CN102593609A - 阵列成像系统 - Google Patents

阵列成像系统 Download PDF

Info

Publication number
CN102593609A
CN102593609A CN2012100280164A CN201210028016A CN102593609A CN 102593609 A CN102593609 A CN 102593609A CN 2012100280164 A CN2012100280164 A CN 2012100280164A CN 201210028016 A CN201210028016 A CN 201210028016A CN 102593609 A CN102593609 A CN 102593609A
Authority
CN
China
Prior art keywords
terahertz
array
imaging system
sic
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100280164A
Other languages
English (en)
Other versions
CN102593609B (zh
Inventor
张文
缪巍
史生才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purple Mountain Observatory of CAS
Original Assignee
Purple Mountain Observatory of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purple Mountain Observatory of CAS filed Critical Purple Mountain Observatory of CAS
Priority to CN201210028016.4A priority Critical patent/CN102593609B/zh
Publication of CN102593609A publication Critical patent/CN102593609A/zh
Application granted granted Critical
Publication of CN102593609B publication Critical patent/CN102593609B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明涉及阵列成像系统,该系统包括基座和设置在基座上的由若干硅透镜组成的硅透镜阵列,在硅透镜正面的表面镀有厚度为四分之一波长的防反射层,在每个硅透镜背面中心分别设有一个太赫兹探测器,形成太赫兹探测器阵列,在所述基座的正表面,所述若干硅透镜之间的金属表面覆盖有太赫兹吸波材料层。

Description

阵列成像系统
技术领域
本发明涉及射电天文望远镜,具体涉及阵列成像系统。
背景技术
太赫兹超导探测器是目前广泛应用于射电天文接收机中的高灵敏度探测器。为了实现与射电天文望远镜主天线的高效信号耦合,精确表征超导探测器的远场波束特性显得尤为重要。频率低于1.5 THz时,波导型超导探测器集成了波导喇叭作为接收天线,具有很好的波束特性。但是随着频率的升高,波导的尺寸变得越来越小(与工作波长接近),加工制作在技术上存在较大困难,同时成本很高。另外金属表面趋肤深度(skin depth)随着频率的升高而减小,也就是说高频电流越来越向波导表面集中,金属波导的表面粗糙度导致波导损耗随着频率而急剧增加。同时波导喇叭及其相应的连接波导通常采用机械加工制作,不适合大规模阵列应用。另外一种信号耦合形式-准光学型超导探测器-硅透镜与平面天线组成的混合天线,通过平面工艺将探测器与平面天线一次制作完成,再与硅透镜集成。因其工艺简单,造价低,安装方便,易于大规模集成等特点,并且在高频时损耗比波导型探测器小得多,而逐渐被应用于太赫兹天文望远镜。
随着现代射电天文的发展,尤其是大规模巡天观测的要求,多波束接收机组成的探测器阵列其效率与像元数成正比,能够极大地缩短观测时间,开始被大规模采用。比如应用于James Clerk Maxwell Telescope (JCMT) 望远镜的SCUBA2构建高达1000个像元的高灵敏度超导转变边沿结探测器(superconducting transition edge sensor, TES)阵列。而应用于Heinrich Hertz
Submillimeter Telescope (HHT)望远镜的外差混频器阵列Supercam集成了64个超导隧道结(Superconductor-Insulator-Superconductor, SIS)混频器。安装于青海13.7米毫米波望远镜上的超导成像频谱仪,是我国第一台3x3边带分离型混频器阵列,观测效率提高了近20倍。
为了保证各像元之间的精确定位,所有像元安装到同一个金属基座上,放置于望远镜的焦平面上,这样的结构保证了探测器阵列的相对位置和良好冷却。通过在硅透镜表面镀上厚度为四分之一波长的防反射层(n=√(nSi)=1.85),消除硅透镜表面的反射,相应降低光学损耗,从而提高探测器的灵敏度。然而金属基座(多数为无氧铜)表面,尤其是表面镀金后,对太赫兹信号的反射率接近1,严重影响探测器阵列各像元的波束特性,以及像元之间的交叉干扰(cross-talk),因此消除探测器阵列各像元之间的金属表面反射具有重要意义。
发明内容
针对现有太赫兹探测器阵列远场波束特性测量技术的不足,本发明的目的是提供一种阵列成像系统,该阵列成像系统可以克服探测器阵列像元之间的金属表面反射对探测器阵列远场波束特性的影响(特别是靠近主瓣的旁瓣和像元之间的交叉干扰),得到接近理论结果的波束特性。
完成上述发明的技术方案是:阵列成像系统,包括基座和设置在基座上的由若干硅透镜组成的硅透镜阵列,在硅透镜正面的表面镀有厚度为四分之一波长的防反射层,在每个硅透镜背面中心分别设有一个太赫兹探测器,形成太赫兹探测器阵列,在所述基座的正面,所述若干硅透镜之间的金属表面覆盖有太赫兹吸波材料层。
以上所述的太赫兹吸波材料层可以采用Emerson & Cuming公司的吸波材料,如Eccosorb BSR,它是一种薄、柔韧、高损耗、不导电的硅树脂橡胶片,厚度从0.25 mm到2.54 mm,可用刀子或剪刀轻易切割,并适合复合曲面。该种材料为本发明推荐使用。 
以上所述的太赫兹吸波材料层还可以是采用SiC及Stycast制作的太赫兹辐射吸收表面层,所述的太赫兹吸波材料层为采用Stycast及SiC制作的太赫兹辐射吸收表面层,该表面层包括黑色的第一Stycast环氧树脂层,在第一Stycast环氧树脂层上设有SiC颗粒层,在SiC颗粒层上设有第二Stycast环氧树脂层。即第一和第二Stycast环氧树脂层将SiC颗粒层粘贴在金属表面。所述SiC颗粒层的SiC颗粒直径优选为0.1 mm左右。
本发明通过在基座的金属表面设置太赫兹吸波材料层,能够很好地消除太赫兹探测器阵列各像元之间金属表面反射对远场波束特性的影响,太赫兹吸波材料在金属表面的涂敷快捷方便。这些太赫兹吸波材料能够在高灵敏度探测器所要求的4K(零下270度)及更低温区工作,经过多次冷热循环保持特性不变。
本发明的优点在于:
1)         通过太赫兹吸波材料消除探测器阵列像元之间的金属表面反射。
2)             本发明的阵列成像系统能够准确表征待测探测器阵列像元的远场波束特性,尤其是靠近主瓣的低旁瓣。
3)             本发明的阵列成像系统能够准确表征探测器阵列各像元之间的交叉干扰(cross-talk)。
本发明之前,很多人只注意到了尽量消除发射源与接收机之间的反射,以及硅透镜表面的反射。对于单像元接收机,能够得到较为理想的结果。但是对于大规模探测器阵列(如100~1000像元),探测器阵列具有较大的金属表面,往往发现测量的波束特性存在较高的旁瓣,有时旁瓣与主瓣合并形成肩台形,甚至融合成一体隐匿起来的同时展宽主瓣。在此种情况下,很难准确表征太赫兹探测器的波束特性。而本发明在消除了上述发射源与接收机之间的反射之后,还通过太赫兹吸波材料消除了探测器阵列各像元之间金属表面的反射,防止直射波与反射波形成干涉驻波,使得整个测量系统近似为无反射的自由空间,保证测量得到的波束特性真实反映太赫兹探测器阵列的波束特性,为研究太赫兹探测器阵列与望远镜主天线之间的信号耦合奠定了基础。因此本方法解决了前面无法完全消除反射的问题,找到了合适的简单方法消除探测器阵列波束特性测量中的表面反射,准确表征了太赫兹探测器阵列的波束特性,尤其是探测器阵列各像元之间的交叉干扰 (cross-talk)。
附图说明
图1是本发明实施例阵列成像系统正面结构示意图;
图2是本发明实施例阵列成像系统背面结构示意图。
具体实施方式
实施例1,参照图1和图2,阵列成像系统1,包括基座2和设置在基座2上的由25个硅透镜3组成的5×5硅透镜阵列4(图1的虚线框内),在硅透镜3正面的表面镀有厚度为四分之一波长的防反射层,在每个硅透镜3背面中心分别设有一个太赫兹探测器5,形成太赫兹探测器阵列,在基座2的正表面,若干硅透镜3之间的金属表面覆盖有太赫兹吸波材料层6。
太赫兹吸波材料层6的制作方法为:
1)         清洗探测器阵列的基座2正表面;
2)         用小刀或剪刀将太赫兹吸波材料切成探测器阵列金属表面的形状;
3)             用压敏粘合剂(PSA)将太赫兹吸波材料粘贴到基座正表面、各硅透镜3之间的金属表面上,保证既完全覆盖金属表面,又不阻挡太赫兹信号的传播。
以上所述的太赫兹吸波材料采用的是:
Emerson & Cuming公司的Eccosorb BSR,为薄、柔韧、高损耗、不导电的硅树脂橡胶片,厚度2.54 mm。
实施例2
本例与实施例1基本相同,但太赫兹吸波材料层6所使用的材料为采用Stycast及SiC制作的太赫兹辐射吸收表面层,该表面层包括黑色的第一Stycast环氧树脂层,在第一Stycast环氧树脂层上设有SiC颗粒层,在SiC颗粒层上设有第二Stycast环氧树脂层。即第一和第二Stycast环氧树脂层将SiC颗粒层粘贴在金属表面。
太赫兹吸波材料层6的制作方法为:
1)    清洗基座金属表面,并用砂纸使表面粗糙;
2)    在表面涂黑色的第一Stycast环氧树脂层;
3)    在其表面撒一层SiC颗粒,直径为0.1 mm左右;
4)     最后再涂一层黑色的第二Stycast环氧树脂层使SiC颗粒固定住;
5)     等待24小时使其固化。
 
太赫兹探测器阵列金属表面反射消除方法:用太赫兹吸收材料覆盖探测器阵列各像元之间的金属表面。本发明能够消除探测器阵列表面的反射及多重反射;能够精确表征太赫兹探测器阵列的波束特性,尤其是靠近主瓣的低旁瓣;能够精确表征探测器阵列各波束之间的交叉干扰(cross-talk)。

Claims (5)

1.阵列成像系统,包括基座和设置在基座上的由若干硅透镜组成的硅透镜阵列,在硅透镜正面的表面镀有厚度为四分之一波长的防反射层,在每个硅透镜背面中心分别设有一个太赫兹探测器,形成太赫兹探测器阵列,其特征是,在所述基座的正表面,所述若干硅透镜之间的金属表面覆盖有太赫兹吸波材料层。
2.根据权利要求1所述的阵列成像系统,其特征是,所述的太赫兹吸波材料层采用Eccosorb BSR,厚度为0.25 mm到2.54 mm之间。
3.根据权利要求1所述的阵列成像系统,其特征是,所述的太赫兹吸波材料层为采用Stycast及SiC制作的太赫兹辐射吸收表面层,该表面层包括黑色的第一Stycast环氧树脂层,在第一Stycast环氧树脂层上设有SiC颗粒层,在SiC颗粒层上设有第二Stycast环氧树脂层。
4.根据权利要求2所述的阵列成像系统,其特征是,所述的太赫兹吸波材料层通过压敏粘合剂粘贴到基座正表面。
5.根据权利要求3所述的阵列成像系统,其特征是,所述SiC颗粒层的SiC颗粒直径优选为0.1 mm左右。
CN201210028016.4A 2012-02-09 2012-02-09 阵列成像系统 Expired - Fee Related CN102593609B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210028016.4A CN102593609B (zh) 2012-02-09 2012-02-09 阵列成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210028016.4A CN102593609B (zh) 2012-02-09 2012-02-09 阵列成像系统

Publications (2)

Publication Number Publication Date
CN102593609A true CN102593609A (zh) 2012-07-18
CN102593609B CN102593609B (zh) 2014-08-06

Family

ID=46481952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210028016.4A Expired - Fee Related CN102593609B (zh) 2012-02-09 2012-02-09 阵列成像系统

Country Status (1)

Country Link
CN (1) CN102593609B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715516A (zh) * 2014-01-22 2014-04-09 中国科学院电子学研究所 基于平面二元结构的频率扫描反射面天线及衍射波增强方法
CN110418566A (zh) * 2019-08-23 2019-11-05 上海亨临光电科技有限公司 一种用于毫米波或太赫兹成像系统背景抑制的屏风/档板
CN110763333A (zh) * 2019-11-05 2020-02-07 中国科学院紫金山天文台 超宽带准光型2×2像元超导热电子混频器阵列接收机
CN111323385A (zh) * 2020-03-03 2020-06-23 中国科学院物理研究所 一种太赫兹相机、太赫兹成像系统及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994664A (en) * 1989-03-27 1991-02-19 Massachusetts Institute Of Technology Optically coupled focal plane arrays using lenslets and multiplexers
US5352886A (en) * 1993-03-30 1994-10-04 The United States Of America As Represented By The Secretary Of The Air Force Micro non-imaging light concentrators for image sensors with a lenslet array
CN2457579Y (zh) * 2000-09-06 2001-10-31 中国科学院光电技术研究所 红外面阵焦平面探测器
JP2008124822A (ja) * 2006-11-13 2008-05-29 Asahi Glass Co Ltd 自動車用高周波ガラスアンテナ及び自動車用の窓ガラス板
CN201576115U (zh) * 2009-04-28 2010-09-08 中国电子科技集团公司第四十四研究所 基于grin透镜的4×4光互连组件
TW201037361A (en) * 2009-04-03 2010-10-16 Hon Hai Prec Ind Co Ltd Microlens and microlens array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994664A (en) * 1989-03-27 1991-02-19 Massachusetts Institute Of Technology Optically coupled focal plane arrays using lenslets and multiplexers
US5352886A (en) * 1993-03-30 1994-10-04 The United States Of America As Represented By The Secretary Of The Air Force Micro non-imaging light concentrators for image sensors with a lenslet array
CN2457579Y (zh) * 2000-09-06 2001-10-31 中国科学院光电技术研究所 红外面阵焦平面探测器
JP2008124822A (ja) * 2006-11-13 2008-05-29 Asahi Glass Co Ltd 自動車用高周波ガラスアンテナ及び自動車用の窓ガラス板
TW201037361A (en) * 2009-04-03 2010-10-16 Hon Hai Prec Ind Co Ltd Microlens and microlens array
CN201576115U (zh) * 2009-04-28 2010-09-08 中国电子科技集团公司第四十四研究所 基于grin透镜的4×4光互连组件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B.B.HU ET AL: "Imaging with terahertz waves", 《OPTICS LETTERS》, vol. 20, no. 16, 15 August 1995 (1995-08-15) *
T.O.KLAASSEN,ETC: "Optical Characterization of Absorbing Coatings for Sub-millimeter Radiation", 《12TH INTERNATIONAL SYMPOSIUM ON SPACE TERAHERTZ TECHNOLOGY》, 28 February 2001 (2001-02-28) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715516A (zh) * 2014-01-22 2014-04-09 中国科学院电子学研究所 基于平面二元结构的频率扫描反射面天线及衍射波增强方法
CN103715516B (zh) * 2014-01-22 2016-07-06 中国科学院电子学研究所 基于平面二元结构的频率扫描反射面天线及衍射波增强方法
CN110418566A (zh) * 2019-08-23 2019-11-05 上海亨临光电科技有限公司 一种用于毫米波或太赫兹成像系统背景抑制的屏风/档板
CN110763333A (zh) * 2019-11-05 2020-02-07 中国科学院紫金山天文台 超宽带准光型2×2像元超导热电子混频器阵列接收机
CN111323385A (zh) * 2020-03-03 2020-06-23 中国科学院物理研究所 一种太赫兹相机、太赫兹成像系统及应用
CN111323385B (zh) * 2020-03-03 2021-12-28 中国科学院物理研究所 一种太赫兹相机、太赫兹成像系统及应用

Also Published As

Publication number Publication date
CN102593609B (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
Srivastav et al. A highly digital multiantenna ground-penetrating radar (GPR) system
Wang et al. Terahertz high-gain offset reflector antennas using SiC and CFRP material
JP4341573B2 (ja) 電波送受信モジュールおよび、この電波送受信モジュールを用いたイメージングセンサ
CN102593609B (zh) 阵列成像系统
CN102243304A (zh) 一种基于地基的大气廓线微波探测仪
van Berkel et al. Wideband double leaky slot lens antennas in CMOS technology at submillimeter wavelengths
WO2022120903A1 (zh) 基于里德堡原子的微波天线及雷达
Fernandes et al. Review of 20 Years of Research on Microwave and Millimeter-wave Lenses at" Instituto de Telecomunicaço˜ es"
Titz et al. Industrial HTCC antenna-module SiP for 60-GHz applications
CN103257340B (zh) 一种利用雷达卫星标定多台地面接收机幅度一致性的方法
CN103219587A (zh) 基于体硅mems工艺天线的太赫兹前端集成接收装置
Amami Testing patch, helix and vertical dipole GPS antennas with/without choke ring frame
CN103884422B (zh) 用于太赫兹近场测量的准光型探头、探测系统及探测方法
RU2408005C1 (ru) Способ определения диэлектрической проницаемости диэлектрического объекта
Furuya et al. The initial conditions for gravitational collapse of a core: An extremely young low-mass Class 0 protostar GF 9-2
Wang et al. An on-board differential patch array antenna and interconnects design for 60 GHz applications
Ulich et al. Planetary brightness temperature measurements at 8.6 mm and 3.1 mm wavelengths
Yuan et al. Compact 120–140 GHz radar Tx/Rx sensors with on-chip antenna
Neshat et al. Gain measurement of embedded on-chip antennas in mmW/THz range
Tatarnikov et al. Approaching millimeter accuracy of GNSS positioning in real time with large impedance ground plane antennas
CN102721711A (zh) 一种材料电磁参数测量系统
Guo et al. A terahertz quasi-optical detector based on a 3D printing lens
Mou et al. A 2× 2 3D printed micro-lens array for THz applications
Li et al. An Airborne C-Band One-Dimensional Microwave Interferometric Radiometer With Ocean Aviation Experimental Results
Hashimoto et al. Calculation accuracy and time of outdoor propagation estimation using vertical plane launch

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140806

Termination date: 20150209

EXPY Termination of patent right or utility model