CN102591332A - Device and method for local path planning of pilotless automobile - Google Patents

Device and method for local path planning of pilotless automobile Download PDF

Info

Publication number
CN102591332A
CN102591332A CN201110007154XA CN201110007154A CN102591332A CN 102591332 A CN102591332 A CN 102591332A CN 201110007154X A CN201110007154X A CN 201110007154XA CN 201110007154 A CN201110007154 A CN 201110007154A CN 102591332 A CN102591332 A CN 102591332A
Authority
CN
China
Prior art keywords
road
gravitational
repulsion
point
calculate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110007154XA
Other languages
Chinese (zh)
Other versions
CN102591332B (en
Inventor
陈慧
修彩靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201110007154.XA priority Critical patent/CN102591332B/en
Publication of CN102591332A publication Critical patent/CN102591332A/en
Application granted granted Critical
Publication of CN102591332B publication Critical patent/CN102591332B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本发明一种用于无人驾驶汽车局部路径规划的装置及方法,该装置包括环境感知装置、斥力计算装置、引力计算装置、合力方向角度计算装置和方向盘转角计算装置,其通过环境感知装置探测障碍物,建立道路边界模型和道路中心线模型;斥力计算装置建立斥力点函数和计算斥力;引力计算装置建立引力点函数和计算引力;合力方向角度计算装置计算斥力和引力的合力的方向角度;方向盘转角计算装置根据合力的方向角度和转向系统传动比确定方向盘转角。该方法不仅消除了人工势场法中由于斥力和引力在同一个方向时产生的陷入局部极小和路径震荡的问题,而且可对车辆因不确定因素干扰所引起的行驶路径偏离进行实时纠正。

The present invention is a device and method for local path planning of unmanned vehicles. Obstacles, establishing a road boundary model and a road centerline model; the repulsion calculation device establishes a repulsion point function and calculates repulsion; the gravitational calculation device establishes a gravitational point function and calculates gravitation; the resultant force direction angle calculation device calculates the direction angle of the resultant force of repulsion and gravitation; The steering wheel angle calculating device determines the steering wheel angle according to the direction angle of the resultant force and the transmission ratio of the steering system. This method not only eliminates the problem of falling into local minimum and path oscillation caused by the repulsive force and gravitational force in the same direction in the artificial potential field method, but also can correct the deviation of the driving path caused by the interference of uncertain factors in real time.

Description

用于无人驾驶汽车局部路径规划的装置及方法Apparatus and method for local path planning of unmanned vehicles

技术领域 technical field

本发明属于智能汽车技术领域,具体涉及用于无人驾驶局部路径规划的装置及方法。The invention belongs to the technical field of smart cars, and in particular relates to a device and method for unmanned driving local path planning.

背景技术 Background technique

无人驾驶汽车系统(Autonomous Ground Vehicle简称AGV)是一种根据各种传感器获得环境信息以及车辆状态、位置,通过对环境的理解自动控制车辆驾驶行为的智能控制系统,主要由传感器,处理器,控制器等装置组成。The driverless vehicle system (Autonomous Ground Vehicle referred to as AGV) is an intelligent control system that obtains environmental information, vehicle status, and location based on various sensors, and automatically controls the driving behavior of the vehicle through understanding the environment. It is mainly composed of sensors, processors, controller and other devices.

局部路径规划是无人驾驶汽车研究的关键技术之一。局部路径规划是指:无人驾驶汽车在不确定的道路环境中,控制系统根据环境感知系统和车辆状态检测系统提供的信息、全局路径规划提供的所要达到的目标等实时规划出车辆当前的行驶路径。Local path planning is one of the key technologies in driverless vehicle research. Local path planning refers to: in an uncertain road environment, the control system plans the current driving of the vehicle in real time according to the information provided by the environmental perception system and the vehicle state detection system, and the goals to be achieved provided by the global path planning. path.

人工势场法是局部路径规划研究中比较成熟和实时性较好的规划方法,它是将车辆行驶的环境信息抽象为引力场函数和斥力场函数,通过合力场函数来规划出一条从起始点到引力点(目标点)的无碰撞路径。The artificial potential field method is a relatively mature and real-time planning method in the research of local path planning. It abstracts the environmental information of vehicles into gravitational field functions and repulsive field functions, and plans a route from the starting point through the resultant force field function. A collision-free path to a gravitational point (goal point).

发明内容 Contents of the invention

本发明的目的在于提供一种用于无人驾驶汽车局部路径规划的装置及方法,其是在不需要建立复杂的环境模型的情况下,根据环境特征计算出无人驾驶汽车的行驶路径。The object of the present invention is to provide a device and method for local path planning of an unmanned vehicle, which calculates the driving path of the unmanned vehicle according to the environmental characteristics without establishing a complex environment model.

为达到以上目的,本发明所采用的解决方案是:For achieving above object, the solution that the present invention adopts is:

一种用于无人驾驶汽车局部路径规划的装置,其包括:A device for local path planning of an unmanned vehicle, comprising:

环境感知装置,用于探测障碍物,建立道路边界模型和道路中心线模型;Environmental sensing device, used to detect obstacles, establish road boundary model and road centerline model;

斥力计算装置,用于建立斥力点函数和计算斥力;A repulsion calculation device, used to establish a repulsion point function and calculate the repulsion;

引力计算装置,用于建立引力点函数和计算引力;A gravitational calculation device, used to establish the gravitational point function and calculate the gravitational force;

合力方向角度计算装置,用于计算斥力和引力的合力的方向角度;The resultant force direction angle calculation device is used to calculate the direction angle of the resultant force of repulsion and attraction;

方向盘转角计算装置,用于根据合力的方向角度和转向系统传动比确定方向盘转角。The steering wheel angle calculation device is used to determine the steering wheel angle according to the direction angle of the resultant force and the transmission ratio of the steering system.

进一步,所述环境感知装置为视觉传感器和雷达,视觉传感器探测道路边界并计算出道路中心线,雷达探测障碍物信息,将视觉传感器给出的道路坐标点信息拟合为多次曲线,建立道路边界模型和道路中心线模型。Further, the environment perception device is a visual sensor and a radar, the visual sensor detects the road boundary and calculates the road centerline, the radar detects obstacle information, and the road coordinate point information given by the visual sensor is fitted into a multiple curve to establish a road Boundary model and road centerline model.

所述环境感知装置为雷达,雷达探测路沿,拟合道路边界信息,推算出道路中心线信息,建立道路边界模型和道路中心线模型。The environment sensing device is a radar, which detects roadsides, fits road boundary information, calculates road centerline information, and establishes a road boundary model and a road centerline model.

所述斥力计算装置根据环境感知装置给出的环境的实时信息确定车辆将要行驶的两条道路边界来建立斥力点函数;并根据斥力点函数计算随着环境的改变,无人驾驶车斥力点的位置及计算斥力点对无人驾驶汽车的斥力大小。The repulsion calculation device determines the two road boundaries on which the vehicle will travel to establish a repulsion point function according to the real-time information of the environment given by the environment sensing device; Position and calculate the repulsive force of the repulsive point to the unmanned vehicle.

所述引力计算装置通过偏差计算装置计算以新的边界线为道路的道路中心线与目前车辆所在道路的道路中心线间的横向距离,同时通过高斯隶属组合函数将道路内有无障碍物、障碍物距离无人驾驶汽车远近的信息实时反映在引力点函数上;并根据引力点函数计算随着环境的改变,无人驾驶车引力点的位置,及计算引力点对无人驾驶汽车的引力大小。The gravity calculation device calculates the lateral distance between the road centerline with the new boundary line as the road centerline and the road centerline of the road where the vehicle is currently located through the deviation calculation device, and at the same time, whether there are obstacles or obstacles in the road through the Gaussian membership combination function. The information of the distance between the object and the driverless car is reflected in the gravitational point function in real time; and according to the gravitational point function, the position of the gravitational point of the driverless car is calculated as the environment changes, and the gravitational force of the gravitational point on the driverless car is calculated. .

一种用于无人驾驶汽车局部路径规划的方法,其包括:A method for local path planning of an unmanned vehicle, comprising:

环境感知步骤,探测障碍物,建立道路边界模型和道路中心线模型;Environmental awareness step, detecting obstacles, establishing road boundary model and road centerline model;

斥力计算步骤,建立斥力点函数和计算斥力;The repulsion calculation step is to establish the repulsion point function and calculate the repulsion;

引力计算步骤,建立引力点函数和计算引力;The gravitational calculation step is to establish the gravitational point function and calculate the gravitational force;

合力方向角度计算步骤,计算斥力和引力的合力的方向角度;The resultant force direction angle calculation step is to calculate the direction angle of the resultant force of the repulsive force and the gravitational force;

方向盘转角计算步骤,根据合力的方向角度和转向系统传动比确定方向盘转角。In the step of calculating the steering wheel angle, the steering wheel angle is determined according to the direction angle of the resultant force and the transmission ratio of the steering system.

进一步,所述环境感知步骤为视觉传感器探测道路边界并计算出道路中心线,雷达探测障碍物信息,将视觉传感器给出的道路坐标点信息拟合为多次曲线,建立道路边界模型和道路中心线模型。Further, the environmental perception step is to detect the road boundary by the visual sensor and calculate the road centerline, detect the obstacle information by the radar, fit the road coordinate point information given by the visual sensor into a multiple curve, and establish the road boundary model and the road center wire model.

所述环境感知步骤为雷达探测路沿,拟合道路边界信息,推算出道路中心线信息,建立道路边界模型和道路中心线模型。The environmental perception step is to detect the roadside by radar, fit the road boundary information, calculate the road centerline information, and establish the road boundary model and the road centerline model.

所述斥力计算步骤根据环境感知装置给出的环境的实时信息确定车辆将要行驶的两条道路边界来建立斥力点函数;并根据斥力点函数计算随着环境的改变,无人驾驶车斥力点的位置及计算斥力点对无人驾驶汽车的斥力大小。The repulsion calculation step determines the boundaries of the two roads on which the vehicle will travel to establish the repulsion point function according to the real-time information of the environment given by the environment sensing device; Position and calculate the repulsive force of the repulsive point to the unmanned vehicle.

所述引力计算步骤通过偏差计算装置计算以新的边界线为道路的道路中心线与目前车辆所在道路的道路中心线间的横向距离,同时通过高斯隶属组合函数将道路内有无障碍物、障碍物距离无人驾驶汽车远近的信息实时反映在引力点函数上;并根据引力点函数计算随着环境的改变,无人驾驶车引力点的位置,及计算引力点对无人驾驶汽车的引力大小。The gravity calculation step calculates the lateral distance between the road centerline with the new boundary line as the road centerline and the road centerline of the road where the vehicle is currently located through the deviation calculation device, and at the same time, whether there are obstacles or obstacles in the road through the Gaussian membership combination function The information of the distance between the object and the driverless car is reflected in the gravitational point function in real time; and according to the gravitational point function, the position of the gravitational point of the driverless car is calculated as the environment changes, and the gravitational force of the gravitational point on the driverless car is calculated. .

由于采用了上述方案,本发明具有以下特点:Owing to having adopted above-mentioned scheme, the present invention has following characteristics:

1)通过利用高斯组合隶属函数实时反应环境变化的方法,本发明解决了传统人工势场法中由于斥力和引力在同一个方向时产生的陷入局部极小和路径震荡的问题;1) By utilizing the method of Gaussian combined membership function to respond to environmental changes in real time, the present invention solves the problems of falling into local minimum and path oscillations in the traditional artificial potential field method due to repulsion and gravitation in the same direction;

2)通过斥力点函数的选择,当车辆因受到不确定性因素的干扰例如侧向风、路面不平度等偏离目标行驶路径时,斥力与引力的合力将引导车辆回到目标行驶路径,提高了车辆跟踪理想目标行驶路径的鲁棒性能;2) Through the selection of the repulsion point function, when the vehicle deviates from the target driving path due to the interference of uncertain factors such as side wind and road surface unevenness, the combined force of the repulsive force and the gravitational force will guide the vehicle back to the target driving path, improving the The robustness of the vehicle to track the ideal target driving path;

3)由于不需要建立复杂的环境模型,仅需构建环境特征模型来实现局部路径规划,因此所需传感器数据信息量要求更小、数据信息处理的实时性更好,一方面有助于降低传感器成本,另一方面也有利于满足车载控制系统高实时响应性的要求;3) Since there is no need to establish a complex environmental model, only an environmental feature model is required to realize local path planning, so the required amount of sensor data information is smaller and the real-time performance of data information processing is better. On the one hand, it helps to reduce sensor On the other hand, it is also conducive to meeting the high real-time responsiveness requirements of the vehicle control system;

4)本发明具有很好的环境适应性,除本发明实施方案中所举两种行驶环境外,本发明对于其他行驶环境,例如交叉路口堵塞但具有可通过路径情况等,可实现多种环境下车辆自动避障;4) The present invention has good environmental adaptability. Except for the two driving environments mentioned in the embodiments of the present invention, the present invention can realize multiple environments for other driving environments, such as intersections that are blocked but have passing paths. Automatic obstacle avoidance when getting off the vehicle;

5)通过高斯组合隶属函数系数的设定,目标行驶路径函数还可满足车辆最小转弯半径,前轮最大转向角速度等车辆运动学和动力学的约束条件,使得被控对象能够很好的跟踪给出的期望路径,从而实现预期的最优控制。5) Through the setting of Gaussian combined membership function coefficients, the target driving path function can also meet the constraints of vehicle kinematics and dynamics such as the minimum turning radius of the vehicle and the maximum steering angular velocity of the front wheels, so that the controlled object can be tracked well. The desired path is obtained, so as to achieve the expected optimal control.

附图说明 Description of drawings

图1为局部路径规划装置示意图。FIG. 1 is a schematic diagram of a local path planning device.

图2为环境特征模型建立装置示意图。Fig. 2 is a schematic diagram of an environment characteristic model establishment device.

图3为引力点函数建立装置示意图。Fig. 3 is a schematic diagram of the device for establishing the gravitational point function.

图4为σ取不同值的车辆轨迹比较图。Figure 4 is a comparison diagram of vehicle trajectories with different values of σ.

图5为合力方向角度计算装置示意图。Fig. 5 is a schematic diagram of the calculation device for the resultant force direction angle.

图6为无障碍物环境下无人驾驶车行驶轨迹仿真结果图。Figure 6 is a simulation result of the driving trajectory of the unmanned vehicle in an environment without obstacles.

图7为无障碍物环境下无人驾驶车期望转向盘转角图。Figure 7 is a diagram of the expected steering wheel angle of an unmanned vehicle in an environment without obstacles.

图8为障碍物环境下无人驾驶车行驶轨迹仿真结果图。Figure 8 is a simulation result of the driving trajectory of the unmanned vehicle in the obstacle environment.

图9为障碍物环境下无人驾驶车期望转向盘转角图。Fig. 9 is a diagram of the expected steering wheel angle of an unmanned vehicle in an obstacle environment.

具体实施方式 Detailed ways

以下结合附图所示实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with the embodiments shown in the accompanying drawings.

本发明是在人工势场APF(Artificial Potential Field)法的基础上,利用高斯组合隶属函数建立目标行驶路径函数,即人工势场法的引力点函数,将环境的变化实时体现在引力点函数的变化上,并以此来计算引力;根据障碍物信息和道路边沿信息得到斥力点函数,以此来计算斥力。再通过引力和斥力计算出无人驾驶汽车所受合力方向,从而规划出无人驾驶车将行驶的路径。当车辆沿目标行驶路径行驶时,两斥力互相抵消,引力起主导作用,一旦车辆因为受到不确定性因素的干扰例如侧向风,路面不平度等偏离目标行驶路径,斥力与引力的合力将引导车辆回到目标行驶路径。The present invention is based on the artificial potential field APF (Artificial Potential Field) method, and utilizes the Gaussian combination membership function to establish the target driving path function, that is, the gravitational point function of the artificial potential field method, and reflects the change of the environment in real time in the gravitational point function. Changes, and use this to calculate the gravitational force; get the repulsion point function based on the obstacle information and road edge information, and use this to calculate the repulsive force. Then calculate the direction of the resultant force on the driverless car through the gravitational and repulsive forces, so as to plan the path that the driverless car will travel. When the vehicle is driving along the target driving path, the two repulsive forces cancel each other out, and the gravitational force plays a leading role. Once the vehicle is disturbed by uncertain factors such as side wind, road unevenness, etc. The vehicle returns to the target travel path.

本发明中一种用于引力计算的装置,包括引力点函数建立装置和引力计算装置,其中该引力点函数装置包括:偏差计算,用于计算以新的边界线为道路的道路中心线与目前车辆所在道路的道路中心线间的横向距离;通过高斯隶属组合函数将道路内有无障碍物、障碍物距离无人驾驶汽车远近等实时反映在引力点函数上;其中该引力计算装置根据在引力点函数上引力点选取来计算引力。A device for gravitational calculation in the present invention includes a gravitational point function establishment device and a gravitational calculation device, wherein the gravitational point function device includes: deviation calculation, used to calculate the difference between the center line of the road with the new boundary line as the road and the current The lateral distance between the road centerlines of the road where the vehicle is located; the presence or absence of obstacles in the road and the distance between obstacles and unmanned vehicles are reflected in the gravitational point function in real time through the Gaussian membership combination function; Gravity point selection on the point function to calculate gravity.

其中,该偏差计算装置根据雷达(激光或毫米波雷达)获得的障碍物边界点信息以及道路中心线计算。Wherein, the deviation calculation device calculates according to the obstacle boundary point information obtained by radar (laser or millimeter wave radar) and the road centerline.

其中,该引力点函数根据视觉系统给出道路中心线,根据实时环境的变化通过求解道路中心线偏差发生的最大变化计算出偏差值,并利用高斯隶属组合函数实时体现障碍物的信息,从而得到引力点函数。Among them, the gravity point function gives the road centerline according to the visual system, and calculates the deviation value by solving the maximum change of the road centerline deviation according to the real-time environment change, and uses the Gaussian membership combination function to reflect the information of obstacles in real time, so as to obtain gravitational point function.

其中,该高斯隶属组合函数的系数将使得目标行驶路径满足车辆的运动学和动力学约束条件。Among them, the coefficients of the Gaussian membership combination function will make the target driving path satisfy the kinematics and dynamics constraints of the vehicle.

其中,该引力点选取将根据道路的曲率和车辆的速度而定。Wherein, the selection of the gravity point will be determined according to the curvature of the road and the speed of the vehicle.

一种用于斥力计算的装置,包括斥力点函数建立装置和斥力计算装置,其中斥力点函数根据视觉传感器和雷达给出的环境的实时信息确定车辆将要行驶的两条道路边界来建立;斥力计算装置用于根据斥力点计算斥力大小。A device for repulsion calculation, including a repulsion point function establishment device and a repulsion calculation device, wherein the repulsion point function is established according to the real-time information of the environment given by the visual sensor and the radar to determine the boundaries of the two roads on which the vehicle will travel; the repulsion calculation The device is used to calculate the magnitude of the repulsive force according to the repulsive force point.

本发明还包括将合力转化为转向盘转角装置,包括如下步骤:确立车体坐标系,根据引力大小和在车体坐标系下的方向将引力分解为正交坐标轴的分力,根据斥力大小和在车体坐标系下的方向将斥力分解为正交坐标轴的分力,从而计算出前轮转角,再根据转向系统传动比计算出转向盘转角。The present invention also includes a device for converting resultant force into steering wheel angle, comprising the steps of: establishing the vehicle body coordinate system, decomposing the attractive force into component forces of orthogonal coordinate axes according to the magnitude of the gravitational force and the direction under the vehicle body coordinate system, and The repulsive force is decomposed into the component force of the orthogonal coordinate axis and the direction in the car body coordinate system, so as to calculate the front wheel rotation angle, and then calculate the steering wheel rotation angle according to the transmission ratio of the steering system.

本发明拟使用视觉传感器探测道路边界并计算出道路中心线,使用雷达(激光或毫米波雷达)探测障碍物信息,将视觉系统给出的道路坐标点信息拟合为多次曲线(考虑到车辆的动力学约束,一股为三次及以上曲线)建立道路边界模型和道路中心线模型(也可仅用激光雷达作为环境感知系统,利用激光雷达探测路沿,拟合道路边界信息,推算出道路中心线信息)。基于传感器得到环境特征模型,引力点函数中的高斯隶属组合函数项将实时体现道路内环境的变化,即是否出现障碍物、障碍物与无人驾驶车间的距离,并根据实时得到的引力点函数计算引力;根据环境改变建立斥力点函数,并根据斥力点函数计算斥力大小。局部路径规划装置示意图如图1。The present invention intends to use a visual sensor to detect the road boundary and calculate the road centerline, use radar (laser or millimeter wave radar) to detect obstacle information, and fit the road coordinate point information given by the visual system into a multiple curve (considering the vehicle The dynamic constraints of the three or more curves) establish a road boundary model and a road centerline model (it is also possible to use only lidar as an environmental perception system, use lidar to detect road edges, fit road boundary information, and calculate the road centerline information). Based on the environment feature model obtained by the sensor, the Gaussian membership combination function item in the gravitational point function will reflect the change of the environment in the road in real time, that is, whether there is an obstacle, the distance between the obstacle and the driverless workshop, and according to the gravitational point function obtained in real time Calculate the gravitational force; establish the repulsion point function according to the environment change, and calculate the repulsion force according to the repulsion point function. The schematic diagram of the local path planning device is shown in Figure 1.

1、环境感知:1. Environmental awareness:

根据视觉系统,在车体坐标系上建立道路两边界函数模型According to the vision system, the two boundary function models of the road are established on the vehicle body coordinate system

ythe y 11 == aa 11 xx 33 ++ bb 11 xx 22 ++ cc 11 xx ++ dd 11 ythe y 22 == aa 11 xx 33 ++ bb 11 xx 22 ++ cc 11 xx ++ dd 22 -- -- -- (( 11 ))

其中a1,b1,c1,d1,d2为三次曲线系数。Among them, a 1 , b 1 , c 1 , d 1 , and d 2 are cubic curve coefficients.

由式(1)推出道路中心线函数模型The road centerline function model is deduced from formula (1)

ycentre=a1x3+b1x2+c1x+(d1+d2)/2                             (2)y center =a 1 x 3 +b 1 x 2 +c 1 x+(d 1 +d 2 )/2 (2)

当道路内有障碍物时,通过雷达扫描与视觉系统给出的道路线信息数据进行融合,得到当前道路内同一坐标系下的障碍物最危险边界点实时坐标(Xob,Yob),即得到可通过道路的两边界的数据信息。通过以上原始数据得到环境特征的基本模型。环境特征模型建立装置示意图如图2。When there is an obstacle in the road, the real-time coordinates (X ob , Y ob ) of the most dangerous boundary point of the obstacle in the same coordinate system on the current road are obtained through fusion of the road line information data given by the radar scan and the vision system, namely Obtain the data information of the two boundaries of the passable road. The basic model of environmental characteristics is obtained through the above raw data. The schematic diagram of the environment feature model establishment device is shown in Figure 2.

2、引力点函数建立2. Establishment of gravitational point function

车辆在结构化道路上行驶,必然具有道路边界约束,并且可能存在障碍物,存在障碍物的情况具有两种可能,一种为障碍物与道路边界作为边界线时为最宽可通过路径,一种为两障碍物作为边界时为最宽可通过路径。引力点函数建立装置如图3。Vehicles driving on structured roads must have road boundary constraints, and there may be obstacles. There are two possibilities for obstacles, one is the widest passable path when the obstacle and the road boundary are used as the boundary line, and the other is the widest passable path. One is that when two obstacles are used as the boundary, it is the widest passable path. The device for establishing the gravitational point function is shown in Figure 3.

1)道路内没有障碍物1) There are no obstacles in the road

此时,车辆受到两条道路边界线的约束不能行驶到道路以外,因此,两道路边界线即为斥力点函数,引力点函数即为道路中心线函数。At this time, the vehicle is restricted by the two road boundary lines and cannot drive outside the road. Therefore, the two road boundary lines are the repulsion point function, and the attraction point function is the road centerline function.

2)当道路内有障碍物时2) When there are obstacles in the road

当道路内有障碍物时,首先选择最宽可通过的道路,从而确定道路边界点以及偏差系数。When there are obstacles in the road, the widest passable road is selected first, so as to determine the road boundary point and the deviation coefficient.

道路内有障碍物的情况下的引力点函数,分为两种情况,一种情况障碍物做为一侧边界线,道路边界线作为另一侧边界线,即斥力点函数分别为道路边界线和障碍物最危险边界点,另一种情况为两障碍物作为边界线,现以第一种情况加以详细说明。The gravitational point function when there are obstacles in the road is divided into two cases. In one case, the obstacle is used as the boundary line on one side, and the road boundary line is used as the boundary line on the other side, that is, the repulsion point function is the road boundary line and the most dangerous boundary point of the obstacle, another situation is that two obstacles are used as the boundary line, and the first situation is now described in detail.

这种情况下斥力点函数为道路边界线和障碍物最危险点的实时坐标点(Xob,Yob)。In this case, the repulsion point function is the real-time coordinate point (X ob , Y ob ) of the most dangerous point of the road boundary line and the obstacle.

障碍物和一边道路线组成可通过路径的边界,产生新的道路中心线,则原道路中心线函数所需最大偏移量Obstacles and one side of the road line form the boundary of the passable path, resulting in a new road centerline, then the maximum offset required by the original road centerline function

Δs=|(a1xob 3+b1xob 2+c1xob+(d1+d2)/2)-(yob+a2xob 3+b2xob 2+c2xob+d2)/2|    (3)Δs=|(a 1 x ob 3 +b 1 x ob 2 +c 1 x ob +(d 1 +d 2 )/2)-(y ob +a 2 x ob 3 +b 2 x ob 2 +c 2 x ob +d 2 )/2| (3)

即当车辆处于一边为障碍物边界的边界约束条件下的引力点函数为That is, when the vehicle is in the boundary constraint condition where one side is an obstacle boundary, the gravitational point function is

ygoal=a1x3+b1x2+c1x+(d1+d2)/2+Δs                                       (4)y goal =a 1 x 3 +b 1 x 2 +c 1 x+(d 1 +d 2 )/2+Δs (4)

但直接加一个偏移量会造成路径曲率的不连续,不满足车辆的运动学约束条件,综上分析及考虑车辆约束条件,采用高斯隶属函数来光滑过度两个目标函数,因此修正引力点函数为However, directly adding an offset will cause the discontinuity of the path curvature, which does not meet the kinematic constraints of the vehicle. Based on the above analysis and considering the vehicle constraints, the Gaussian membership function is used to smooth the two objective functions, so the gravitational point function is corrected. for

ygoal=a1x3+b1x2+c1x+(d1+d2)/2+Δs*exp(-(X-Xob)2/2*σ2)                (5)y goal =a 1 x 3 +b 1 x 2 +c 1 x+(d 1 +d 2 )/2+Δs*exp(-(XX ob ) 2 /2*σ 2 ) (5)

其中σ是与高斯隶属函数曲线的曲率相关的系数,在引力的引力点函数中,通过调节其值可满足车辆的动力学约束即路径曲率有界和路径曲率倒数有界,如图4σ取不同值的道路轨迹。从以上分析可以看出道路内没有障碍物的情况是道路内有障碍物情况的特例,即在没有障碍物的情况下Δs*exp(-(X-Xob)2/2*σ2将趋于零。Among them, σ is a coefficient related to the curvature of the Gaussian membership function curve. In the gravitational point function of gravity, by adjusting its value, the dynamic constraints of the vehicle can be satisfied, that is, the path curvature is bounded and the path curvature reciprocal is bounded, as shown in Figure 4. Value road track. From the above analysis, it can be seen that the situation without obstacles in the road is a special case of the situation with obstacles in the road, that is, in the case of no obstacles, Δs*exp(-(XX ob ) 2 /2*σ 2 will tend to zero .

综上,确立引力点函数即为To sum up, the establishment of the gravitational point function is

ygoal=a1x3+b1x2+c1x+(d1+d2)/2+Δs*exp(-(X-Xob)2/2*σ2)    (6)y goal =a 1 x 3 +b 1 x 2 +c 1 x+(d 1 +d 2 )/2+Δs*exp(-(XX ob ) 2 /2*σ 2 ) (6)

3、斥力点函数建立3. Establishment of repulsion point function

斥力点函数repulsion point function

1)当没有障碍物时,斥力点函数即为道路边界即式(1)1) When there are no obstacles, the repulsion point function is the road boundary, that is, formula (1)

2)当道路内有障碍物时,根据最宽可通过道路边界情况将引入障碍物作为一侧边界2) When there are obstacles in the road, according to the widest passable road boundary conditions, the introduced obstacles will be used as one side boundary

4、引力计算4. Gravity calculation

在本方法中将无人驾驶汽车(被控对象)简化为一质点,其所在空间为二维欧式空间。被控对象在空间中的位置X=[xy]T,在本发明中,因为是在车体坐标系下,所以X=[00]T。被控对象在X所受的引力场函数Uatt(X)定义为与目标位置Xg=[xgyg]T相关的函数:In this method, the unmanned vehicle (controlled object) is simplified as a particle, and its space is a two-dimensional Euclidean space. The position of the controlled object in space X=[xy] T , in the present invention, because it is in the vehicle body coordinate system, so X=[00] T . The gravitational field function U att (X) suffered by the controlled object at X is defined as a function related to the target position X g =[x g y g ] T :

Uu attatt (( Xx )) == 11 22 κκ (( Xx -- Xx gg )) 22 -- -- -- (( 77 ))

式中:κ为引力场增益。相应的引力Fatt(X)为引力场的负梯度:In the formula: κ is the gravitational field gain. The corresponding gravitational force F att (X) is the negative gradient of the gravitational field:

Ff attatt (( Xx )) == -- ▿▿ Uu attatt (( Xx )) == -- κκ ρρ gg aa GG -- -- -- (( 88 ))

式中:aG为被控对象指向目标的单位向量;ρg=||X-Xg||为被控对象与引力点之间的距离。In the formula: a G is the unit vector of the controlled object pointing to the target; ρ g = ||XX g || is the distance between the controlled object and the gravitational point.

5、斥力计算5. Calculation of repulsive force

斥力场函数为The repulsion field function is

Uu reprep (( Xx )) == 11 22 ηη (( 11 ρρ obob -- 11 ρρ 00 )) 22 ρρ gg nno ρρ obob ≤≤ ρρ 00 00 ρρ obob >> ρρ 00 -- -- -- (( 99 ))

式中n是一个大于零的任意实数。where n is any real number greater than zero.

当被控对象不在引力点时,则相应的斥力为:When the controlled object is not at the gravitational point, the corresponding repulsive force is:

Ff reprep (( Xx )) == (( Ff reprep 11 ++ Ff reprep 22 )) aa oo ρρ obob ≤≤ ρρ 00 00 ρρ obob >> ρρ 00 -- -- -- (( 1010 ))

其中:in:

Ff reprep 11 == ηη (( 11 ρρ obob -- 11 ρρ 00 )) ρρ gg nno ρρ obob 22

Ff reprep 22 == nno 22 ηη (( 11 ρρ obob -- 11 ρρ 00 )) 22 ρρ gg nno -- 11

式中:η为斥力场函数增益,ρob=||X-Xob||为被控对象与障碍物的最短距离,常数ρ0为根据车速设定的障碍物的影响距离。In the formula: η is the gain of the repulsion field function, ρ ob =||XX ob || is the shortest distance between the controlled object and the obstacle, and the constant ρ 0 is the influence distance of the obstacle set according to the vehicle speed.

其中aO为障碍物指向被控对象的单位向量。Among them, a O is the unit vector of the obstacle pointing to the controlled object.

6、合力方向计算6. Calculation of resultant force direction

合力方向即决定了被控对象的运动方向。在车体坐标系下,将引力和斥力分别分解为两坐标轴上的分力。合力方向角度计算装置示意图如图5。The direction of the resultant force determines the direction of motion of the controlled object. In the car body coordinate system, the attractive and repulsive forces are decomposed into component forces on the two coordinate axes respectively. The schematic diagram of the resultant force direction angle calculation device is shown in Figure 5.

在以车体坐标系为坐标轴建立的引力点函数上,选取引力点Xg=[xg,yg],则无人驾驶车与引力点之间的夹角On the gravitational point function established with the car body coordinate system as the coordinate axis, select the gravitational point X g = [x g , y g ], then the angle between the unmanned vehicle and the gravitational point

α=arctan(yg/xg)                            (11)α=arctan(y g /x g ) (11)

引力在横、纵坐标上的分力为The components of gravitational force on the abscissa and ordinate are

Ff attatt (( xx gg )) == Ff attatt ** coscos (( αα )) Ff attatt (( ythe y gg )) == Ff attatt ** sinsin (( αα )) -- -- -- (( 1212 ))

在车体坐标系上,斥力点Xob(i)=[xob(i),yob(i)],则无人驾驶车与障碍物之间的夹角On the car body coordinate system, the repulsion point X ob (i) = [x ob (i), y ob (i)], then the angle between the unmanned vehicle and the obstacle

βi=arctan(yob(i)/xob(i))                   (13)β i =arctan(y ob (i)/x ob (i)) (13)

斥力在横、纵坐标上的分力为The components of the repulsive force on the abscissa and ordinate are

Ff reprep (( xx obob (( ii )) )) == Ff reprep (( ii )) ** coscos (( ββ ii )) Ff reprep (( ythe y obob (( ii )) )) == Ff reprep (( ii )) ** sinsin (( ββ ii )) -- -- -- (( 1414 ))

则无人驾驶汽车与合力的夹角,即期望的航向角Then the angle between the driverless car and the resultant force is the expected heading angle

θ=arctan((Fatt(y)+Frep(y(i)))/(Fatt(x)+Frep(x(i))))    (15)θ=arctan((F att (y)+F rep (y(i)))/(F att (x)+F rep (x(i)))) (15)

转向盘转角steering wheel angle

δsw=θ*is                                              (16)δ sw = θ*i s (16)

其中is为转向系统传动比。where i s is the transmission ratio of the steering system.

对以上发明在不同环境下进行仿真验证,系统各参数采用如下值:The above inventions are simulated and verified in different environments, and the parameters of the system adopt the following values:

κ=6,ρ0=10,η=0.7,n=2,σ=4.5,车速v=18km/hκ=6, ρ 0 =10, η=0.7, n=2, σ=4.5, vehicle speed v=18km/h

当道路内无障碍物或障碍物不在有效距离范围内(即ρob>ρ0),利用改进人工势场法以道路边界线作为斥力,以道路中心线作为引力,此时修正项为零。图6为无人驾驶汽车行驶轨迹,从行驶轨迹可以看出,无人驾驶汽车能够很好的跟随道路中心线。图7为转向盘转角,从给出的转向盘转角命令可以看出,期望转角光滑且满足车辆的运动学和动力学约束(例如,受转向执行机构限制,无人驾驶汽车的转向盘转角的约束为|δsw|<=500°,转向盘角速度的约束为|Vδ|<=200°/s。从图7可以看出,在无障碍物环境下,利用本发明无人驾驶车辆在具有一定曲率的道路内行驶时,转向盘转角可保持在200度以内,转向盘角速度也可保持在200度/秒的约束范围内)。When there is no obstacle in the road or the obstacle is not within the effective distance range (ie ρ ob > ρ 0 ), the improved artificial potential field method is used to use the road boundary line as the repulsive force and the road centerline as the attractive force. At this time, the correction term is zero. Figure 6 shows the driving trajectory of the driverless car. It can be seen from the driving trajectory that the driverless car can follow the centerline of the road very well. Figure 7 shows the steering wheel angle. From the given steering wheel angle commands, it can be seen that the expected steering wheel angle is smooth and satisfies the kinematics and dynamics constraints of the vehicle (for example, limited by the steering actuator, the steering wheel angle of an unmanned vehicle Constraint is |δ sw |<=500 °, and the constraint of steering wheel angular velocity is |V δ |<=200°/s.As can be seen from Fig. 7, under the obstacle-free environment, utilize unmanned vehicle of the present invention to be in When driving on a road with a certain curvature, the steering wheel angle can be kept within 200 degrees, and the steering wheel angular velocity can also be kept within the constraint range of 200 degrees per second).

当前方道路内出现障碍物,且无人驾驶车与障碍物距离在有效范围内(ρob≤ρ0),以障碍物和一侧道路边界线作为斥力点函数,此时修正项与最大偏移量有关,以障碍物边界线和道路边界线的中心线为引力。图8为无人驾驶汽车行驶轨迹,从行驶轨迹可以看出,当道路内有障碍物时,无人驾驶汽车能够平滑的绕过障碍物,并在绕过障碍物后,平滑的回到道路中心线。图9为转向盘转角,从给出的转向盘转角可以看出,期望转角光滑且满足车辆动力学约束(在有障碍物环境下,利用本发明转向盘转角可保持在120度以内,转向盘角速度也可保持在200度/秒的约束范围内)。When there is an obstacle in the road ahead, and the distance between the unmanned vehicle and the obstacle is within the effective range (ρ ob ≤ ρ 0 ), the obstacle and the road boundary line on one side are used as the repulsion point function. At this time, the correction item and the maximum deviation It is related to the displacement, and the center line of the obstacle boundary line and the road boundary line is the gravitational force. Figure 8 shows the driving trajectory of the driverless car. It can be seen from the driving trajectory that when there is an obstacle in the road, the driverless car can smoothly bypass the obstacle and return to the road smoothly after bypassing the obstacle center line. Fig. 9 is the steering wheel angle. From the given steering wheel angle, it can be seen that the desired angle is smooth and satisfies the vehicle dynamics constraints (in an environment with obstacles, the steering wheel angle of the present invention can be kept within 120 degrees, and the steering wheel Angular velocity can also be kept within the constraint of 200 deg/s).

上述实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一股原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。The descriptions of the above embodiments are for those of ordinary skill in the art to understand and apply the present invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative efforts. Therefore, the present invention is not limited to the embodiments herein, and improvements and modifications made by those skilled in the art according to the disclosure of the present invention should fall within the protection scope of the present invention.

Claims (10)

1.一种用于无人驾驶汽车局部路径规划的装置,其特征在于:其包括:1. A device for local path planning of unmanned vehicles, characterized in that: it comprises: 环境感知装置,用于探测障碍物,建立道路边界模型和道路中心线模型;Environmental sensing device, used to detect obstacles, establish road boundary model and road centerline model; 斥力计算装置,用于建立斥力点函数和计算斥力;A repulsion calculation device, used to establish a repulsion point function and calculate the repulsion; 引力计算装置,用于建立引力点函数和计算引力;A gravitational calculation device, used to establish the gravitational point function and calculate the gravitational force; 合力方向角度计算装置,用于计算斥力和引力的合力的方向角度;The resultant force direction angle calculation device is used to calculate the direction angle of the resultant force of repulsion and attraction; 方向盘转角计算装置,用于根据合力的方向角度和转向系统传动比确定方向盘转角。The steering wheel angle calculation device is used to determine the steering wheel angle according to the direction angle of the resultant force and the transmission ratio of the steering system. 2.如权利要求1所述的用于无人驾驶汽车局部路径规划的装置,其特征在于:所述环境感知装置为视觉传感器和雷达,视觉传感器探测道路边界并计算出道路中心线,雷达探测障碍物信息,将视觉传感器给出的道路坐标点信息拟合为多次曲线,建立道路边界模型和道路中心线模型。2. The device for local path planning of unmanned vehicles as claimed in claim 1, characterized in that: the environment perception device is a visual sensor and a radar, the visual sensor detects the road boundary and calculates the road centerline, and the radar detects Obstacle information, the road coordinate point information given by the visual sensor is fitted to a multiple curve, and the road boundary model and road centerline model are established. 3.如权利要求1所述的用于无人驾驶汽车局部路径规划的装置,其特征在于:所述环境感知装置为雷达,雷达探测路沿,拟合道路边界信息,推算出道路中心线信息,建立道路边界模型和道路中心线模型。3. The device for local path planning of unmanned vehicles as claimed in claim 1, characterized in that: the environment sensing device is a radar, the radar detects the road edge, fits the road boundary information, and calculates the road centerline information , to establish the road boundary model and the road centerline model. 4.如权利要求1所述的用于无人驾驶汽车局部路径规划的装置,其特征在于:所述斥力计算装置根据环境感知装置给出的环境的实时信息确定车辆将要行驶的两条道路边界来建立斥力点函数;并根据斥力点函数计算随着环境的改变,无人驾驶车斥力点的位置及计算斥力点对无人驾驶汽车的斥力大小。4. The device for local path planning of unmanned vehicles as claimed in claim 1, characterized in that: said repulsion computing device determines the boundaries of the two roads on which the vehicle will travel according to the real-time information of the environment given by the environment sensing device To establish the repulsion point function; and according to the repulsion point function, calculate the position of the unmanned vehicle repulsion point and calculate the repulsion force of the repulsion point to the unmanned vehicle as the environment changes. 5.如权利要求1所述的用于无人驾驶汽车局部路径规划的装置,其特征在于:所述引力计算装置通过偏差计算装置计算以新的边界线为道路的道路中心线与目前车辆所在道路的道路中心线间的横向距离,同时通过高斯隶属组合函数将道路内有无障碍物、障碍物距离无人驾驶汽车远近的信息实时反映在引力点函数上;并根据引力点函数计算随着环境的改变,无人驾驶车引力点的位置,及计算引力点对无人驾驶汽车的引力大小。5. The device for local path planning of unmanned vehicles as claimed in claim 1, wherein the gravitational calculation device calculates the distance between the center line of the road and the current vehicle location with the new boundary line as the road center line by the deviation calculation device. At the same time, through the Gaussian membership combination function, the information of whether there are obstacles in the road and the distance between obstacles and unmanned vehicles is reflected in the gravitational point function in real time; Changes in the environment, the position of the gravitational point of the driverless car, and the calculation of the gravitational force of the gravitational point on the driverless car. 6.一种用于无人驾驶汽车局部路径规划的方法,其特征在于:其包括:6. A method for local path planning of unmanned vehicles, characterized in that: it comprises: 环境感知步骤,探测障碍物,建立道路边界模型和道路中心线模型;Environmental awareness step, detecting obstacles, establishing road boundary model and road centerline model; 斥力计算步骤,建立斥力点函数和计算斥力;The repulsion calculation step is to establish the repulsion point function and calculate the repulsion; 引力计算步骤,建立引力点函数和计算引力;The gravitational calculation step is to establish the gravitational point function and calculate the gravitational force; 合力方向角度计算步骤,计算斥力和引力的合力的方向角度;The resultant force direction angle calculation step is to calculate the direction angle of the resultant force of the repulsive force and the gravitational force; 方向盘转角计算步骤,根据合力的方向角度和转向系统传动比确定方向盘转角。In the step of calculating the steering wheel angle, the steering wheel angle is determined according to the direction angle of the resultant force and the transmission ratio of the steering system. 7.如权利要求6所述的用于无人驾驶汽车局部路径规划的方法,其特征在于:所述环境感知步骤为视觉传感器探测道路边界并计算出道路中心线,雷达探测障碍物信息,将视觉传感器给出的道路坐标点信息拟合为多次曲线,建立道路边界模型和道路中心线模型。7. The method for local path planning of unmanned vehicles as claimed in claim 6, characterized in that: the environmental perception step is to detect road boundaries by visual sensors and calculate the center line of the road, and to detect obstacle information by radar. The road coordinate point information given by the visual sensor is fitted to multiple curves, and the road boundary model and road centerline model are established. 8.如权利要求6所述的用于无人驾驶汽车局部路径规划的方法,其特征在于:所述环境感知步骤为雷达探测路沿,拟合道路边界信息,推算出道路中心线信息,建立道路边界模型和道路中心线模型。8. The method for local path planning of unmanned vehicles as claimed in claim 6, characterized in that: the environment perception step is to detect the roadside by radar, fit the road boundary information, calculate the road centerline information, and establish Road boundary model and road centerline model. 9.如权利要求6所述的用于无人驾驶汽车局部路径规划的方法,其特征在于:所述斥力计算步骤根据环境感知装置给出的环境的实时信息确定车辆将要行驶的两条道路边界来建立斥力点函数;并根据斥力点函数计算随着环境的改变,无人驾驶车斥力点的位置及计算斥力点对无人驾驶汽车的斥力大小。9. The method for local path planning of unmanned vehicles as claimed in claim 6, characterized in that: said repulsive force calculation step determines the boundaries of the two roads on which the vehicle will travel according to the real-time information of the environment provided by the environment sensing device To establish the repulsion point function; and according to the repulsion point function, calculate the position of the unmanned vehicle repulsion point and calculate the repulsion force of the repulsion point to the unmanned vehicle as the environment changes. 10.如权利要求6所述的用于无人驾驶汽车局部路径规划的方法,其特征在于:所述引力计算步骤通过偏差计算装置计算以新的边界线为道路的道路中心线与目前车辆所在道路的道路中心线间的横向距离,同时通过高斯隶属组合函数将道路内有无障碍物、障碍物距离无人驾驶汽车远近的信息实时反映在引力点函数上;并根据引力点函数计算随着环境的改变,无人驾驶车引力点的位置,及计算引力点对无人驾驶汽车的引力大小。10. The method for local path planning of unmanned vehicles as claimed in claim 6, characterized in that: said gravitational calculation step calculates the difference between the center line of the road and the current vehicle location with the new boundary line as the road by means of a deviation calculation device. At the same time, through the Gaussian membership combination function, the information of whether there are obstacles in the road and the distance between obstacles and unmanned vehicles is reflected in the gravitational point function in real time; Changes in the environment, the position of the gravitational point of the driverless car, and the calculation of the gravitational force of the gravitational point on the driverless car.
CN201110007154.XA 2011-01-13 2011-01-13 Device and method for local path planning of pilotless automobile Expired - Fee Related CN102591332B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110007154.XA CN102591332B (en) 2011-01-13 2011-01-13 Device and method for local path planning of pilotless automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110007154.XA CN102591332B (en) 2011-01-13 2011-01-13 Device and method for local path planning of pilotless automobile

Publications (2)

Publication Number Publication Date
CN102591332A true CN102591332A (en) 2012-07-18
CN102591332B CN102591332B (en) 2014-08-13

Family

ID=46480154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110007154.XA Expired - Fee Related CN102591332B (en) 2011-01-13 2011-01-13 Device and method for local path planning of pilotless automobile

Country Status (1)

Country Link
CN (1) CN102591332B (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929280A (en) * 2012-11-13 2013-02-13 朱绍明 Mobile robot separating visual positioning and navigation method and positioning and navigation system thereof
CN102955476A (en) * 2012-11-12 2013-03-06 宁波韵升股份有限公司 Automatic guided vehicle (AGV) path planning method based on radio frequency identification (RFID) technology
CN103335853A (en) * 2013-07-18 2013-10-02 中国科学院自动化研究所 Unmanned driving vehicle cognitive competence testing system and method
CN104943684A (en) * 2014-03-31 2015-09-30 比亚迪股份有限公司 Pilotless automobile control system and automobile with same
CN105185141A (en) * 2015-10-14 2015-12-23 浙江大学 Vehicle automatic driving guidance method based on gravitational field
CN105974917A (en) * 2016-05-11 2016-09-28 江苏大学 Vehicle obstacle-avoidance path planning research method based on novel manual potential field method
CN106017494A (en) * 2016-05-23 2016-10-12 福州华鹰重工机械有限公司 Path planning method based on apprenticeship learning and path planning device based on apprenticeship learning
CN106371439A (en) * 2016-09-13 2017-02-01 同济大学 Unified automatic driving transverse planning method and system
CN106843212A (en) * 2017-02-08 2017-06-13 重庆长安汽车股份有限公司 Automatic Pilot is based on the emergency vehicle auxiliary directional system and method for yaw angle amendment
CN106828493A (en) * 2017-02-20 2017-06-13 北理慧动(常熟)车辆科技有限公司 A kind of automatic driving vehicle layer-stepping longitudinal direction planning control system and method
CN107003671A (en) * 2014-09-17 2017-08-01 法雷奥开关和传感器有限责任公司 Positioning and mapping method and system
CN107121980A (en) * 2017-03-17 2017-09-01 北京理工大学 A kind of automatic driving vehicle paths planning method based on virtual constraint
CN107702716A (en) * 2017-08-31 2018-02-16 广州小鹏汽车科技有限公司 A kind of unmanned paths planning method, system and device
CN107767487A (en) * 2017-09-05 2018-03-06 百度在线网络技术(北京)有限公司 A kind of method and apparatus for determining data acquisition route
CN108153298A (en) * 2017-04-19 2018-06-12 中国北方车辆研究所 A kind of legged type robot traction control method and system based on improvement Artificial Potential Field
CN108268960A (en) * 2016-12-30 2018-07-10 乐视汽车(北京)有限公司 Driving locus optimization system
CN108445886A (en) * 2018-04-25 2018-08-24 北京联合大学 A kind of automatic driving vehicle lane-change method and system for planning based on Gauss equation
WO2018176593A1 (en) * 2017-03-31 2018-10-04 深圳市靖洲科技有限公司 Local obstacle avoidance path planning method for unmanned bicycle
WO2018205751A1 (en) * 2017-05-08 2018-11-15 深圳光启合众科技有限公司 Control method and apparatus for steering motion of robot, robot and storage medium
CN108944899A (en) * 2018-07-26 2018-12-07 南京威尔瑞智能科技有限公司 A kind of automatic driving vehicle steering disk control system and method based on fuzzy control
CN108983764A (en) * 2018-04-27 2018-12-11 榛硕(武汉)智能科技有限公司 Based on the unmanned control system of vehicle and automobile
JP2018203034A (en) * 2017-06-02 2018-12-27 本田技研工業株式会社 Travel track determination device and automatic driving device
CN109271857A (en) * 2018-08-10 2019-01-25 广州小鹏汽车科技有限公司 A kind of puppet lane line elimination method and device
CN109515437A (en) * 2018-09-10 2019-03-26 江苏大学 A kind of ACC control method for vehicle considering fore-aft vehicle
WO2019061616A1 (en) * 2017-09-29 2019-04-04 Huawei Technologies Co., Ltd. Impedance-based motion control for autonomous vehicles
CN109583416A (en) * 2018-12-11 2019-04-05 广州小鹏汽车科技有限公司 Pseudo- Lane detection method and system
CN109760687A (en) * 2017-11-08 2019-05-17 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN109886215A (en) * 2019-02-26 2019-06-14 常熟理工学院 Low-speed park unmanned vehicle cruise and emergency braking system based on machine vision
CN110007316A (en) * 2019-04-16 2019-07-12 吉林大学 An Active Steering Obstacle Avoidance System and Method Based on Lidar Pavement Information Recognition
WO2019140950A1 (en) * 2018-01-16 2019-07-25 华为技术有限公司 Vehicle positioning method and apparatus
CN110108292A (en) * 2019-06-12 2019-08-09 山东师范大学 Vehicle navigation path planing method, system, equipment and medium
CN110132279A (en) * 2016-12-02 2019-08-16 百度在线网络技术(北京)有限公司 The test method and device of local paths planning
CN110288847A (en) * 2019-06-28 2019-09-27 浙江吉利控股集团有限公司 An automatic driving decision-making method, device, system, storage medium and terminal
CN110333714A (en) * 2019-04-09 2019-10-15 武汉理工大学 A method and device for path planning of an unmanned vehicle
CN110356405A (en) * 2019-07-23 2019-10-22 桂林电子科技大学 Vehicle auxiliary travelling method, apparatus, computer equipment and readable storage medium storing program for executing
CN110530373A (en) * 2019-09-30 2019-12-03 山东大学 A kind of robot path planning method, controller and system
CN110862279A (en) * 2019-12-18 2020-03-06 华中农业大学 A crawler-type unmanned organic fertilizer turner based on lidar navigation
CN110908386A (en) * 2019-12-09 2020-03-24 中国人民解放军军事科学院国防科技创新研究院 Layered path planning method for unmanned vehicle
CN110908373A (en) * 2019-11-11 2020-03-24 南京航空航天大学 An Intelligent Vehicle Trajectory Planning Method Based on Improved Artificial Potential Field
WO2020057278A1 (en) * 2018-09-20 2020-03-26 北京京东尚科信息技术有限公司 Method and apparatus for planning path of unmanned device
CN111157996A (en) * 2020-01-06 2020-05-15 珠海丽亭智能科技有限公司 Parking robot driving safety detection method
CN111457931A (en) * 2019-01-21 2020-07-28 广州汽车集团股份有限公司 Method, device, system and storage medium for controlling local path re-planning of autonomous vehicle
CN111862604A (en) * 2020-07-20 2020-10-30 北京京东乾石科技有限公司 Unmanned vehicle control method and device, computer storage medium and electronic equipment
CN112180954A (en) * 2020-07-28 2021-01-05 北京理工大学 Unmanned aerial vehicle obstacle avoidance method based on artificial potential field
CN112644487A (en) * 2021-01-07 2021-04-13 广州小鹏自动驾驶科技有限公司 Automatic driving method and device
CN113084811A (en) * 2021-04-12 2021-07-09 贵州大学 Mechanical arm path planning method
CN113508064A (en) * 2019-01-22 2021-10-15 日产自动车株式会社 Vehicle travel control method and travel control device
CN113515125A (en) * 2021-07-05 2021-10-19 中国石油大学(华东) Unmanned vehicle full-working-condition obstacle avoidance control method and performance evaluation method
US20210347359A1 (en) * 2019-02-15 2021-11-11 Mitsubishi Electric Corporation Vehicle control device and vehicle control method
CN113654569A (en) * 2021-08-16 2021-11-16 江铃汽车股份有限公司 A path planning method, system and storage medium
CN113788014A (en) * 2021-10-09 2021-12-14 华东理工大学 A special vehicle avoidance method and system based on repulsion field model
CN114442634A (en) * 2022-01-30 2022-05-06 中国第一汽车股份有限公司 Vehicle path planning method, device, equipment and medium
CN115071687A (en) * 2022-06-29 2022-09-20 重庆长安汽车股份有限公司 Automatic driving safety side parking system and method
CN115158353A (en) * 2022-07-08 2022-10-11 东风柳州汽车有限公司 Automatic driving control method, device, equipment and storage medium
CN115179970A (en) * 2022-09-14 2022-10-14 毫末智行科技有限公司 Path planning method and device, electronic equipment and storage medium
CN115230729A (en) * 2021-04-25 2022-10-25 广州汽车集团股份有限公司 A kind of automatic driving obstacle avoidance method and system, storage medium
CN116339347A (en) * 2023-04-24 2023-06-27 广东工业大学 A method, device and equipment for unmanned vehicle operation path planning
CN116663939A (en) * 2023-07-31 2023-08-29 北京理工大学 Unmanned vehicle path planning scene and task complexity evaluation method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618938B2 (en) 2015-07-31 2017-04-11 Ford Global Technologies, Llc Field-based torque steering control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285686A (en) * 2008-05-29 2008-10-15 中国农业大学 Method and system for hierarchical positioning of agricultural machinery navigation
CN101576384A (en) * 2009-06-18 2009-11-11 北京航空航天大学 Indoor movable robot real-time navigation method based on visual information correction
CN101701818A (en) * 2009-11-05 2010-05-05 上海交通大学 Detection methods for distant obstacles
CN101866181A (en) * 2009-04-16 2010-10-20 中国农业大学 Navigation method for agricultural machinery, navigation device, and agricultural machinery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285686A (en) * 2008-05-29 2008-10-15 中国农业大学 Method and system for hierarchical positioning of agricultural machinery navigation
CN101866181A (en) * 2009-04-16 2010-10-20 中国农业大学 Navigation method for agricultural machinery, navigation device, and agricultural machinery
CN101576384A (en) * 2009-06-18 2009-11-11 北京航空航天大学 Indoor movable robot real-time navigation method based on visual information correction
CN101701818A (en) * 2009-11-05 2010-05-05 上海交通大学 Detection methods for distant obstacles

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955476A (en) * 2012-11-12 2013-03-06 宁波韵升股份有限公司 Automatic guided vehicle (AGV) path planning method based on radio frequency identification (RFID) technology
CN102929280A (en) * 2012-11-13 2013-02-13 朱绍明 Mobile robot separating visual positioning and navigation method and positioning and navigation system thereof
CN102929280B (en) * 2012-11-13 2015-07-01 朱绍明 Mobile robot separating visual positioning and navigation method and positioning and navigation system thereof
CN103335853A (en) * 2013-07-18 2013-10-02 中国科学院自动化研究所 Unmanned driving vehicle cognitive competence testing system and method
CN103335853B (en) * 2013-07-18 2015-09-16 中国科学院自动化研究所 A kind of automatic driving vehicle Cognitive Aptitude Test system and method
CN104943684A (en) * 2014-03-31 2015-09-30 比亚迪股份有限公司 Pilotless automobile control system and automobile with same
CN107003671B (en) * 2014-09-17 2021-04-16 法雷奥开关和传感器有限责任公司 Positioning and mapping method and system
CN107003671A (en) * 2014-09-17 2017-08-01 法雷奥开关和传感器有限责任公司 Positioning and mapping method and system
CN105185141A (en) * 2015-10-14 2015-12-23 浙江大学 Vehicle automatic driving guidance method based on gravitational field
CN105974917B (en) * 2016-05-11 2018-12-14 江苏大学 A kind of vehicle obstacle-avoidance path planning research method based on novel artificial potential field method
CN105974917A (en) * 2016-05-11 2016-09-28 江苏大学 Vehicle obstacle-avoidance path planning research method based on novel manual potential field method
CN106017494A (en) * 2016-05-23 2016-10-12 福州华鹰重工机械有限公司 Path planning method based on apprenticeship learning and path planning device based on apprenticeship learning
CN106371439A (en) * 2016-09-13 2017-02-01 同济大学 Unified automatic driving transverse planning method and system
CN106371439B (en) * 2016-09-13 2020-11-20 同济大学 A unified lateral planning method and system for autonomous driving
CN110132279B (en) * 2016-12-02 2021-07-27 百度在线网络技术(北京)有限公司 Testing method and device for local path planning
CN110132279A (en) * 2016-12-02 2019-08-16 百度在线网络技术(北京)有限公司 The test method and device of local paths planning
CN108268960A (en) * 2016-12-30 2018-07-10 乐视汽车(北京)有限公司 Driving locus optimization system
CN106843212A (en) * 2017-02-08 2017-06-13 重庆长安汽车股份有限公司 Automatic Pilot is based on the emergency vehicle auxiliary directional system and method for yaw angle amendment
CN106843212B (en) * 2017-02-08 2020-01-10 重庆长安汽车股份有限公司 Vehicle emergency auxiliary orientation system and method based on yaw angle correction for automatic driving
CN106828493A (en) * 2017-02-20 2017-06-13 北理慧动(常熟)车辆科技有限公司 A kind of automatic driving vehicle layer-stepping longitudinal direction planning control system and method
CN106828493B (en) * 2017-02-20 2019-03-29 北理慧动(常熟)车辆科技有限公司 A kind of automatic driving vehicle layer-stepping longitudinal direction planning control system and method
CN107121980A (en) * 2017-03-17 2017-09-01 北京理工大学 A kind of automatic driving vehicle paths planning method based on virtual constraint
CN107121980B (en) * 2017-03-17 2019-07-09 北京理工大学 A Virtual Constraint-Based Path Planning Method for Autonomous Driving Vehicles
WO2018176593A1 (en) * 2017-03-31 2018-10-04 深圳市靖洲科技有限公司 Local obstacle avoidance path planning method for unmanned bicycle
CN108153298B (en) * 2017-04-19 2022-08-09 中国北方车辆研究所 Foot type robot traction control method and system based on improved artificial potential field
CN108153298A (en) * 2017-04-19 2018-06-12 中国北方车辆研究所 A kind of legged type robot traction control method and system based on improvement Artificial Potential Field
CN108873875B (en) * 2017-05-08 2023-11-14 中国华电集团有限公司青海分公司 Robot steering motion control method and device, robot and storage medium
CN108873875A (en) * 2017-05-08 2018-11-23 深圳光启合众科技有限公司 Robot divertical motion control method and device, robot, storage medium
WO2018205751A1 (en) * 2017-05-08 2018-11-15 深圳光启合众科技有限公司 Control method and apparatus for steering motion of robot, robot and storage medium
US10775798B2 (en) 2017-06-02 2020-09-15 Honda Motor Co., Ltd. Running track determining device and automatic driving apparatus
JP2018203034A (en) * 2017-06-02 2018-12-27 本田技研工業株式会社 Travel track determination device and automatic driving device
US11460311B2 (en) 2017-08-31 2022-10-04 Guangzhou Xiaopeng Motors Technology Co., Ltd. Path planning method, system and device for autonomous driving
WO2019042295A1 (en) * 2017-08-31 2019-03-07 广州小鹏汽车科技有限公司 Path planning method, system, and device for autonomous driving
CN107702716A (en) * 2017-08-31 2018-02-16 广州小鹏汽车科技有限公司 A kind of unmanned paths planning method, system and device
CN107702716B (en) * 2017-08-31 2021-04-13 广州小鹏汽车科技有限公司 Unmanned driving path planning method, system and device
CN107767487A (en) * 2017-09-05 2018-03-06 百度在线网络技术(北京)有限公司 A kind of method and apparatus for determining data acquisition route
WO2019061616A1 (en) * 2017-09-29 2019-04-04 Huawei Technologies Co., Ltd. Impedance-based motion control for autonomous vehicles
US10928832B2 (en) 2017-09-29 2021-02-23 Huawei Technologies Co., Ltd. Impedance-based motion control for autonomous vehicles
CN109760687A (en) * 2017-11-08 2019-05-17 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN109760687B (en) * 2017-11-08 2022-03-22 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
WO2019140950A1 (en) * 2018-01-16 2019-07-25 华为技术有限公司 Vehicle positioning method and apparatus
CN108445886A (en) * 2018-04-25 2018-08-24 北京联合大学 A kind of automatic driving vehicle lane-change method and system for planning based on Gauss equation
CN108983764A (en) * 2018-04-27 2018-12-11 榛硕(武汉)智能科技有限公司 Based on the unmanned control system of vehicle and automobile
CN108944899A (en) * 2018-07-26 2018-12-07 南京威尔瑞智能科技有限公司 A kind of automatic driving vehicle steering disk control system and method based on fuzzy control
CN109271857A (en) * 2018-08-10 2019-01-25 广州小鹏汽车科技有限公司 A kind of puppet lane line elimination method and device
CN109515437A (en) * 2018-09-10 2019-03-26 江苏大学 A kind of ACC control method for vehicle considering fore-aft vehicle
US12001212B2 (en) 2018-09-20 2024-06-04 Beijing Jingdong Shangke Information Technology Co, Ltd. Path planning method and device for unmanned device
WO2020057278A1 (en) * 2018-09-20 2020-03-26 北京京东尚科信息技术有限公司 Method and apparatus for planning path of unmanned device
CN109583416A (en) * 2018-12-11 2019-04-05 广州小鹏汽车科技有限公司 Pseudo- Lane detection method and system
CN111457931A (en) * 2019-01-21 2020-07-28 广州汽车集团股份有限公司 Method, device, system and storage medium for controlling local path re-planning of autonomous vehicle
CN113508064A (en) * 2019-01-22 2021-10-15 日产自动车株式会社 Vehicle travel control method and travel control device
CN113508064B (en) * 2019-01-22 2022-09-16 日产自动车株式会社 Vehicle travel control method and travel control device
US20210347359A1 (en) * 2019-02-15 2021-11-11 Mitsubishi Electric Corporation Vehicle control device and vehicle control method
US12043254B2 (en) * 2019-02-15 2024-07-23 Mitsubishi Electric Corporation Vehicle control device and vehicle control method
CN109886215A (en) * 2019-02-26 2019-06-14 常熟理工学院 Low-speed park unmanned vehicle cruise and emergency braking system based on machine vision
CN110333714B (en) * 2019-04-09 2022-06-10 武汉理工大学 A method and device for path planning of an unmanned vehicle
CN110333714A (en) * 2019-04-09 2019-10-15 武汉理工大学 A method and device for path planning of an unmanned vehicle
CN110007316A (en) * 2019-04-16 2019-07-12 吉林大学 An Active Steering Obstacle Avoidance System and Method Based on Lidar Pavement Information Recognition
CN110108292A (en) * 2019-06-12 2019-08-09 山东师范大学 Vehicle navigation path planing method, system, equipment and medium
CN110288847A (en) * 2019-06-28 2019-09-27 浙江吉利控股集团有限公司 An automatic driving decision-making method, device, system, storage medium and terminal
CN110356405A (en) * 2019-07-23 2019-10-22 桂林电子科技大学 Vehicle auxiliary travelling method, apparatus, computer equipment and readable storage medium storing program for executing
CN110530373A (en) * 2019-09-30 2019-12-03 山东大学 A kind of robot path planning method, controller and system
CN110908373A (en) * 2019-11-11 2020-03-24 南京航空航天大学 An Intelligent Vehicle Trajectory Planning Method Based on Improved Artificial Potential Field
CN110908386A (en) * 2019-12-09 2020-03-24 中国人民解放军军事科学院国防科技创新研究院 Layered path planning method for unmanned vehicle
CN110862279B (en) * 2019-12-18 2021-11-16 华中农业大学 Crawler-type unmanned organic fertilizer turner based on laser radar navigation
CN110862279A (en) * 2019-12-18 2020-03-06 华中农业大学 A crawler-type unmanned organic fertilizer turner based on lidar navigation
CN111157996A (en) * 2020-01-06 2020-05-15 珠海丽亭智能科技有限公司 Parking robot driving safety detection method
CN111157996B (en) * 2020-01-06 2022-06-14 珠海丽亭智能科技有限公司 A kind of parking robot driving safety detection method
CN111862604A (en) * 2020-07-20 2020-10-30 北京京东乾石科技有限公司 Unmanned vehicle control method and device, computer storage medium and electronic equipment
CN111862604B (en) * 2020-07-20 2022-03-04 北京京东乾石科技有限公司 Unmanned vehicle control method and device, computer storage medium and electronic equipment
CN112180954A (en) * 2020-07-28 2021-01-05 北京理工大学 Unmanned aerial vehicle obstacle avoidance method based on artificial potential field
CN112644487A (en) * 2021-01-07 2021-04-13 广州小鹏自动驾驶科技有限公司 Automatic driving method and device
CN113084811A (en) * 2021-04-12 2021-07-09 贵州大学 Mechanical arm path planning method
CN115230729A (en) * 2021-04-25 2022-10-25 广州汽车集团股份有限公司 A kind of automatic driving obstacle avoidance method and system, storage medium
CN113515125A (en) * 2021-07-05 2021-10-19 中国石油大学(华东) Unmanned vehicle full-working-condition obstacle avoidance control method and performance evaluation method
CN113654569A (en) * 2021-08-16 2021-11-16 江铃汽车股份有限公司 A path planning method, system and storage medium
CN113788014B (en) * 2021-10-09 2023-01-24 华东理工大学 Special vehicle avoidance method and system based on repulsive force field model
CN113788014A (en) * 2021-10-09 2021-12-14 华东理工大学 A special vehicle avoidance method and system based on repulsion field model
CN114442634A (en) * 2022-01-30 2022-05-06 中国第一汽车股份有限公司 Vehicle path planning method, device, equipment and medium
CN115071687A (en) * 2022-06-29 2022-09-20 重庆长安汽车股份有限公司 Automatic driving safety side parking system and method
CN115158353A (en) * 2022-07-08 2022-10-11 东风柳州汽车有限公司 Automatic driving control method, device, equipment and storage medium
CN115179970A (en) * 2022-09-14 2022-10-14 毫末智行科技有限公司 Path planning method and device, electronic equipment and storage medium
CN115179970B (en) * 2022-09-14 2022-11-29 毫末智行科技有限公司 Path planning method and device, electronic equipment and storage medium
CN116339347A (en) * 2023-04-24 2023-06-27 广东工业大学 A method, device and equipment for unmanned vehicle operation path planning
CN116339347B (en) * 2023-04-24 2023-10-31 广东工业大学 Unmanned vehicle running path planning method, device and equipment
CN116663939A (en) * 2023-07-31 2023-08-29 北京理工大学 Unmanned vehicle path planning scene and task complexity evaluation method and system
CN116663939B (en) * 2023-07-31 2023-10-17 北京理工大学 Unmanned vehicle path planning scene and task complexity evaluation method and system

Also Published As

Publication number Publication date
CN102591332B (en) 2014-08-13

Similar Documents

Publication Publication Date Title
CN102591332B (en) Device and method for local path planning of pilotless automobile
CN109375632B (en) Real-time trajectory planning method for automatic driving vehicle
Chen et al. Lane change path planning based on piecewise bezier curve for autonomous vehicle
CN101837781B (en) Model-Based Predictive Control of Control Systems for Automatic Lane Alignment or Lane Changing
CN102495631B (en) Intelligent control method of driverless vehicle tracking desired trajectory
CN104571112B (en) Pilotless automobile lateral control method based on turning curvature estimation
CN112130559A (en) Indoor pedestrian following and obstacle avoiding method based on UWB and laser radar
CN114829221A (en) Follow leader lateral controller based on vision
CN107264531A (en) The autonomous lane-change of intelligent vehicle is overtaken other vehicles motion planning method in a kind of semi-structure environment
CN110036353A (en) For the self-adaptation control method and system in the surface car of trace, especially in automatic Pilot scene
CN104537834A (en) Intersection identification and intersection trajectory planning method for intelligent vehicle in urban road running process
Li et al. A practical trajectory planning framework for autonomous ground vehicles driving in urban environments
Li et al. A sampling-based local trajectory planner for autonomous driving along a reference path
CN112577506B (en) Automatic driving local path planning method and system
CN111857121B (en) Walking obstacle avoidance method and system for patrol robot based on inertial navigation and laser radar
CN111696339A (en) Car following control method and system for automatic driving fleet and car
CN114993310B (en) Automatic positioning method for intelligent pile driver
CN114889643A (en) A three-element autonomous obstacle avoidance method for moving obstacles
CN107992039A (en) A kind of method for planning track based on flow field under dynamic environment
Bienemann et al. Model predictive control for autonomous vehicle following
CN112339753A (en) Lane keeping auxiliary system based on laser radar positioning technology
Zhu et al. Trajectory planning algorithm using gauss pseudo-spectral method based on vehicle-infrastructure cooperative system
Li et al. Path-following control for self-driving Forklifts based on cascade disturbance rejection with coordinates reconstruction
Hu et al. Decision-making system based on finite state machine for low-speed autonomous vehicles in the park
Zhang et al. Trajectory planning and tracking for autonomous vehicle considering human driver personality

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140813

Termination date: 20220113

CF01 Termination of patent right due to non-payment of annual fee