CN102571294A - Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors - Google Patents
Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors Download PDFInfo
- Publication number
- CN102571294A CN102571294A CN2012100623658A CN201210062365A CN102571294A CN 102571294 A CN102571294 A CN 102571294A CN 2012100623658 A CN2012100623658 A CN 2012100623658A CN 201210062365 A CN201210062365 A CN 201210062365A CN 102571294 A CN102571294 A CN 102571294A
- Authority
- CN
- China
- Prior art keywords
- crc
- error correction
- error
- navigation message
- satellite navigation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 125000004122 cyclic group Chemical group 0.000 title abstract description 10
- 238000012937 correction Methods 0.000 claims abstract description 51
- 238000001514 detection method Methods 0.000 claims abstract description 14
- 238000012795 verification Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 2
- 206010009944 Colon cancer Diseases 0.000 description 50
- 238000013461 design Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明涉及一种使用循环冗余校验码(Cyclic Redundancy Check codes,CRC)纠正卫星导航电文错误的方法,属于卫星导航技术领域。具体实现方法首先构造CRC校验模块,然后构造CRC纠错码表,根据CRC纠错码表进行错误模式检测,对检测后得到的可纠正错误模式进行纠错。本发明不仅能够检查电文是否错误,还能纠正错误导航电文中的1比特错误模式,对比不使用CRC纠错的应用情况,能够有效降低导航电文的误帧率,提高弱信号条件下的定位的连续性并改善定位性能;适用于任意使用CRC作为导航电文校验码的卫星导航系统。
The invention relates to a method for correcting satellite navigation message errors by using cyclic redundancy check codes (Cyclic Redundancy Check codes, CRC), and belongs to the technical field of satellite navigation. The specific implementation method first constructs a CRC check module, then constructs a CRC error correction code table, performs error mode detection according to the CRC error correction code table, and corrects the correctable error mode obtained after detection. The present invention can not only check whether the message is wrong, but also correct the 1-bit error mode in the wrong navigation message. Compared with the application situation without CRC error correction, it can effectively reduce the frame error rate of the navigation message and improve the accuracy of positioning under weak signal conditions. Continuity and improved positioning performance; suitable for any satellite navigation system that uses CRC as the navigation message check code.
Description
技术领域 technical field
本发明涉及一种使用循环冗余校验码(Cyclic Redundancy Check codes,CRC)纠正卫星导航电文错误的方法,属于卫星导航技术领域。The invention relates to a method for correcting satellite navigation message errors by using cyclic redundancy check codes (Cyclic Redundancy Check codes, CRC), which belongs to the technical field of satellite navigation.
背景技术 Background technique
随着以GPS系统为代表卫星导航系统的应用领域不断拓展,新的应用在定位精度和可靠性上提出了更高要求,在此背景下美国实施了GPS现代化计划,先后设计了面向不同应用的GPS L2C、L5、L1C三个新型的民用信号,新的信号在伪码设计、调制方式、纠错编码和电文格式等方面采用了许多新的技术。欧洲的Galileo卫星导航系统和中国的北斗COMPASS卫星导航系统也按照服务区分的原则设计多个不同用途的民用信号,俄罗斯的GLONASS卫星导航系统自2011年开始在K-1卫星上进行L3 OC信号的技术实验。With the continuous expansion of the application field of the satellite navigation system represented by the GPS system, new applications put forward higher requirements on positioning accuracy and reliability. GPS L2C, L5, and L1C are three new civilian signals. The new signals adopt many new technologies in terms of pseudo code design, modulation mode, error correction coding and message format. Europe's Galileo satellite navigation system and China's Beidou COMPASS satellite navigation system also design multiple civil signals for different purposes according to the principle of service differentiation. technology experiment.
GPS系统的新型导航电文在设计上与传统导航电文有很大改善,一项重要的改进是电文检错编码的变化,新型电文普遍采用检错能力更强的循环冗余校验码CRC代替了GPS NAV电文的汉明码。GPS L2C、L5采用了CNAV电文(IS-GPS-200E、IS-GPS-705A),电文帧长300比特,采用CRC-24校验码,其编码生成多项式为:The design of the new navigation message of the GPS system has been greatly improved compared with the traditional navigation message. An important improvement is the change of the error detection code of the message. The new message generally uses the cyclic redundancy check code CRC with stronger error detection ability to replace Hamming code of GPS NAV message. GPS L2C and L5 adopt CNAV message (IS-GPS-200E, IS-GPS-705A), the frame length of the message is 300 bits, and the CRC-24 check code is used. The encoding generation polynomial is:
g(x)=x24+x23+x18+x17+x14+x11+x10+x7+x6+x5+x4+x3+x+1;g(x)=x 24 +x 23 +x 18 +x 17 +x 14 +x 11 +x 10 +x 7 +x 6 +x 5 +x 4 +x 3 +x+1;
L1C信号采用CNAV-2电文(IS-GPS-800A),电文包括3个子帧,子帧1用于同步,子帧2帧长600比特,子帧3帧长274比特,子帧2、3都采用CRC-24作为校验码。欧洲的Galileo卫星导航系统包含F/NAV、I/NAV两种格式的电文(European GNSS(Galileo)Open Service Signal In SpaceInterface Control Document,2010年),F/NAV格式电文帧长244比特,采用CRC-24校验码,应用于E5a导航信号,I/NAV格式电文帧长120比特,采用CRC-24校验,应用于E5b和E1b导航信号。中国北斗COMPASS卫星导航系统和俄罗斯GLONASS系统的新型民用导航电文设计也采用了类似的检错编码方案。L1C signal adopts CNAV-2 message (IS-GPS-800A), message includes 3 subframes,
导航电文中的检错编码的目的是检查导航电文的正确性,降低错误电文对定位的影响,常规的处理原则是一旦检出电文发生错误则将错误电文丢弃。当导航接收处于弱信号环境或者高动态平台时,电文中的错误发生的概率会很大,错误电文的丢弃处理会导致可用电文过少,从而影响定位的连续性甚至无法定位。根据纠错编码理论,CRC编码属于线性分组码中的缩短循环码,既可以检错也可纠错,其检错纠错性能由最小汉明距决定,CRC的最小汉明距由生成多项式和码字长度决定,当最小汉明码距d≥3时使用CRC可以纠正码字中的1个或多个错误([杨杰2005]无线传输中的循环冗余校验码纠错应用扩展),使用CRC纠错可以有效降低导航电文的误帧率,改善卫星定位性能。The purpose of the error detection code in the navigation message is to check the correctness of the navigation message and reduce the impact of the error message on the positioning. The conventional processing principle is to discard the error message once an error occurs in the message. When the navigation receiver is in a weak signal environment or a high dynamic platform, the probability of errors in the message will be very high, and the discarding of the wrong message will lead to too few available messages, which will affect the continuity of positioning and even make it impossible to locate. According to the theory of error correction coding, CRC coding belongs to shortened cyclic codes in linear block codes, which can detect and correct errors. Its error detection and correction performance is determined by the minimum Hamming distance, and the minimum Hamming distance of CRC is determined by the generator polynomial and The length of the code word is determined. When the minimum Hamming code distance d≥3, using CRC can correct one or more errors in the code word ([Yang Jie 2005] Application extension of cyclic redundancy check code error correction in wireless transmission), Using CRC error correction can effectively reduce the frame error rate of navigation messages and improve satellite positioning performance.
发明内容 Contents of the invention
本发明的目的是为了克服现有卫星导航接收机在弱信号环境中导航电文误帧率高、定位连续性差的问题,提出一种基于导航电文中的CRC检错编码结构的卫星导航电文纠错方法。The purpose of the present invention is to overcome the problems of high frame error rate and poor positioning continuity of the navigation message in the weak signal environment of the existing satellite navigation receiver, and propose a satellite navigation message error correction based on the CRC error detection coding structure in the navigation message method.
本发明是通过下述技术方案实现的:The present invention is achieved through the following technical solutions:
一种基于CRC编码的卫星导航电文纠错方法,包括如下步骤:A method for correcting errors in satellite navigation text based on CRC encoding, comprising the steps of:
步骤1,构造CRC校验模块。
根据卫星导航电文规范中的CRC编码生成多项式g(x):According to the CRC code generator polynomial g(x) in the satellite navigation message specification:
g(x)=x24+x23+x18+x17+x14+x11+x10+x7+x6+x5+x4+x3+x+1,g(x)=x 24 +x 23 +x 18 +x 17 +x 14 +x 11 +x 10 +x 7 +x 6 +x 5 +x 4 +x 3 +x+1,
按照循环冗余校验码的检错原理构造CRC校验模块,CRC校验模块的作用是用于计算导航电文的校验余数和构造CRC纠错码表。According to the error detection principle of the cyclic redundancy check code, the CRC check module is constructed. The function of the CRC check module is to calculate the check remainder of the navigation message and construct the CRC error correction code table.
步骤2,构造CRC纠错码表。
根据卫星导航电文规范中规定的电文帧长N,构造N种不同的1比特错误模式数据,依次将N种1比特错误模式数据送入步骤1中的CRC校验模块,得到N个不同的CRC校验余数Si,i表示1比特错误模式数据的序号,i=1…N。第i种1比特错误模式数据的校验余数Si和错误位置Pi组成纠错码表中第i个条目,将N种不同1比特错误模式数据所产生的N个条目按顺序存入CRC纠错码表。According to the message frame length N stipulated in the satellite navigation message specification, construct N different 1-bit error pattern data, and sequentially send N kinds of 1-bit error pattern data to the CRC check module in
1比特错误模式数据的具体特征是:一串长度为N的2进制比特流,在N个比特中有1个“1”和N-1个“0”,其中“1”代表发生错误,“0”代表没有发生错误。其构造方法为:第i种1比特错误模式数据的第i个比特为1,其它为0,错误位置Pi=i。The specific characteristics of 1-bit error mode data are: a string of binary bit streams with a length of N, in which there are 1 "1" and N-1 "0"s in N bits, where "1" represents an error, "0" means no error occurred. The construction method is as follows: the i-th bit of the i-th 1-bit error pattern data is 1, the others are 0, and the error position P i =i.
CRC纠错码表的具体特征是:码表共有N个条目,每个条目包含1个错误位置和1个校验余数,第1到N个条目中的错误位置Pi按照从1到N的顺序递增。The specific characteristics of the CRC error correction code table are: the code table has N entries in total, each entry contains 1 error position and 1 check remainder, and the error position P i in the 1st to N entries is in accordance with the order from 1 to N The order is incremented.
步骤3,错误模式检测。
将接收到的卫星导航电文送入步骤1中的CRC校验模块进行校验运算,如果校验余数S=0,则认为电文正确,进行后续定位解算运算;如果校验余数S≠0,则认为电文发生错误,进行CRC纠错码表搜索以判断错误模式是否可以纠正。Send the received satellite navigation message to the CRC check module in
具体判断原则为:将当前电文的校验余数S与步骤2中的CRC纠错码表中的N个条目的校验余数Si进行顺序比较,如果找到Si=S则认为错误模式可以纠正,保留与Si在同一条目中的错误位置Pi;否则认为错误模式不可纠正,当前电文进行丢弃处理。The specific judgment principle is: compare the check remainder S of the current message with the check remainder S i of the N entries in the CRC error correction code table in
步骤4,对步骤3检测后得到的可纠正错误模式进行纠错。
具体方法为:根据步骤3得到的错误位置Pi,将导航电文第Pi个比特进行翻转,从而纠正1比特错误。The specific method is: according to the error position P i obtained in
至此,使用CRC纠正导航电文错误的过程结束。So far, the process of using CRC to correct errors in navigation messages is over.
有益效果Beneficial effect
本发明提出的一种基于CRC编码的卫星导航电文纠错方法,不仅能够检查电文是否错误,还能纠正错误导航电文中的1比特错误模式,对比不使用CRC纠错的应用情况,能够有效降低导航电文的误帧率,提高弱信号条件下的定位的连续性并改善定位性能。A satellite navigation message error correction method based on CRC encoding proposed by the present invention can not only check whether the message is wrong, but also correct the 1-bit error mode in the wrong navigation message. Compared with the application situation that does not use CRC error correction, it can effectively reduce The frame error rate of the navigation message improves the continuity of positioning under weak signal conditions and improves positioning performance.
附图说明 Description of drawings
图1为现有技术中典型的卫星导航接收机处理框图;Fig. 1 is a typical satellite navigation receiver processing block diagram in the prior art;
图2为具体实施方式中的GPS CNAV导航电文帧结构图;Fig. 2 is the GPS CNAV navigation message frame structure diagram in the specific embodiment;
图3为本发明的卫星导航电文纠错流程图;Fig. 3 is the flow chart of error correction of satellite navigation message of the present invention;
图4为具体实施方式中对GPS CNAV电文使用CRC纠错前后误帧率的比较图。Fig. 4 is the comparison figure of frame error rate before and after using CRC error correction to GPS CNAV message in the specific embodiment.
具体实施方式 Detailed ways
为了更好的说明本发明的目的和优点,下面结合附图和实施例对本发明的技术方案作进一步说明。在本具体实施方式中,将使用GPS CNAV电文作为实例描述。In order to better illustrate the purpose and advantages of the present invention, the technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments. In this specific implementation manner, the GPS CNAV message will be used as an example description.
典型的卫星导航接收机结构如图1所示,卫星信号通过解扩、解调、译码得到导航电文,导航电文使用CRC校验码来检查电文的正确性,当校验余数为0时认为电文正确,进行后续定位解算运算,当校验余数不为0时认为电文错误,错误电文进行丢弃处理。The structure of a typical satellite navigation receiver is shown in Figure 1. Satellite signals are despread, demodulated, and decoded to obtain navigation messages. The navigation messages use CRC check codes to check the correctness of the messages. When the check remainder is 0, it is considered If the message is correct, perform subsequent positioning calculation operations. When the check remainder is not 0, the message is considered to be wrong, and the wrong message is discarded.
GPS系统的L2C、L5信号使用的导航电文是CNAV电文,帧格式如图2所示,帧长300比特,其中末尾24比特是CRC校验码,其生成多项式是:g(x)=x24+x23+x18+x17+x14+x11+x10+x7+x6+x5+x4+x3+x+1。CNAV电文在帧长为300比特的条件下,通过计算机搜索获得最小汉明距d=6,对应的一个码多项式为m(x)=x54+x45+x43+x30+x6+1,根据分组码的性质CRC-24可以检出最多5比特错误或者纠正2比特错误。在典型的卫星导航系统中,经过纠错译码后的电文误码率为p=10-3~10-5,取p=10-3则在1帧电文中发生1比特错误的概率为FER1bit=300×10-3×(1-10-3)299=0.2224,发生2比特错误的概率为FER2bit=300×299×(10-3)2×(1-10-3)298/2=0.0333,表明发生1比特错误的概率远大于发生2比特错误的概率,在纠错时可以选择纠正1比特或者2比特错误,二者的区别在于需要的资源和复杂度,本实施例选择纠正1比特错误。The navigation message used by the L2C and L5 signals of the GPS system is a CNAV message. The frame format is shown in Figure 2. The frame length is 300 bits, and the last 24 bits are CRC check codes. The generator polynomial is: g(x)=x 24 +x 23 +x 18 +x 17 +x 14 +x 11 +x 10 +x 7 +x 6 +x 5 +x 4 +x 3 +x+1. Under the condition that the frame length of the CNAV message is 300 bits, the minimum Hamming distance d=6 is obtained through computer search, and a corresponding code polynomial is m(x)=x 54 +x 45 +x 43 +x 30 +x 6 + 1. According to the nature of the block code, CRC-24 can detect up to 5-bit errors or correct 2-bit errors. In a typical satellite navigation system, the bit error rate of the message after error correction and decoding is p=10 -3 ~10 -5 , if p=10 -3 , the probability of 1 bit error in a frame of message is FER 1bit =300×10 -3 ×(1-10 -3 ) 299 =0.2224, the probability of 2-bit error is FER 2bit =300×299×(10 -3 ) 2 ×(1-10 -3 ) 298 /2 =0.0333, indicating that the probability of a 1-bit error is far greater than the probability of a 2-bit error. You can choose to correct a 1-bit or 2-bit error during error correction. The difference between the two lies in the required resources and complexity. This embodiment chooses to correct 1 bit error.
一种基于CRC编码的卫星导航电文纠错方法,如图3所示,CNAV电文使用CRC纠正错误的具体步骤为:An error correction method for satellite navigation messages based on CRC encoding, as shown in Figure 3, the specific steps for CNAV messages to use CRC to correct errors are:
步骤1,根据CNAV导航电文的CRC-24编码生成多项式g(x),按照循环冗余校验码的检错原理构造CRC校验模块。
步骤2,根据CNAV导航电文帧长为300比特,构造300种长度为300比特的1比特错误模式数据,第i种1比特错误模式数据的第i个比特为1,其余比特为0。
将第i种(i=1,2,…,300)1比特错误模式数据送入步骤1中的CRC校验模块处理,得到第i种1比特错误模式数据的校验余数Si,将校验余数Si和错误位置Pi=i组成1个条目,将300个条目按错误位置从小到大的顺序存入CRC纠错码表,CNAV电文的纠错码表结构如表1所示。Send the i-th kind of (i=1, 2, ..., 300) 1-bit error pattern data to the CRC checking module in
表1CNAV电文的CRC纠错码表结构Table 1 CRC error correction code table structure of CNAV message
步骤3,将接收到的卫星导航电文送入CRC校验模块进行处理得到校验余数S,如果S=0则认为电文正确,进行后续定位解算运算;若校验余数S≠0,则认为电文发生错误,进行搜索纠错码表以判断错误模式是否可以纠正。
具体判断原则为:顺序搜索纠错码表中的300个条目,比较Si和当前电文的S,如果找到Si=S则认为错误模式可以纠正,保留与Si对应的错误位置Pi,例如S25=S,P25=25,其含义是当前电文的第25个比特发生错误;如果在300个条目中没有找到Si=S则认为错误模式不可纠正,当前电文进行丢弃处理。The specific judgment principle is: sequentially search 300 entries in the error correction code table, compare S i with S in the current message, if S i = S is found, the error mode can be corrected, and the error position P i corresponding to S i is reserved, For example, S 25 =S, P 25 =25, which means that the 25th bit of the current message has an error; if S i =S is not found in the 300 entries, the error mode is considered uncorrectable, and the current message is discarded.
步骤4,对步骤3校验后得到的可纠正错误模式进行纠错。
具体方法为:根据步骤3得到错误比特位置Pi,纠正当前电文中的1比特错误,纠错后的电文进行后续定位解算处理。例如步骤3得到P25=25,则将当前电文的第25个比特进行翻转,即得到纠错后的导航电文The specific method is: get the error bit position Pi according to
至此,使用CRC纠正导航电文错误的过程结束。So far, the process of using CRC to correct errors in navigation messages is over.
为具体分析CRC纠错方法的性能,使用软件仿真了CNAV电文CRC纠错过程,仿真的电文帧长300比特,检错编码为CRC-24,图4是根据实施例进行的模拟CRC编码纠错结果,横轴表示电文误码率BER,纵轴表示电文误帧率FER,曲线A表示没有使用CRC编码纠错的导航电文误帧率,曲线B表示采用CRC编码纠错后的导航电文误帧率,从图中可以看出使用CRC编码纠错有效降低了导航电文的误帧率,具体误帧率改善性能数据如表2。In order to specifically analyze the performance of the CRC error correction method, software is used to simulate the CRC error correction process of the CNAV message. The simulated message frame length is 300 bits, and the error detection code is CRC-24. Fig. 4 is the simulated CRC code error correction according to the embodiment As a result, the horizontal axis represents the message bit error rate BER, and the vertical axis represents the message frame error rate FER. Curve A represents the frame error rate of the navigation message without CRC code error correction, and curve B represents the frame error rate of the navigation message after using CRC code error correction. It can be seen from the figure that using CRC coding error correction effectively reduces the frame error rate of the navigation message, and the specific frame error rate improvement performance data is shown in Table 2.
表2使用CRC纠错后误帧率改善Table 2 Improvement of frame error rate after using CRC error correction
本发明方法适用于美国GPS卫星定位系统L2C、L5信号所用的CNAV导航电文,L1C信号所用的CNAV-2导航电文,欧洲伽利略Galileo卫星定位系统所用的F/NAV、I/NAV导航电文,中国北斗COMPASS卫星定位系统所用的导航电文,俄罗斯GLONASS卫星定位系统所用的导航电文。The method of the present invention is applicable to the used CNAV navigation message of U.S. GPS satellite positioning system L2C, L5 signal, the used CNAV-2 navigation message of L1C signal, the used F/NAV, I/NAV navigation message of European Galileo Galileo satellite positioning system, China Beidou The navigation message used by the COMPASS satellite positioning system, and the navigation message used by the Russian GLONASS satellite positioning system.
本发明方法并不限定于特定的GPS卫星导航系统,而是适用于任意使用CRC作为导航电文校验码的卫星导航系统。The method of the present invention is not limited to a specific GPS satellite navigation system, but is applicable to any satellite navigation system that uses CRC as a navigation message check code.
虽然结合附图描述了本发明的实施方式,但是对于本领域技术人员来说,在不脱离本发明原理的前提下,还可以做出若干变形和改进,这些也应视为属于本发明的保护范围。Although the embodiment of the present invention has been described in conjunction with the accompanying drawings, for those skilled in the art, some modifications and improvements can be made without departing from the principle of the present invention, and these should also be regarded as belonging to the protection of the present invention scope.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100623658A CN102571294A (en) | 2012-03-12 | 2012-03-12 | Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100623658A CN102571294A (en) | 2012-03-12 | 2012-03-12 | Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102571294A true CN102571294A (en) | 2012-07-11 |
Family
ID=46415842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100623658A Pending CN102571294A (en) | 2012-03-12 | 2012-03-12 | Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102571294A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104283639A (en) * | 2014-09-16 | 2015-01-14 | 上海卫星工程研究所 | Troubleshooting system and method of data transmission sub system based on two stages of check codes |
CN105450281A (en) * | 2016-01-27 | 2016-03-30 | 中国人民解放军国防科学技术大学 | System and method for diversity reception of multiple identical user receiver inbound signals |
CN103746773B (en) * | 2013-12-31 | 2017-02-15 | 深圳信息职业技术学院 | Method and system for correcting errors of decoded data by using UMTS (Universal Mobile Telecommunications System) receiver |
WO2017092617A1 (en) * | 2015-11-30 | 2017-06-08 | 华为技术有限公司 | Error estimation method, base station and terminal |
CN108549096A (en) * | 2018-04-17 | 2018-09-18 | 中国科学院微电子研究所 | Method and device for error correction and decoding of GPS navigation message |
CN111030710A (en) * | 2019-12-02 | 2020-04-17 | 北京北方联星科技有限公司 | Method for adaptively improving decoding speed of Galileo navigation system E5 signal |
CN112564858A (en) * | 2020-11-05 | 2021-03-26 | 山东中科泰岳电子科技有限公司 | CRC error correction method and system for satellite navigation |
CN117452455A (en) * | 2023-12-26 | 2024-01-26 | 中国人民解放军国防科技大学 | Method for designing text decoding module of navigation receiver for embedded test |
CN119556635A (en) * | 2025-01-27 | 2025-03-04 | 西安微电子技术研究所 | A method and module for executing a low-orbit near-Earth satellite flight control system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2056465A (en) * | 1935-03-02 | 1936-10-06 | William H Juhnke | Heater |
CN101527615A (en) * | 2009-04-07 | 2009-09-09 | 华为技术有限公司 | Implementation method of cyclic redundancy check (CRC) codes and device |
-
2012
- 2012-03-12 CN CN2012100623658A patent/CN102571294A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2056465A (en) * | 1935-03-02 | 1936-10-06 | William H Juhnke | Heater |
CN101527615A (en) * | 2009-04-07 | 2009-09-09 | 华为技术有限公司 | Implementation method of cyclic redundancy check (CRC) codes and device |
Non-Patent Citations (2)
Title |
---|
杨杰等: "无线传输中的循环冗余校验码纠错应用扩展", 《北京理工大学学报》, vol. 25, no. 8, 31 August 2005 (2005-08-31) * |
陈金平等: "现代化GNSS导航电文设计分析", 《电子与信息学报》, vol. 33, no. 1, 31 January 2011 (2011-01-31) * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103746773B (en) * | 2013-12-31 | 2017-02-15 | 深圳信息职业技术学院 | Method and system for correcting errors of decoded data by using UMTS (Universal Mobile Telecommunications System) receiver |
CN104283639B (en) * | 2014-09-16 | 2018-02-09 | 上海卫星工程研究所 | The troubleshooting system and its troubleshooting method of data transmission subsystem based on two-stage check code |
CN104283639A (en) * | 2014-09-16 | 2015-01-14 | 上海卫星工程研究所 | Troubleshooting system and method of data transmission sub system based on two stages of check codes |
WO2017092617A1 (en) * | 2015-11-30 | 2017-06-08 | 华为技术有限公司 | Error estimation method, base station and terminal |
CN105450281B (en) * | 2016-01-27 | 2018-11-02 | 中国人民解放军国防科学技术大学 | A kind of system and method to more parts of same subscriber machine check-in signal diversity receptions |
CN105450281A (en) * | 2016-01-27 | 2016-03-30 | 中国人民解放军国防科学技术大学 | System and method for diversity reception of multiple identical user receiver inbound signals |
CN108549096A (en) * | 2018-04-17 | 2018-09-18 | 中国科学院微电子研究所 | Method and device for error correction and decoding of GPS navigation message |
CN111030710A (en) * | 2019-12-02 | 2020-04-17 | 北京北方联星科技有限公司 | Method for adaptively improving decoding speed of Galileo navigation system E5 signal |
CN112564858A (en) * | 2020-11-05 | 2021-03-26 | 山东中科泰岳电子科技有限公司 | CRC error correction method and system for satellite navigation |
CN112564858B (en) * | 2020-11-05 | 2022-08-09 | 山东中科泰岳电子科技有限公司 | CRC error correction method and system for satellite navigation |
CN117452455A (en) * | 2023-12-26 | 2024-01-26 | 中国人民解放军国防科技大学 | Method for designing text decoding module of navigation receiver for embedded test |
CN117452455B (en) * | 2023-12-26 | 2024-03-12 | 中国人民解放军国防科技大学 | Method for designing text decoding module of navigation receiver for embedded test |
CN119556635A (en) * | 2025-01-27 | 2025-03-04 | 西安微电子技术研究所 | A method and module for executing a low-orbit near-Earth satellite flight control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102571294A (en) | Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors | |
CN110098838B (en) | Error Correction and Erasure Correction Iterative Decoding Method for LDPC-RS Product Codes | |
CN101379712A (en) | Decodage de codes raptor | |
CN101459431B (en) | Decoding method for channel error correcting BCH code and RS code | |
CN111628780B (en) | Data encoding and decoding method and data processing system | |
US8032812B1 (en) | Error correction decoding methods and apparatus | |
CN110007325B (en) | Rapid frame synchronization method for satellite-based enhanced L5 signal | |
CN104639294A (en) | Improved CRC (Cyclic redundancy check) implementation method | |
CN102891737B (en) | Method and system for coding and decoding binary rateless codes | |
CN103546239A (en) | A blind detection system and blind detection method for LTE downlink control channel | |
CN103312458A (en) | Hybrid coding method | |
CN105609141A (en) | Apparatus and method for automatically correcting access data of storage apparatus | |
CN104698479B (en) | The coding/decoding method of navigation message and decoding apparatus | |
CN102545914B (en) | BCH (Broadcast Channel) encoding and decoding method and device | |
CN102148665A (en) | Decoding method for LT (language translation) codes | |
CN107276720B (en) | A Beidou navigation message coding method based on the characteristics of punctured polar codes | |
CN110806948A (en) | A data verification method and device | |
CN102742164B (en) | Decoding method and decoding device | |
CN101938280A (en) | Coding and decoding method and codec of error correction code | |
CN111224741B (en) | BCH code decoding method for satellite navigation, decoder and satellite navigation receiver | |
CN111183748B (en) | Error code resisting method based on cyclic redundancy check and erasure correction coding | |
CN104849733A (en) | Redundancy-based method for correcting error codes of navigation messages | |
CN103873068A (en) | Low-density-parity-check decoding method and electronic device | |
CN107743036A (en) | BCH code decoding method | |
CN117713840A (en) | Error correction and detection encoding method for spaceborne computer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120711 |