CN102589435A - 噪声环境下激光束中心高效精确检测方法 - Google Patents

噪声环境下激光束中心高效精确检测方法 Download PDF

Info

Publication number
CN102589435A
CN102589435A CN2012100529800A CN201210052980A CN102589435A CN 102589435 A CN102589435 A CN 102589435A CN 2012100529800 A CN2012100529800 A CN 2012100529800A CN 201210052980 A CN201210052980 A CN 201210052980A CN 102589435 A CN102589435 A CN 102589435A
Authority
CN
China
Prior art keywords
spot
laser beam
image
edge
beam center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100529800A
Other languages
English (en)
Other versions
CN102589435B (zh
Inventor
谭建平
王宪
全凌云
文跃兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN 201210052980 priority Critical patent/CN102589435B/zh
Publication of CN102589435A publication Critical patent/CN102589435A/zh
Application granted granted Critical
Publication of CN102589435B publication Critical patent/CN102589435B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种噪声环境下激光束中心高效精确检测方法,属于机器视觉在线检测技术领域,该方法为:采用高斯函数对激光束图像进行平滑滤波,部分去除图像噪声;对图像进行直方图均衡化处理,提高图像对比度;通过边缘检测实现图像二值化;判断检测到的边缘是否符合光轮廓斑特征,剔除不符合的边缘;通过Hough圆变换确定光斑区域;在光斑区域内通过最小二乘法椭圆拟合得到亚像素精度的激光束中心坐标,该方法可在较强干扰下实现激光束中心高效精确定位,鲁棒性好,适应性强。

Description

噪声环境下激光束中心高效精确检测方法
技术领域
本发明涉及机器视觉在线检测技术领域,特别是一种工业环境下激光束中心高精度检测方法。
背景技术
机器视觉技术具有非接触性、连续性、经济性、灵活性和集成性等优点,在工业测试与在线检测领域具有广泛的应用前景。在基于机器视觉原理的激光基准工业检测中,通过机器视觉方法稳定准确的求取激光束中心是其中一个关键步骤。
传统的激光束中心定位方法主要有模版法、矩估计法、重心法、Hough变换法以及曲线拟合法等,这些算法都有各自的使用局限。其中,模版法和矩估计法存在计算量大,速度慢的缺点;重心法要求光斑图像分布比较均匀,否则会产生较大误差;Hough变换法需要逐点投票、记录,所用时间较多,而且精度也不够高;曲线拟合法虽然可以达到亚像素精度,但它抗干扰性能差,易受干扰点或噪声的影响。
针对传统方法的问题,国内外诸多单位进行了深入研究,做出了相应改进,出现了许多改进的激光束中心定位方法,这些方法均在一定程度上提高了中心定位检测的性能。但是,在工业现场中,环境背景复杂,且存在噪声、灰尘等干扰因素,另外,在线检测还要求算法具有高的实时性和可靠性,这些改进的中心定位方法也都还不能满足工业在线检测的要求。寻求高鲁棒性、实时性和广泛适用性的激光束中心定位算法已成为的迫切要求解决的问题。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种噪声环境下激光束中心高效精确检测方法,在激光束质量下降、检测装置密封性出现问题的情况下,有效地完成激光束中心高精度检测,降低对激光发射器以及检测装置质量的要求,节约成本,扩大激光束中心检测方法的适用范围,提高检测方法的实时性和鲁棒性。
为解决上述技术问题,本发明所采用的技术方案是:一种噪声环境下激光束中心高效精确检测方法,该方法包括以下步骤:
(1)读取工业相机采集到的光斑图像;
(2)图像预处理:采用高斯函数对光斑图像进行平滑滤波,部分去除图像噪声;对图像进行直方图均衡化处理,提高图像对比度;
(3)光斑轮廓检测:采用Canny边缘检测得到边缘二值图像,对二值图像进行边缘筛选,判断检测到的边缘是否符合光轮廓斑特征,剔除不符合光斑轮廓特征的边缘;
(4)中心坐标定位:采用Hough圆变换得到初略的光斑中心和半径,依据其结果定位光斑区域,在光斑区域内采用最小二乘法椭圆拟合实现中心坐标亚像素级精确定位。
图像预处理中,针对工业现场噪声的干扰,采用高斯函数对图像进行平滑滤波,部分去除图像噪声;针对在线检测系统长时间工作可能出现的图像对比度下降,通过图像的直方图均衡化来提高图像对比度。
光斑轮廓检测中,为了抑制光斑内部纹理以及环境中灰尘和锯屑对检测精度的影响,先通过Canny边缘检测得到边缘二值图像,再剔除不符合光斑轮廓特征的边缘,剔除原理为,对每一个轮廓进行长度判断,若其与理想光斑周长相近,则保留,否则剔除。设理想的光斑半径为R像素,边缘包含的像素点数为S,保留边缘的判断条件为:
2×π×R×Z1≤S≤2×π×R×Z2
Z1和Z2分别为最大值和最小值约束系数,0.35≤Z1≤0.7,1.2≤Z2≤1.5。
所述中心坐标定位步骤中,为了排除长期使用难免会造成检测装置封装不严,产生漏光或漫反射对检测精度的影响,采用先定位光斑区域,再进行精确定位的方法完成检测,先依据抗干扰能力很强的Hough圆变换计算结果确定光斑所在区域,在区域内通过最小二乘法椭圆拟合实现激光束中心精确定位。
为了提高检测的实时性,在使用Hough变换计算光斑粗略位置时,加大参数空间步长取值;另外,依据理想状态下激光光斑大小限制半径参数的取值范围,设理想的光斑半径为R像素,Hough变换圆心半径参数D取值范围限定为:
R×t1≤D≤R×t2
上式中,t1和t2分别为最小和最大半径估值系数,0.6≤t1≤0.9,11≤t2≤1.4。依据Hough圆变换计算结果确定的光斑区域为正方型区域,参见附图2,确定的方法为:设依据Hough变换得到光斑中心坐标为(a0,b0),半径为r0,并设置一个余量常数w,3≤W≤15,则光斑所在区域四个顶点A、B、C、D坐标分别定为:A(a0-r0-w,b0+r0+w)、B(a0+r0+w,b0+r0+w)、C(a0+r0+w,b0-r0-w)、D(a0-r0-w),b0-r0-w)。
考虑到激光光斑远场分布呈椭圆型,最后,在光斑区域内通过最小二乘法椭圆拟合实现激光束中心亚像素精确定位。在平面坐标系中,椭圆可用如下方程表示:
Ax2+Bxy+Cy2+Dx+Ey+F=0
应用上述方程对光斑区域内边缘检测后的离散点进行最小二乘处理,可得目标函数:
f ( A , B , C , D , E , F ) = Σ i = 1 n ( Ax i 2 + Bx i y i + Cy i 2 + Dx i + Ey i + F ) 2
为了避免零解,并将解的任何整数倍都视为对同一椭圆的表述,对参数做一些限制,约束条件设为:
A+C=1
各系数按照目标函数取最小值准则确定,由极值原理可知,欲使函数f值为最小,必有:
∂ f ∂ B = ∂ f ∂ C = ∂ f ∂ D = ∂ f ∂ E = ∂ f ∂ F = 0
由上式可得到一个线性方程组,结合约束条件可求解得到方程各系数的值,椭圆中心(xc,yc)坐标为:
x c = BE - 2 CD 4 AC - B 2 y c = BD - 2 AE 4 AC - B 2
本发明融合了机器视觉和精密测试技术的最新研究进展,与现有技术相比,本发明有以下优势:
1)在激光束质量下降、检测装置密封性出现问题的情况下,本发明的方法仍然能够有效地完成激光束中心高精度检测,降低了对激光发射器以及检测装置质量的要求,节约了成本。
2)能有效地抑制工业环境中灰尘及锯屑对检测精度的影响,扩大了激光束中心检测方法的适用范围。
3)本发明的检测方法具有良好的实时性和鲁棒性以及较高的检测精度,在存在各种干扰情况下,该方法检测精度可达0.15像素,平均单次检测时间小于50ms。
4)本方法还可推广到采用圆(椭圆)标记的其他机器视觉检测系统。
附图说明
图1是本发明方法流程图;
图2为依据Hough圆变换检测结果确定光斑所在区域过程示意图;
图3为根据本发明检测方法的一个实施例中光斑轮廓检测过程示意图;(a)是采集到的原始图像;(b)是通过Canny边缘检测得到二值图像;(c)是剔除不符合光斑轮廓特征边缘后的二值图像。
图4为根据本发明检测方法的一个实施例中光斑中心坐标检测过程示意图;(a)是成像装置存在漏光现象时采集到的原始图像,并通过程序添加了椒盐噪声;(b)是确定的光斑所在区域;(c)是在原始图像上对最终检测结果(光束中心坐标、椭圆长短轴长度、主轴和图像x轴角度)重绘图;
图5为验证本发明检测方法一实施例的实验系统示意图;
其中:
1:光学实验台;2:激光发射装置;3:激光束;4:接收装置;5:精密运动平台。心定位过程参见附图4。
具体实施方式如图1所示,本发明一实施例检测方法过程如下:在读取光斑图像后,首先对原始图像进行预处理,包括:采用高斯函数对图像进行平滑滤波,部分去除图像噪声;通过图像的直方图均衡化来提高图像对比度;检测光斑轮廓,该步骤先通过Canny边缘检测得到边缘二值图像,再剔除不符合光斑轮廓特征的边缘,剔除原理为,对每一个轮廓进行长度判断,若其与理想光斑周长相近,则保留,否则剔除,检测光斑轮廓过程参见附图3;最后,定位激光束中心坐标,该阶段采用先定位光斑区域,再进行精确定位的方法完成检测,先依据抗干扰能力很强的Hough圆变换计算结果确定光斑所在区域,在区域内通过最小二乘法椭圆拟合实现激光束中心精确定位。依据Hough圆变换计算结果确定光斑所在区域的方法参见附图2,设依据Hough变换得到光斑中心坐标为(a0,b0),半径为r0,并设置1余量常数w,则光斑所在区域四个顶点坐标定为:A(a0-r0-w,b0+r0+w)、B(a0+r0+w,b0+r0+w)、C(a0+r0+w,b0-r0-w)、D(a0-r0-w),b0-r0-w)。本发明的激光束中心定位过程参见附图4。
利用本发明的方法,在图5所示的实验系统上,过光束相对位移检测来验证算法的定位精度。即,把装置第一次采集到的光斑中心位置设为基准参考点,通过精密位移平台每在水平和竖直方向把接收装置各移动1mm采集一次图像,对光斑相对位移进行检测。另外,每幅原图像始数据均引入了与抗干扰能力实验中相同的外部干扰。
实验过程中,通过物/象比例尺标定得到单像素大小为0.3431mm×0.3431mm。为进行算法比较,对采集到的原始图像数据,分别采用三种方法进行光斑中心定位计算:方法一,标准Hough变换;方法二,把本发明方法的亚像素定位步骤改为重心法;方法三,本发明方法。表1为三种方法的位移测量偏差及时耗数据。
表1三种方法位移测量偏差及耗时
Figure BDA0000140197050000071
Figure BDA0000140197050000081
由表1可见,标准Hough变换位移检测精度和实时性均最差;若采用本发明方法亚像素定位步骤改为重心法,与标准Hough变换相比也能显著提高检测精度和实时性,但是其效果不如本发明方法;本发明的方法精度及实时性均是最好的,平均单次检测时间小于50ms,水平和竖直平均位移测量偏差均在0.05mm左右,换算成像素,则定位精度达0.15像素。
本发明的检测方法具有良好的实时性和鲁棒性以及较高的检测精度,适用于噪声环境的激光束中心高精度在线检测。对于采用圆(椭圆)标记的其他机器视觉检测系统,本发明也完全适用。

Claims (4)

1.一种噪声环境下激光束中心高效精确检测方法,其特征在于,该方法包括以下步骤:
(1)读取工业相机采集到的光斑图像;
(2)图像预处理:采用高斯函数对光斑图像进行平滑滤波,部分去除图像噪声;对图像进行直方图均衡化处理,提高图像对比度;
(3)光斑轮廓检测:采用Canny边缘检测得到边缘二值图像,对二值图像进行边缘筛选,判断检测到的边缘是否符合光轮廓斑特征,剔除不符合光斑轮廓特征的边缘;
(4)中心坐标定位:采用Hough圆变换得到初略的光斑中心和半径,依据其结果定位光斑区域,在光斑区域内采用最小二乘法椭圆拟合实现中心坐标亚像素级精确定位。
2.根据权利要求1所述的噪声环境下激光束中心高效精确检测方法,其特征在于,所述步骤(3)中,边缘筛选的过程为:对每一个轮廓进行长度判断,若其与理想光斑周长相近,则保留,否则剔除,保留边缘的判断条件为:2×π×R×Z1≤S≤2×π×R×Z2,其中R为理想光斑半径的像素点数,S为边缘包含的像素点数,Z1和Z2分别为最大值和最小值约束系数,0.35≤Z1≤0.7,1.2≤Z2≤1.5。
3.根据权利要求1所述的噪声环境下激光束中心高效精确检测方法,其特征在于,所述Hough圆变换的圆心半径参数D取值范围为:R×t1≤D≤R×t2,其中R为理想光斑半径的像素点数,t1和t2分别为最小和最大半径估值系数,0.6≤t1≤0.9,11≤t2≤1.4。
4.根据权利要求1所述的噪声环境下激光束中心高效精确检测方法,其特征在于,所述步骤(4)中,所述光斑区域为正方形区域,采用Hough圆变换定位光斑区域的方法为:设依据Hough圆变换得到光斑中心坐标为(a0,b0),半径为r0,并设置一个余量常数w,3≤W≤15,则光斑所在区域四个顶点A、B、C、D的坐标分别定为:A(a0-r0-w,b0+r0+w)、B(a0+r0+w,b0+r0+w)、C(a0+r0+w,b0-r0-w)、D(a0-r0-w),b0-r0-w)。
CN 201210052980 2012-03-02 2012-03-02 噪声环境下激光束中心高效精确检测方法 Expired - Fee Related CN102589435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210052980 CN102589435B (zh) 2012-03-02 2012-03-02 噪声环境下激光束中心高效精确检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210052980 CN102589435B (zh) 2012-03-02 2012-03-02 噪声环境下激光束中心高效精确检测方法

Publications (2)

Publication Number Publication Date
CN102589435A true CN102589435A (zh) 2012-07-18
CN102589435B CN102589435B (zh) 2013-10-23

Family

ID=46478429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210052980 Expired - Fee Related CN102589435B (zh) 2012-03-02 2012-03-02 噪声环境下激光束中心高效精确检测方法

Country Status (1)

Country Link
CN (1) CN102589435B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103150730A (zh) * 2013-03-07 2013-06-12 南京航空航天大学 一种基于图像的圆形小目标精确检测方法
CN103177426A (zh) * 2013-02-27 2013-06-26 中南大学 一种基于形态学的强干扰激光边缘图像修复方法
CN104463876A (zh) * 2014-12-12 2015-03-25 湖南科技大学 一种基于自适应滤波的复杂背景下图像多圆快速检测方法
CN105334231A (zh) * 2015-11-12 2016-02-17 湖北工业大学 Fpc补强片贴片质量视觉检测方法及检测系统
CN106169079A (zh) * 2016-06-30 2016-11-30 浙江工业大学 一种基于计算机视觉的压力容器数量识别方法
CN106954325A (zh) * 2017-04-27 2017-07-14 武汉理工大学 一种基于图像识别的舞台追光灯控制方法
CN107478174A (zh) * 2017-07-12 2017-12-15 江南大学 一种针对暗弱信号的夏克哈特曼探测器质心探测方法
CN107734258A (zh) * 2017-10-26 2018-02-23 杨晓艳 一种光斑中心提取方法、装置、设备和计算机可读存储介质
CN108257171A (zh) * 2018-01-09 2018-07-06 江苏科技大学 基于光视觉的汽车雷达装配孔径检测方法
CN109697711A (zh) * 2017-10-23 2019-04-30 中国石油化工股份有限公司 发动机气门密封带的检测方法
CN109697712A (zh) * 2017-10-23 2019-04-30 中国石油化工股份有限公司 发动机气门密封带的检测方法及设备
CN110070537A (zh) * 2019-04-25 2019-07-30 清华大学 静态图像颗粒的粒度与球形度的智能识别方法和装置
CN110168310A (zh) * 2017-01-16 2019-08-23 索尼公司 光检测方法、光检测装置和程序
CN110533675A (zh) * 2019-08-26 2019-12-03 大连理工大学 一种激光条纹遮挡噪声滤除及补偿方法
CN110969656A (zh) * 2019-12-10 2020-04-07 长春精仪光电技术有限公司 一种基于机载设备激光光束光斑大小的检测方法
CN111044990A (zh) * 2018-10-11 2020-04-21 北京北科天绘科技有限公司 机载激光雷达光束指向标定方法、系统及激光光斑探测器
CN112269228A (zh) * 2020-10-28 2021-01-26 惠州皓赛技术有限公司 一种视觉定位光适配器矫正方法
CN112344905A (zh) * 2020-10-28 2021-02-09 孝感华中精密仪器有限公司 一种路基沉降检测装置以及延长其电池更换周期的方法
CN112698380A (zh) * 2020-12-16 2021-04-23 南京大学 一种适用于强背景噪声下低能质子束的束流截面处理方法
CN112816187A (zh) * 2021-01-06 2021-05-18 北京工业大学 一种激光光斑的质量判定方法
CN113793309A (zh) * 2021-08-27 2021-12-14 西北工业大学 一种基于形态学特征的亚像素级椭圆检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398175B1 (en) * 1999-12-29 2002-06-04 Apache Technologies, Inc. Method and apparatus for providing a laser detector clamp apparatus with reversible jaw adapter
CN101219609A (zh) * 2006-12-26 2008-07-16 株式会社理光 图像处理方法及图像处理装置
CN102261912A (zh) * 2010-04-29 2011-11-30 施塔比拉-测量工具古斯塔夫乌尔里希公司 用于检测激光束的装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398175B1 (en) * 1999-12-29 2002-06-04 Apache Technologies, Inc. Method and apparatus for providing a laser detector clamp apparatus with reversible jaw adapter
CN101219609A (zh) * 2006-12-26 2008-07-16 株式会社理光 图像处理方法及图像处理装置
CN102261912A (zh) * 2010-04-29 2011-11-30 施塔比拉-测量工具古斯塔夫乌尔里希公司 用于检测激光束的装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张赛楠: "图像识别在激光焊接定位系统中的研究与应用", 《中国优秀硕士学位论文全文数据库》 *
江晓: "图像测量技术及其应用研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177426B (zh) * 2013-02-27 2015-06-24 中南大学 一种基于形态学的强干扰激光边缘图像修复方法
CN103177426A (zh) * 2013-02-27 2013-06-26 中南大学 一种基于形态学的强干扰激光边缘图像修复方法
CN103150730A (zh) * 2013-03-07 2013-06-12 南京航空航天大学 一种基于图像的圆形小目标精确检测方法
CN104463876B (zh) * 2014-12-12 2017-05-03 湖南科技大学 一种基于自适应滤波的复杂背景下图像多圆快速检测方法
CN104463876A (zh) * 2014-12-12 2015-03-25 湖南科技大学 一种基于自适应滤波的复杂背景下图像多圆快速检测方法
CN105334231A (zh) * 2015-11-12 2016-02-17 湖北工业大学 Fpc补强片贴片质量视觉检测方法及检测系统
CN105334231B (zh) * 2015-11-12 2018-01-12 湖北工业大学 Fpc补强片贴片质量视觉检测方法及检测系统
CN106169079A (zh) * 2016-06-30 2016-11-30 浙江工业大学 一种基于计算机视觉的压力容器数量识别方法
US11054247B2 (en) 2017-01-16 2021-07-06 Sony Corporation Photodetection method and photodetection apparatus
CN110168310A (zh) * 2017-01-16 2019-08-23 索尼公司 光检测方法、光检测装置和程序
CN106954325A (zh) * 2017-04-27 2017-07-14 武汉理工大学 一种基于图像识别的舞台追光灯控制方法
CN106954325B (zh) * 2017-04-27 2019-01-29 武汉理工大学 一种基于图像识别的舞台追光灯控制方法
CN107478174A (zh) * 2017-07-12 2017-12-15 江南大学 一种针对暗弱信号的夏克哈特曼探测器质心探测方法
CN109697712A (zh) * 2017-10-23 2019-04-30 中国石油化工股份有限公司 发动机气门密封带的检测方法及设备
CN109697711A (zh) * 2017-10-23 2019-04-30 中国石油化工股份有限公司 发动机气门密封带的检测方法
CN109697711B (zh) * 2017-10-23 2022-01-04 中国石油化工股份有限公司 发动机气门密封带的检测方法
CN107734258A (zh) * 2017-10-26 2018-02-23 杨晓艳 一种光斑中心提取方法、装置、设备和计算机可读存储介质
CN108257171A (zh) * 2018-01-09 2018-07-06 江苏科技大学 基于光视觉的汽车雷达装配孔径检测方法
CN111044990A (zh) * 2018-10-11 2020-04-21 北京北科天绘科技有限公司 机载激光雷达光束指向标定方法、系统及激光光斑探测器
CN110070537A (zh) * 2019-04-25 2019-07-30 清华大学 静态图像颗粒的粒度与球形度的智能识别方法和装置
CN110533675A (zh) * 2019-08-26 2019-12-03 大连理工大学 一种激光条纹遮挡噪声滤除及补偿方法
CN110533675B (zh) * 2019-08-26 2021-01-19 大连理工大学 一种激光条纹遮挡噪声滤除及补偿方法
CN110969656A (zh) * 2019-12-10 2020-04-07 长春精仪光电技术有限公司 一种基于机载设备激光光束光斑大小的检测方法
CN110969656B (zh) * 2019-12-10 2023-05-12 长春精仪光电技术有限公司 一种基于机载设备激光光束光斑大小的检测方法
CN112344905A (zh) * 2020-10-28 2021-02-09 孝感华中精密仪器有限公司 一种路基沉降检测装置以及延长其电池更换周期的方法
CN112269228A (zh) * 2020-10-28 2021-01-26 惠州皓赛技术有限公司 一种视觉定位光适配器矫正方法
CN112698380A (zh) * 2020-12-16 2021-04-23 南京大学 一种适用于强背景噪声下低能质子束的束流截面处理方法
CN112816187A (zh) * 2021-01-06 2021-05-18 北京工业大学 一种激光光斑的质量判定方法
CN113793309A (zh) * 2021-08-27 2021-12-14 西北工业大学 一种基于形态学特征的亚像素级椭圆检测方法
CN113793309B (zh) * 2021-08-27 2024-04-09 西北工业大学 一种基于形态学特征的亚像素级椭圆检测方法

Also Published As

Publication number Publication date
CN102589435B (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
CN102589435B (zh) 噪声环境下激光束中心高效精确检测方法
CN101526484B (zh) 基于嵌入式机器视觉的轴承缺陷检测方法
CN107341802B (zh) 一种基于曲率与灰度复合的角点亚像素定位方法
CN103292701A (zh) 基于机器视觉的精密器件在线尺寸测量方法
CN105160652A (zh) 基于计算机视觉的手机外壳检验装置与方法
CN110473165A (zh) 一种电路板焊接质量检测方法及装置
CN105865344A (zh) 一种基于机器视觉的工件尺寸测量方法和装置
CN113074656B (zh) 工件孔洞测量方法
CN114577131A (zh) 一种基于3d结构光相机的车身间隙检测方法及系统
CN116402792A (zh) 一种基于三维点云的空间孔位对接方法
CN110426395B (zh) 一种太阳能el电池硅片表面检测方法及装置
CN105354816A (zh) 一种电子元件定位方法及装置
CN114419140A (zh) 一种轨道激光测量装置光斑中心的定位算法
CN111815580B (zh) 一种图像边缘识别方法及小模数齿轮模数检测方法
CN117218062A (zh) 一种缺陷检测方法、装置、电子设备和存储介质
CN116681912A (zh) 铁路道岔的轨距检测方法及装置
CN115575407A (zh) 一种应用于轨道与隧道的检测方法
CN116612461A (zh) 一种基于目标检测的指针式仪表全过程自动读数方法
CN115930879A (zh) 工件的轮廓检测装置、方法、服务器及存储介质
CN110068279B (zh) 一种基于点云数据的预制构件平面圆孔提取方法
CN110021027B (zh) 一种基于双目视觉的切边点计算方法
CN109855551B (zh) 蓝牙耳机制片自动检测方法、电子设备及存储介质
CN109084696B (zh) 一种基于结构光视觉成像系统的弹簧节距测量方法
CN110108209A (zh) 小型多孔零件的测量方法及系统
CN116423049B (zh) 一种补焊位置确定方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131023

CF01 Termination of patent right due to non-payment of annual fee