobinary全光码型转换器", 《光通信技术》 *
惠战强: "全光归零(RZ)到非归零(NRZ)码型转换技术研究进展", 《激光与红外》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149633A (zh) * 2013-02-27 2013-06-12 华中科技大学 一种双偏振态信号处理集成芯片
CN103616766A (zh) * 2013-10-31 2014-03-05 佛山科学技术学院 Nrz到prz码型转换光纤光栅设计方法及其装置
CN103616766B (zh) * 2013-10-31 2015-10-07 佛山科学技术学院 Nrz到prz码型转换光纤光栅设计方法及其装置
CN107911189A (zh) * 2017-11-15 2018-04-13 西南交通大学 基于阵列波导光栅的光载无线通信波束赋形装置及其方法
CN107911189B (zh) * 2017-11-15 2019-04-16 西南交通大学 基于阵列波导光栅的光载无线通信波束赋形装置及其方法
CN109379143A (zh) * 2018-09-04 2019-02-22 武汉光迅科技股份有限公司 一种波长可调谐光接收组件
CN109379143B (zh) * 2018-09-04 2020-09-15 武汉光迅科技股份有限公司 一种波长可调谐光接收组件
CN110351000A (zh) * 2019-08-15 2019-10-18 中国科学院半导体研究所 基于波分复用技术的全光串并转换系统
CN110351000B (zh) * 2019-08-15 2020-09-15 中国科学院半导体研究所 基于波分复用技术的全光串并转换系统

Also Published As

Publication number Publication date
CN102594457B (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
CN101895495B (zh) 正交双偏振差分四相相移键控发射与接收的方法及其系统
Ji et al. All-optical signal processing technologies in flexible optical networks
CN102255664B (zh) 基于时间间插归零码的偏振复用光通信方法及系统
CN110012368A (zh) 一种兼容波分复用信号的硅基集成化片上多模光交换系统
CN102594457B (zh) 一种针对复用信号的多功能可调谐全光码型转换器
CN103124208B (zh) 一种基于多偏振态的多输入多输出mimo光传输方案
CN100374910C (zh) 差分偏振移位键控光传输系统
CN105829963B (zh) 波长转换器
CN101504504A (zh) 光调制器和光信号产生装置
Li et al. Analysis modulation formats of DQPSK in WDM-PON system
CN101170363B (zh) 一种光差分偏振位移键控系统及其信号发送装置与方法
CN102932063B (zh) 一种基于双边带调制的模拟链路色散补偿方案
CN106970500A (zh) 一种降低偏振复用信号串扰的全光波长变换装置及方法
CN102305985B (zh) 一种高速dqpsk 调制信号的全光再生方法及装置
CN201499170U (zh) 基于标准具结构的差分正交相移键控格式解调器
US9419719B2 (en) Transmitter apparatus and method
CN102929072B (zh) 无偏振串扰的偏振复用系统全光波长变换简化装置及方法
CN101867535B (zh) 一种产生、接收差分正交相移键控码的方法、装置和系统
CN112564792A (zh) 自由空间光通信安全系统
CN201491031U (zh) 一种光差分相移键控解调的装置
CN1786757A (zh) 一种全光码型转换装置
CN103634052A (zh) 光调制系统及其方法
Tian et al. Optical VPN in PON based on DPSK erasing/rewriting and DPSK/IM formatting using a single Mach-Zehnder modulator
CN101963735A (zh) 一种偏振复用系统中的全光信息处理方案
CN209402518U (zh) 一种太比特轨道角动量通信链路及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140528

Termination date: 20180305

CF01 Termination of patent right due to non-payment of annual fee