电子耳蜗宽动态范围压缩处理信号的言语处理器和方法
技术领域
本发明涉及电子耳蜗技术领域,特别是指一种电子耳蜗宽动态范围压缩处理信号的言语处理器和方法。
背景技术
人的耳蜗毛细胞是接收声音的感觉细胞。当耳蜗毛细胞损伤严重时,就会出现严重的听力损伤。电子耳蜗就是替代已损伤毛细胞,通过电刺激听觉神经重新获得声音信号的一种电子装置。图1显示的是电子耳蜗的结构示意图。电子耳蜗由体外机部件和植入体部件两部分组成,体外机部件主要包括传声器(如麦克风等)、言语处理器和发射线圈,植入体部件主要包括接收线圈、刺激器及多通道电极阵列组成。
在系统连接正常的情况下,麦克风接收声信号,通过言语处理器,将声信号进行分析处理并编码,通过头件(发射线圈)透过皮肤传送到植入体部件的接收线圈,经过刺激器的解码处理后,产生相应频率及电流强度的脉冲信号并传送到各个刺激电极。通过电极刺激听神经,将脉冲信号传到听觉中枢从而为使用者产生听觉。
一个正常人听觉系统的听力动态范围为120dB,有多大200级的可辨声阶。相比之下,一个电子耳蜗使用者一般只有10-20dB的听力动态范围和20级可辨声阶。设计电子耳蜗言语处理器时,一个重要的因素是从声音幅度到电流幅度的适当转换。耳蜗植入者的刺激阈值到舒适响度之间的动态范围很窄,舒适响度的水平在阈值水平的3倍到30倍之间。在声刺激听觉中,声音响度是声音强度的幂函数,而在电刺激听觉中,响度更接近于电流强度的指数函数。
在当前的电子耳蜗言语处理器中,应用最广的是连续间隔采样CIS(continuous-interleaved-sampling),它是将各通道的信号经过整流器和低通滤波器来提取包络信息,或者通过快速傅里叶变换FFT(fast-fourier-transformation)计算频谱能量的方法提取包络信息。提取的包络信息经过对数压缩以适应电刺激较窄的动态范围,但是这些处理中信号的输入动态范围完全由包络提取的结果确定,这样的电子耳蜗言语处理器对信号的处理效率不高,语言识别率不好,从而影响使用者听力。
发明内容
有鉴于此,本发明的目的在于提出一种电子耳蜗宽动态范围压缩处理信号的言语处理器和方法,增强电子耳蜗言语处理器信号处理能力和使用者可感知范围内信号能量。
基于上述目的本发明提供的一种电子耳蜗宽动态范围压缩处理信号的言语处理器,包括处理单元和压缩单元,其中:
所述的处理单元,用于对传送的声信号由分频模块进行预加重和分频处理,并将处理的结果合并为M个通道;
所述的压缩单元,用于对处理单元传送的声信号根据预先测量电子耳蜗植入者M个通道的舒适阈值或感知阈值参数,通过声-电压缩函数,计算电刺激感知阈值对应的声信号强度或舒适阈值对应的声信号强度参数,并且以此参数为拐点,根据频谱包络的宽动态范围压缩曲线,计算每个通道压缩后的声强,对宽动态压缩后的输出声强进行声-电刺激压缩并输出。
可选的,所述的分频模块采用通过高通滤波,对低于12kHZ的信号做每十倍频程有6dB衰减的预加重处理。
可选的,所述的分频模块采用快速傅里叶变换(FFT)方法对声信号进行分频处理,把信号分解为频段。
可选的,所述的分频模块利用Greenwood公式将频段合并为M个通道。
可选的,所述的通过声-电压缩函数,计算电刺激感知阈值对应的声信号强度或舒适阈值对应的声信号强度参数根据如下公式计算:
E=c*A^p+d
其中,c=(Emcl-Ethr)/(lgAmax-lgAmin)、d=Emcl-c*lgAmax、p=10,
E表示的是通道电刺激感知阈值Ethr或通道电刺激舒适阈值Emcl,A表示的是电刺激感知阈值对应的声信号强度Athr或舒适阈值对应的声信号强度Amcl,Amin为电子耳蜗信号处理最小输入声强,Amax为电子耳蜗信号处理最大输入声强。
可选的,所述的频谱包络的宽动态范围压缩曲线,具有如下规则:
当输入声强小于Amin时,电子耳蜗对声信号不做处理;
当输入声强介于Amin和Athr之间时,压缩比COP1介于1∶3与1∶4之间;
当输入声强介于Athr和Amcl之间时,压缩比COP2介于1∶1与1∶2之间;
当输入声强介于Amcl和Amax之间时,压缩比COP3介于1∶2与1∶3之间;
当输入声强大于Amax时,电子耳蜗对声信号进行削峰。
可选的,所述的对宽动态压缩后的输出声强进行声-电刺激压缩是经对数函数y=Alog10(x)+B压缩到电刺激动态范围[xmin,xmax],其中常数A,B可通过如下公式得到:
B=Emcl-Alog10xmax。
基于上述目的,本发明还提供了一种电子耳蜗宽动态范围压缩处理信号的方法,包括以下步骤:
对声信号进行预加重和分频处理,并将处理的结果合并为M个通道;
根据预先测量电子耳蜗植入者M个通道的舒适阈值或感知阈值参数,通过声-电压缩函数,计算电刺激感知阈值对应的声信号强度或舒适阈值对应的声信号强度参数,并且以此参数为拐点,根据频谱包络的宽动态范围压缩曲线,计算每个通道压缩后的声强;
对宽动态压缩后的输出声强进行声-电刺激压缩并输出。
可选的,所述的预加重是通过高通滤波,对低于12kHZ的信号做每十倍频程有6dB衰减。
可选的,所述的分频处理是利用快速傅里叶变换(FFT)方法,把信号分解为频段。
可选的,所述的将处理的结果合并为M个通道是利用Greenwood公式。
可选的,所述的通过声-电压缩函数,计算电刺激感知阈值对应的声信号强度或和舒适阈值对应的声信号强度参数根据如下公式计算:
E=c*A^p+d
其中,c=(Emcl-Ethr)/(lgAmax-lgAmin)、d=Emcl-c*lgAmax、p=10,
E表示的是通道电刺激感知阈值Ethr或通道电刺激舒适阈值Emcl,A表示的是电刺激感知阈值对应的声信号强度Athr或舒适阈值对应的声信号强度Amcl,Amin为电子耳蜗信号处理最小输入声强,Amax为电子耳蜗信号处理最大输入声强。
可选的,所述的频谱包络的宽动态范围压缩曲线,具有如下规则:
当输入声强小于Amin时,电子耳蜗对声信号不做处理;
当输入声强介于Amin和Athr之间时,压缩比COP1介于1∶3与1∶4之间;
当输入声强介于Athr和Amcl之间时,压缩比COP2介于1∶1与1∶2之间;
当输入声强介于Amcl和Amax之间时,压缩比COP3介于1∶2与1∶3之间;
当输入声强大于Amax时,电子耳蜗对声信号进行削峰。
可选的,所述的对宽动态压缩后的输出声强进行声-电刺激压缩是经对数函数y=Alog10(x)+B压缩到电刺激动态范围[xmin,xmax],其中常数A,B可通过如下公式得到:
B=Emcl-Alog10xmax。
从上面所述可以看出,本发明提供的电子耳蜗宽动态范围压缩处理信号的言语处理器和方法,通过压缩单元对每个通道频谱包络的宽动态范围压缩,然后再对宽动态压缩后的输出声强进行声-电刺激压缩,更好的适应电刺激较窄的动态范围。从而极大的提高了电子耳蜗言语处理器的信号处理效率,同时改善了使用者个体的语言识别能力和避免信号的失真。
附图说明
图1为现有技术中的电子耳蜗系统结构示意图;
图2为本发明电子耳蜗宽动态范围压缩处理信号的言语处理器实施例的结构示意图;
图3为本发明电子耳蜗宽动态范围压缩处理信号的方法实施例的流程示意图;
图4为本发明电子耳蜗信号处理的频谱包络宽动态范围压缩I/O曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
图2为本发明电子耳蜗宽动态范围压缩处理信号的言语处理器实施例的结构示意图,如图所示该言语处理器实施例包括处理单元201和压缩单元202,其中:
处理单元201,主要功能包括:
1)分频模块将声信号进行预处理,可以通过高通滤波,对低于12kHZ的信号做每十倍频程有6dB衰减的预加重处理;
2)分频模块将预处理后的信号进行分频处理,可以采用快速傅里叶变换(FFT)方法完成;
3)根据电子耳蜗系统可用电极的数目M,分频模块可以利用Greenwood公式将该频段合并为M个通道;
4)将信号和M个通道传送给压缩单元202。
压缩单元202,与处理单元201相连,主要功能包括:
1)根据预先测量电子耳蜗植入者M个通道的舒适阈值或感知阈值参数,通过声-电压缩函数,计算电刺激感知阈值对应的声信号强度或舒适阈值对应的声信号强度参数,较佳的根据如下公式计算:
E=c*A^p+d
其中,c=(Emcl-Ethr)/(lgAmax-lgAmin)、d=Emcl-c*lgAmax、p=10,
E表示的是通道电刺激感知阈值Ethr和通道电刺激舒适阈值Emcl,A表示的是电刺激感知阈值对应的声信号强度Athr或舒适阈值对应的声信号强度Amcl,Amin为电子耳蜗信号处理最小输入声强,Amax为电子耳蜗信号处理最大输入声强。
2)以电刺激感知阈值对应的声信号强度Athr或舒适阈值对应的声信号强度Amcl为拐点,根据频谱包络的宽动态范围压缩I/O曲线,计算每个通道压缩后的声强,较佳的I/O曲线的规则如下:
当输入声强小于Amin时,电子耳蜗对声信号不做处理,使用者听不到声响;
当输入声强介于Amin和Athr之间时,压缩比COP1介于1∶3与1∶4之间,电子耳蜗植入者的电刺激听觉感受非常弱;
当输入声强介于Athr和Amcl之间时,压缩比COP2介于1∶1与1∶2之间,电子耳蜗植入者的电刺激听觉感受开始增强且最为舒适;
当输入声强介于Amcl和Amax之间时,压缩比COP3介于1∶2与1∶3之间,电子耳蜗植入者的电刺激听觉感受达到最强;
当输入声强大于Amax时,电子耳蜗对声信号进行削峰,电子耳蜗植入者的电刺激听觉感受维持在最强。
3)对宽动态压缩后的输出声强进行声-电刺激压缩,较佳的采用对数函数y=Alog10(x)+B压缩到电刺激动态范围[xmin,xmax],其中常数A,B可通过如下公式得到:
B=Emcl-Alog10xmax。
4)将最后压缩完的信号输出。
图3为本发明电子耳蜗宽动态范围压缩处理信号的方法实施例的流程示意图,包括:
步骤301,对声信号进行预加重和分频处理,并将处理的结果合并为M个通道,具体实现过程如下:
1)对声信号进行预加重处理:优选的通过高通滤波,对低于12kHZ的信号做每十倍频程有6dB衰减。
2)将预加重后的信号进行分频处理:采用快速傅里叶变换(FFT)的方法,在优选实施例中,是把信号分解为256个频段。首先对一帧256点(帧移为128点)的短视信号,进行加汉宁窗处理,然后进行FFT运算。FFT输出的结果为256点的复数,取其中128个有效点(需要去除直流分量点),信号被分为128个频带,256个频段。
3)将处理的结果合并为M个通道:可以根据电子耳蜗系统可用电极的数目,将频段合并为M个通道,在优选实施例中,可用电极为22个,将该256个频段根据Greenwood教授1961年提出的耳蜗基底膜位置和频率的对应关系合并为22个电极对应的频率通道。
步骤302,压缩单元根据预先测量电子耳蜗植入者M个通道的舒适阈值或感知阈值参数,通过声-电压缩函数,计算电刺激感知阈值对应的声信号强度或舒适阈值对应的声信号强度参数,并且以此参数为拐点,根据频谱包络的宽动态范围压缩曲线,计算每个通道压缩后的声强,具体实现过程如下:
1)压缩单元根据预先测量电子耳蜗植入者M个通道的舒适阈值或感知阈值参数,通过声-电压缩函数,计算电刺激感知阈值对应的声信号强度或舒适阈值对应的声信号强度参数:较佳的采用声-电压缩函数
E=c*A^p+d
其中,c=(Emcl-Ethr)/(lgAmax-lgAmin)、d=Emcl-c*lgAmax、p=10,
E表示的是通道电刺激感知阈值Ethr或通道电刺激舒适阈值Emcl,A表示的是电刺激感知阈值对应的声信号强度Athr或舒适阈值对应的声信号强度Amcl,Amin为电子耳蜗信号处理最小输入声强,Amax为电子耳蜗信号处理最大输入声强。
2)以电刺激感知阈值对应的声信号强度或舒适阈值对应的声信号强度参数为拐点,根据频谱包络的宽动态范围压缩曲线,计算每个通道压缩后的声强:在优选实施例中,通过声-电压缩函数已经计算得到的电刺激感知阈值对应的声信号强度Athr或电刺激舒适阈值对应的声信号强度Amcl作为频谱包络的宽动态范围压缩I/O曲线输入声强的拐点。
其中频谱包络的宽动态范围压缩I/O曲线请参阅图4所示,纵轴表示的输出声强中,拐点Omax为压缩后最大输出声强、Omcl为舒适阈值对应的声信号压缩后输出强度、Othr为感知阈值对应的声信号压缩后输出强度和Omin为压缩后最大小输出声强,横轴表示的输入声强中,拐点依次为Amin、Athr、Amcl和Amax,较佳的压缩规则如下:
当输入声强小于Amin时,电子耳蜗对声信号不做处理,使用者听不到声响;
当输入声强介于Amin和Athr之间时,压缩比COP1介于1∶3与1∶4之间,电子耳蜗植入者的电刺激听觉感受非常弱;
当输入声强介于Athr和Amcl之间时,压缩比COP2介于1∶1与1∶2之间,电子耳蜗植入者的电刺激听觉感受开始增强且最为舒适;
当输入声强介于Amcl和Amax之间时,压缩比COP3介于1∶2与1∶3之间,电子耳蜗植入者的电刺激听觉感受达到最强;
当输入声强大于Amax时,电子耳蜗对声信号进行削峰,电子耳蜗植入者的电刺激听觉感受维持在最强。
然后根据频谱包络的宽动态范围压缩I/O曲线,计算每个通道压缩后的输出声强。即将把原来的[Amin,Amax]的声信号,按照频谱包络的宽动态范围压缩I/O曲线,压缩成[Omin,Omax]的声信号。
步骤303,压缩单元对宽动态压缩后的输出声强进行声-电刺激压缩并输出,具体实现过程如下:
1)压缩单元对宽动态压缩后的输出声强进行声-电刺激压缩:在优选实施例中,即压缩成[Omin,Omax]的声信号再压缩到电刺激动态范围[xmin,xmax],以适应电刺激较窄的动态范围。采用将宽动态压缩后的输出声强经对数函数y=Alog10(x)+B进行压缩,其中常数A,B可通过如下公式得到:
B=Emcl-Alog10xmax。
2)将最终压缩完成的声信号输出。
在本发明实现的言语处理器和方法中,外界的声信号经过宽动态范围压缩然后再经过声-电刺激压缩,两次压缩后的频谱包络信息更加能够适应电刺激较窄的动态范围,而且其中应用了较佳的宽动态范围压缩规则,从而提高了电子耳蜗言语处理器的信号处理效率,改善了使用者个体的语言识别能力。
所属领域的普通技术人员应当理解:以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。