CN102571294A - Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors - Google Patents

Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors Download PDF

Info

Publication number
CN102571294A
CN102571294A CN2012100623658A CN201210062365A CN102571294A CN 102571294 A CN102571294 A CN 102571294A CN 2012100623658 A CN2012100623658 A CN 2012100623658A CN 201210062365 A CN201210062365 A CN 201210062365A CN 102571294 A CN102571294 A CN 102571294A
Authority
CN
China
Prior art keywords
crc
error correction
error
navigation message
satellite navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100623658A
Other languages
Chinese (zh)
Inventor
安建平
朱建锋
王爱华
杨雷
刘策伦
卜祥元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN2012100623658A priority Critical patent/CN102571294A/en
Publication of CN102571294A publication Critical patent/CN102571294A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明涉及一种使用循环冗余校验码(Cyclic Redundancy Check codes,CRC)纠正卫星导航电文错误的方法,属于卫星导航技术领域。具体实现方法首先构造CRC校验模块,然后构造CRC纠错码表,根据CRC纠错码表进行错误模式检测,对检测后得到的可纠正错误模式进行纠错。本发明不仅能够检查电文是否错误,还能纠正错误导航电文中的1比特错误模式,对比不使用CRC纠错的应用情况,能够有效降低导航电文的误帧率,提高弱信号条件下的定位的连续性并改善定位性能;适用于任意使用CRC作为导航电文校验码的卫星导航系统。

Figure 201210062365

The invention relates to a method for correcting satellite navigation message errors by using cyclic redundancy check codes (Cyclic Redundancy Check codes, CRC), and belongs to the technical field of satellite navigation. The specific implementation method first constructs a CRC check module, then constructs a CRC error correction code table, performs error mode detection according to the CRC error correction code table, and corrects the correctable error mode obtained after detection. The present invention can not only check whether the message is wrong, but also correct the 1-bit error mode in the wrong navigation message. Compared with the application situation without CRC error correction, it can effectively reduce the frame error rate of the navigation message and improve the accuracy of positioning under weak signal conditions. Continuity and improved positioning performance; suitable for any satellite navigation system that uses CRC as the navigation message check code.

Figure 201210062365

Description

一种基于CRC编码的卫星导航电文纠错方法A Method of Error Correction for Satellite Navigation Messages Based on CRC Coding

技术领域 technical field

本发明涉及一种使用循环冗余校验码(Cyclic Redundancy Check codes,CRC)纠正卫星导航电文错误的方法,属于卫星导航技术领域。The invention relates to a method for correcting satellite navigation message errors by using cyclic redundancy check codes (Cyclic Redundancy Check codes, CRC), which belongs to the technical field of satellite navigation.

背景技术 Background technique

随着以GPS系统为代表卫星导航系统的应用领域不断拓展,新的应用在定位精度和可靠性上提出了更高要求,在此背景下美国实施了GPS现代化计划,先后设计了面向不同应用的GPS L2C、L5、L1C三个新型的民用信号,新的信号在伪码设计、调制方式、纠错编码和电文格式等方面采用了许多新的技术。欧洲的Galileo卫星导航系统和中国的北斗COMPASS卫星导航系统也按照服务区分的原则设计多个不同用途的民用信号,俄罗斯的GLONASS卫星导航系统自2011年开始在K-1卫星上进行L3 OC信号的技术实验。With the continuous expansion of the application field of the satellite navigation system represented by the GPS system, new applications put forward higher requirements on positioning accuracy and reliability. GPS L2C, L5, and L1C are three new civilian signals. The new signals adopt many new technologies in terms of pseudo code design, modulation mode, error correction coding and message format. Europe's Galileo satellite navigation system and China's Beidou COMPASS satellite navigation system also design multiple civil signals for different purposes according to the principle of service differentiation. technology experiment.

GPS系统的新型导航电文在设计上与传统导航电文有很大改善,一项重要的改进是电文检错编码的变化,新型电文普遍采用检错能力更强的循环冗余校验码CRC代替了GPS NAV电文的汉明码。GPS L2C、L5采用了CNAV电文(IS-GPS-200E、IS-GPS-705A),电文帧长300比特,采用CRC-24校验码,其编码生成多项式为:The design of the new navigation message of the GPS system has been greatly improved compared with the traditional navigation message. An important improvement is the change of the error detection code of the message. The new message generally uses the cyclic redundancy check code CRC with stronger error detection ability to replace Hamming code of GPS NAV message. GPS L2C and L5 adopt CNAV message (IS-GPS-200E, IS-GPS-705A), the frame length of the message is 300 bits, and the CRC-24 check code is used. The encoding generation polynomial is:

g(x)=x24+x23+x18+x17+x14+x11+x10+x7+x6+x5+x4+x3+x+1;g(x)=x 24 +x 23 +x 18 +x 17 +x 14 +x 11 +x 10 +x 7 +x 6 +x 5 +x 4 +x 3 +x+1;

L1C信号采用CNAV-2电文(IS-GPS-800A),电文包括3个子帧,子帧1用于同步,子帧2帧长600比特,子帧3帧长274比特,子帧2、3都采用CRC-24作为校验码。欧洲的Galileo卫星导航系统包含F/NAV、I/NAV两种格式的电文(European GNSS(Galileo)Open Service Signal In SpaceInterface Control Document,2010年),F/NAV格式电文帧长244比特,采用CRC-24校验码,应用于E5a导航信号,I/NAV格式电文帧长120比特,采用CRC-24校验,应用于E5b和E1b导航信号。中国北斗COMPASS卫星导航系统和俄罗斯GLONASS系统的新型民用导航电文设计也采用了类似的检错编码方案。L1C signal adopts CNAV-2 message (IS-GPS-800A), message includes 3 subframes, subframe 1 is used for synchronization, subframe 2 is 600 bits long, subframe 3 is 274 bits long, and subframe 2 and 3 are both CRC-24 is used as the check code. The European Galileo satellite navigation system includes messages in two formats: F/NAV and I/NAV (European GNSS (Galileo) Open Service Signal In Space Interface Control Document, 2010). The F/NAV format messages have a frame length of 244 bits and use CRC- 24 check codes, applied to E5a navigation signals, I/NAV format message frame length 120 bits, using CRC-24 check, applied to E5b and E1b navigation signals. The new civil navigation message design of China's Beidou COMPASS satellite navigation system and Russia's GLONASS system also uses a similar error detection coding scheme.

导航电文中的检错编码的目的是检查导航电文的正确性,降低错误电文对定位的影响,常规的处理原则是一旦检出电文发生错误则将错误电文丢弃。当导航接收处于弱信号环境或者高动态平台时,电文中的错误发生的概率会很大,错误电文的丢弃处理会导致可用电文过少,从而影响定位的连续性甚至无法定位。根据纠错编码理论,CRC编码属于线性分组码中的缩短循环码,既可以检错也可纠错,其检错纠错性能由最小汉明距决定,CRC的最小汉明距由生成多项式和码字长度决定,当最小汉明码距d≥3时使用CRC可以纠正码字中的1个或多个错误([杨杰2005]无线传输中的循环冗余校验码纠错应用扩展),使用CRC纠错可以有效降低导航电文的误帧率,改善卫星定位性能。The purpose of the error detection code in the navigation message is to check the correctness of the navigation message and reduce the impact of the error message on the positioning. The conventional processing principle is to discard the error message once an error occurs in the message. When the navigation receiver is in a weak signal environment or a high dynamic platform, the probability of errors in the message will be very high, and the discarding of the wrong message will lead to too few available messages, which will affect the continuity of positioning and even make it impossible to locate. According to the theory of error correction coding, CRC coding belongs to shortened cyclic codes in linear block codes, which can detect and correct errors. Its error detection and correction performance is determined by the minimum Hamming distance, and the minimum Hamming distance of CRC is determined by the generator polynomial and The length of the code word is determined. When the minimum Hamming code distance d≥3, using CRC can correct one or more errors in the code word ([Yang Jie 2005] Application extension of cyclic redundancy check code error correction in wireless transmission), Using CRC error correction can effectively reduce the frame error rate of navigation messages and improve satellite positioning performance.

发明内容 Contents of the invention

本发明的目的是为了克服现有卫星导航接收机在弱信号环境中导航电文误帧率高、定位连续性差的问题,提出一种基于导航电文中的CRC检错编码结构的卫星导航电文纠错方法。The purpose of the present invention is to overcome the problems of high frame error rate and poor positioning continuity of the navigation message in the weak signal environment of the existing satellite navigation receiver, and propose a satellite navigation message error correction based on the CRC error detection coding structure in the navigation message method.

本发明是通过下述技术方案实现的:The present invention is achieved through the following technical solutions:

一种基于CRC编码的卫星导航电文纠错方法,包括如下步骤:A method for correcting errors in satellite navigation text based on CRC encoding, comprising the steps of:

步骤1,构造CRC校验模块。Step 1, constructing a CRC check module.

根据卫星导航电文规范中的CRC编码生成多项式g(x):According to the CRC code generator polynomial g(x) in the satellite navigation message specification:

g(x)=x24+x23+x18+x17+x14+x11+x10+x7+x6+x5+x4+x3+x+1,g(x)=x 24 +x 23 +x 18 +x 17 +x 14 +x 11 +x 10 +x 7 +x 6 +x 5 +x 4 +x 3 +x+1,

按照循环冗余校验码的检错原理构造CRC校验模块,CRC校验模块的作用是用于计算导航电文的校验余数和构造CRC纠错码表。According to the error detection principle of the cyclic redundancy check code, the CRC check module is constructed. The function of the CRC check module is to calculate the check remainder of the navigation message and construct the CRC error correction code table.

步骤2,构造CRC纠错码表。Step 2, constructing a CRC error correction code table.

根据卫星导航电文规范中规定的电文帧长N,构造N种不同的1比特错误模式数据,依次将N种1比特错误模式数据送入步骤1中的CRC校验模块,得到N个不同的CRC校验余数Si,i表示1比特错误模式数据的序号,i=1…N。第i种1比特错误模式数据的校验余数Si和错误位置Pi组成纠错码表中第i个条目,将N种不同1比特错误模式数据所产生的N个条目按顺序存入CRC纠错码表。According to the message frame length N stipulated in the satellite navigation message specification, construct N different 1-bit error pattern data, and sequentially send N kinds of 1-bit error pattern data to the CRC check module in step 1 to obtain N different CRCs Check remainder S i , i represents the sequence number of 1-bit error pattern data, i=1...N. The check remainder S i and error position P i of the i-th 1-bit error pattern data form the i-th entry in the error correction code table, and the N entries generated by N different 1-bit error pattern data are stored in CRC in order Error correction code table.

1比特错误模式数据的具体特征是:一串长度为N的2进制比特流,在N个比特中有1个“1”和N-1个“0”,其中“1”代表发生错误,“0”代表没有发生错误。其构造方法为:第i种1比特错误模式数据的第i个比特为1,其它为0,错误位置Pi=i。The specific characteristics of 1-bit error mode data are: a string of binary bit streams with a length of N, in which there are 1 "1" and N-1 "0"s in N bits, where "1" represents an error, "0" means no error occurred. The construction method is as follows: the i-th bit of the i-th 1-bit error pattern data is 1, the others are 0, and the error position P i =i.

CRC纠错码表的具体特征是:码表共有N个条目,每个条目包含1个错误位置和1个校验余数,第1到N个条目中的错误位置Pi按照从1到N的顺序递增。The specific characteristics of the CRC error correction code table are: the code table has N entries in total, each entry contains 1 error position and 1 check remainder, and the error position P i in the 1st to N entries is in accordance with the order from 1 to N The order is incremented.

步骤3,错误模式检测。Step 3, error mode detection.

将接收到的卫星导航电文送入步骤1中的CRC校验模块进行校验运算,如果校验余数S=0,则认为电文正确,进行后续定位解算运算;如果校验余数S≠0,则认为电文发生错误,进行CRC纠错码表搜索以判断错误模式是否可以纠正。Send the received satellite navigation message to the CRC check module in step 1 to perform a check operation. If the check remainder S=0, the message is considered correct, and subsequent positioning calculation operations are performed; if the check remainder S≠0, Then it is considered that there is an error in the message, and the CRC error correction code table is searched to determine whether the error mode can be corrected.

具体判断原则为:将当前电文的校验余数S与步骤2中的CRC纠错码表中的N个条目的校验余数Si进行顺序比较,如果找到Si=S则认为错误模式可以纠正,保留与Si在同一条目中的错误位置Pi;否则认为错误模式不可纠正,当前电文进行丢弃处理。The specific judgment principle is: compare the check remainder S of the current message with the check remainder S i of the N entries in the CRC error correction code table in step 2, and if S i = S is found, the error mode can be corrected , keep the error position P i in the same entry as S i ; otherwise, the error mode is considered uncorrectable, and the current message is discarded.

步骤4,对步骤3检测后得到的可纠正错误模式进行纠错。Step 4, correcting the correctable error pattern obtained after the detection in step 3.

具体方法为:根据步骤3得到的错误位置Pi,将导航电文第Pi个比特进行翻转,从而纠正1比特错误。The specific method is: according to the error position P i obtained in step 3, flip the bit P i of the navigation message, so as to correct a 1-bit error.

至此,使用CRC纠正导航电文错误的过程结束。So far, the process of using CRC to correct errors in navigation messages is over.

有益效果Beneficial effect

本发明提出的一种基于CRC编码的卫星导航电文纠错方法,不仅能够检查电文是否错误,还能纠正错误导航电文中的1比特错误模式,对比不使用CRC纠错的应用情况,能够有效降低导航电文的误帧率,提高弱信号条件下的定位的连续性并改善定位性能。A satellite navigation message error correction method based on CRC encoding proposed by the present invention can not only check whether the message is wrong, but also correct the 1-bit error mode in the wrong navigation message. Compared with the application situation that does not use CRC error correction, it can effectively reduce The frame error rate of the navigation message improves the continuity of positioning under weak signal conditions and improves positioning performance.

附图说明 Description of drawings

图1为现有技术中典型的卫星导航接收机处理框图;Fig. 1 is a typical satellite navigation receiver processing block diagram in the prior art;

图2为具体实施方式中的GPS CNAV导航电文帧结构图;Fig. 2 is the GPS CNAV navigation message frame structure diagram in the specific embodiment;

图3为本发明的卫星导航电文纠错流程图;Fig. 3 is the flow chart of error correction of satellite navigation message of the present invention;

图4为具体实施方式中对GPS CNAV电文使用CRC纠错前后误帧率的比较图。Fig. 4 is the comparison figure of frame error rate before and after using CRC error correction to GPS CNAV message in the specific embodiment.

具体实施方式 Detailed ways

为了更好的说明本发明的目的和优点,下面结合附图和实施例对本发明的技术方案作进一步说明。在本具体实施方式中,将使用GPS CNAV电文作为实例描述。In order to better illustrate the purpose and advantages of the present invention, the technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments. In this specific implementation manner, the GPS CNAV message will be used as an example description.

典型的卫星导航接收机结构如图1所示,卫星信号通过解扩、解调、译码得到导航电文,导航电文使用CRC校验码来检查电文的正确性,当校验余数为0时认为电文正确,进行后续定位解算运算,当校验余数不为0时认为电文错误,错误电文进行丢弃处理。The structure of a typical satellite navigation receiver is shown in Figure 1. Satellite signals are despread, demodulated, and decoded to obtain navigation messages. The navigation messages use CRC check codes to check the correctness of the messages. When the check remainder is 0, it is considered If the message is correct, perform subsequent positioning calculation operations. When the check remainder is not 0, the message is considered to be wrong, and the wrong message is discarded.

GPS系统的L2C、L5信号使用的导航电文是CNAV电文,帧格式如图2所示,帧长300比特,其中末尾24比特是CRC校验码,其生成多项式是:g(x)=x24+x23+x18+x17+x14+x11+x10+x7+x6+x5+x4+x3+x+1。CNAV电文在帧长为300比特的条件下,通过计算机搜索获得最小汉明距d=6,对应的一个码多项式为m(x)=x54+x45+x43+x30+x6+1,根据分组码的性质CRC-24可以检出最多5比特错误或者纠正2比特错误。在典型的卫星导航系统中,经过纠错译码后的电文误码率为p=10-3~10-5,取p=10-3则在1帧电文中发生1比特错误的概率为FER1bit=300×10-3×(1-10-3)299=0.2224,发生2比特错误的概率为FER2bit=300×299×(10-3)2×(1-10-3)298/2=0.0333,表明发生1比特错误的概率远大于发生2比特错误的概率,在纠错时可以选择纠正1比特或者2比特错误,二者的区别在于需要的资源和复杂度,本实施例选择纠正1比特错误。The navigation message used by the L2C and L5 signals of the GPS system is a CNAV message. The frame format is shown in Figure 2. The frame length is 300 bits, and the last 24 bits are CRC check codes. The generator polynomial is: g(x)=x 24 +x 23 +x 18 +x 17 +x 14 +x 11 +x 10 +x 7 +x 6 +x 5 +x 4 +x 3 +x+1. Under the condition that the frame length of the CNAV message is 300 bits, the minimum Hamming distance d=6 is obtained through computer search, and a corresponding code polynomial is m(x)=x 54 +x 45 +x 43 +x 30 +x 6 + 1. According to the nature of the block code, CRC-24 can detect up to 5-bit errors or correct 2-bit errors. In a typical satellite navigation system, the bit error rate of the message after error correction and decoding is p=10 -3 ~10 -5 , if p=10 -3 , the probability of 1 bit error in a frame of message is FER 1bit =300×10 -3 ×(1-10 -3 ) 299 =0.2224, the probability of 2-bit error is FER 2bit =300×299×(10 -3 ) 2 ×(1-10 -3 ) 298 /2 =0.0333, indicating that the probability of a 1-bit error is far greater than the probability of a 2-bit error. You can choose to correct a 1-bit or 2-bit error during error correction. The difference between the two lies in the required resources and complexity. This embodiment chooses to correct 1 bit error.

一种基于CRC编码的卫星导航电文纠错方法,如图3所示,CNAV电文使用CRC纠正错误的具体步骤为:An error correction method for satellite navigation messages based on CRC encoding, as shown in Figure 3, the specific steps for CNAV messages to use CRC to correct errors are:

步骤1,根据CNAV导航电文的CRC-24编码生成多项式g(x),按照循环冗余校验码的检错原理构造CRC校验模块。Step 1, according to the CRC-24 encoding generator polynomial g(x) of the CNAV navigation message, construct the CRC check module according to the error detection principle of the cyclic redundancy check code.

步骤2,根据CNAV导航电文帧长为300比特,构造300种长度为300比特的1比特错误模式数据,第i种1比特错误模式数据的第i个比特为1,其余比特为0。Step 2, according to the CNAV navigation message frame length of 300 bits, construct 300 kinds of 1-bit error pattern data with a length of 300 bits, the i-th bit of the i-th 1-bit error pattern data is 1, and the remaining bits are 0.

将第i种(i=1,2,…,300)1比特错误模式数据送入步骤1中的CRC校验模块处理,得到第i种1比特错误模式数据的校验余数Si,将校验余数Si和错误位置Pi=i组成1个条目,将300个条目按错误位置从小到大的顺序存入CRC纠错码表,CNAV电文的纠错码表结构如表1所示。Send the i-th kind of (i=1, 2, ..., 300) 1-bit error pattern data to the CRC checking module in step 1 for processing, obtain the check remainder S i of the i-th kind of 1-bit error pattern data, and check The remainder S i and the error position P i =i form an entry, and 300 entries are stored in the CRC error correction code table in the order of the error position from small to large. The structure of the error correction code table of the CNAV message is shown in Table 1.

表1CNAV电文的CRC纠错码表结构Table 1 CRC error correction code table structure of CNAV message

  错误位置Pi error position P i   校验余数Si check remainder S i   1 1   S1 S 1   2 2   S2 S 2   3 3   S3 S 3   ... ...   ... ...   299 299   S299 S 299   300 300   S300 S 300

步骤3,将接收到的卫星导航电文送入CRC校验模块进行处理得到校验余数S,如果S=0则认为电文正确,进行后续定位解算运算;若校验余数S≠0,则认为电文发生错误,进行搜索纠错码表以判断错误模式是否可以纠正。Step 3. Send the received satellite navigation message to the CRC check module for processing to obtain the check remainder S. If S=0, the message is considered correct, and the subsequent positioning calculation operation is performed; if the check remainder S≠0, it is considered When an error occurs in the message, search the error correction code table to determine whether the error mode can be corrected.

具体判断原则为:顺序搜索纠错码表中的300个条目,比较Si和当前电文的S,如果找到Si=S则认为错误模式可以纠正,保留与Si对应的错误位置Pi,例如S25=S,P25=25,其含义是当前电文的第25个比特发生错误;如果在300个条目中没有找到Si=S则认为错误模式不可纠正,当前电文进行丢弃处理。The specific judgment principle is: sequentially search 300 entries in the error correction code table, compare S i with S in the current message, if S i = S is found, the error mode can be corrected, and the error position P i corresponding to S i is reserved, For example, S 25 =S, P 25 =25, which means that the 25th bit of the current message has an error; if S i =S is not found in the 300 entries, the error mode is considered uncorrectable, and the current message is discarded.

步骤4,对步骤3校验后得到的可纠正错误模式进行纠错。Step 4, correcting the correctable error pattern obtained after the verification in step 3.

具体方法为:根据步骤3得到错误比特位置Pi,纠正当前电文中的1比特错误,纠错后的电文进行后续定位解算处理。例如步骤3得到P25=25,则将当前电文的第25个比特进行翻转,即得到纠错后的导航电文The specific method is: get the error bit position Pi according to step 3, correct the 1-bit error in the current message, and perform subsequent positioning and calculation processing on the message after error correction. For example, if P 25 = 25 is obtained in step 3, the 25th bit of the current message is reversed to obtain the error-corrected navigation message

至此,使用CRC纠正导航电文错误的过程结束。So far, the process of using CRC to correct errors in navigation messages is over.

为具体分析CRC纠错方法的性能,使用软件仿真了CNAV电文CRC纠错过程,仿真的电文帧长300比特,检错编码为CRC-24,图4是根据实施例进行的模拟CRC编码纠错结果,横轴表示电文误码率BER,纵轴表示电文误帧率FER,曲线A表示没有使用CRC编码纠错的导航电文误帧率,曲线B表示采用CRC编码纠错后的导航电文误帧率,从图中可以看出使用CRC编码纠错有效降低了导航电文的误帧率,具体误帧率改善性能数据如表2。In order to specifically analyze the performance of the CRC error correction method, software is used to simulate the CRC error correction process of the CNAV message. The simulated message frame length is 300 bits, and the error detection code is CRC-24. Fig. 4 is the simulated CRC code error correction according to the embodiment As a result, the horizontal axis represents the message bit error rate BER, and the vertical axis represents the message frame error rate FER. Curve A represents the frame error rate of the navigation message without CRC code error correction, and curve B represents the frame error rate of the navigation message after using CRC code error correction. It can be seen from the figure that using CRC coding error correction effectively reduces the frame error rate of the navigation message, and the specific frame error rate improvement performance data is shown in Table 2.

表2使用CRC纠错后误帧率改善Table 2 Improvement of frame error rate after using CRC error correction

  误码率 BER   纠错前误帧率 Frame error rate before error correction   纠错后误帧率 Frame error rate after error correction   1×10-2 1×10 -2   0.95 0.95   0.80 0.80

  1×10-3 1×10 -3   0.26 0.26   0.037 0.037   1×10-4 1×10 -4   2.9×10-2 2.9×10 -2   4.4×10-4 4.4×10 -4   1×10-5 1×10 -5   2.9×10-3 2.9×10 -3   4.5×10-6 4.5×10 -6   1×10-6 1×10 -6   2.9×10-4 2.9×10 -4   4.5×10-8 4.5×10 -8   1×10-7 1×10 -7   2.9×10-5 2.9×10 -5   4.5×10-10 4.5× 10-10

本发明方法适用于美国GPS卫星定位系统L2C、L5信号所用的CNAV导航电文,L1C信号所用的CNAV-2导航电文,欧洲伽利略Galileo卫星定位系统所用的F/NAV、I/NAV导航电文,中国北斗COMPASS卫星定位系统所用的导航电文,俄罗斯GLONASS卫星定位系统所用的导航电文。The method of the present invention is applicable to the used CNAV navigation message of U.S. GPS satellite positioning system L2C, L5 signal, the used CNAV-2 navigation message of L1C signal, the used F/NAV, I/NAV navigation message of European Galileo Galileo satellite positioning system, China Beidou The navigation message used by the COMPASS satellite positioning system, and the navigation message used by the Russian GLONASS satellite positioning system.

本发明方法并不限定于特定的GPS卫星导航系统,而是适用于任意使用CRC作为导航电文校验码的卫星导航系统。The method of the present invention is not limited to a specific GPS satellite navigation system, but is applicable to any satellite navigation system that uses CRC as a navigation message check code.

虽然结合附图描述了本发明的实施方式,但是对于本领域技术人员来说,在不脱离本发明原理的前提下,还可以做出若干变形和改进,这些也应视为属于本发明的保护范围。Although the embodiment of the present invention has been described in conjunction with the accompanying drawings, for those skilled in the art, some modifications and improvements can be made without departing from the principle of the present invention, and these should also be regarded as belonging to the protection of the present invention scope.

Claims (5)

1. the satellite navigation message error correction method based on the CRC coding is characterized in that: comprise the steps:
Step 1, structure CRC check module;
According to the CRC in satellite navigation message standard coding generator polynomial g (x):
g(x)=x 24+x 23+x 18+x 17+x 14+x 11+x 10+x 7+x 6+x 5+x 4+x 3+x+1,
Error detection principles of construction CRC check module according to CRC;
Step 2, structure CRC error correction code table;
According to the text frame length N that stipulates in the satellite navigation message standard, 1 different bit error pattern data of structure N kind are sent N kind 1 bit error pattern data into the CRC check module in the step 1 successively, obtain N different CRC check remainder S i, i representes the sequence number of 1 bit error pattern data, i=1 ... N; The verification remainder S of i kind 1 bit error pattern data iWith errors present P iForm i clauses and subclauses in the error correction code table, N the clauses and subclauses that the different 1 bit error pattern data of N kind are produced deposit CRC error correction code table in order in;
The building method of 1 bit error pattern data is: i bit of i kind 1 bit error pattern data is 1, and other is 0, errors present P i=i;
The concrete characteristic of CRC error correction code table is: code table has N clauses and subclauses, and each clauses and subclauses comprises 1 errors present and a verification remainder, the errors present P in the 1st to N clauses and subclauses iOrder according to from 1 to N increases progressively;
Step 3, error pattern detects;
The CRC check module that the satellite navigation message that receives is sent in the step 1 is carried out the verification computing,, carry out follow-up positioning calculation computing if verification remainder S=0 thinks that then text is correct; If verification remainder S ≠ 0 thinks that then text makes a mistake, carry out the search of CRC error correction code table and whether can correct with the misjudgment pattern;
Step 4 is carried out error correction to the correctable error pattern that obtains after step 3 verification;
So far, the process of using CRC to correct the navigation message mistake finishes.
2. a kind of satellite navigation message error correction method according to claim 1 based on the CRC coding; It is characterized in that: the described 1 bit error pattern data of step 2 are that length is the 2 system bit streams of N; 1 " 1 " and N-1 " 0 " is arranged in N bit; Wherein " 1 " representative makes a mistake, and " 0 " representative does not make a mistake.
3. a kind of satellite navigation message error correction method based on the CRC coding according to claim 1 is characterized in that: the method for step 3 described search CRC error correction code table and misjudgment pattern is: with the verification remainder S of N clauses and subclauses in the verification remainder S of current text and the CRC error correction code table in the step 2 iCarry out order relatively, if find S i=S thinks that then error pattern can correct, and keeps and S iErrors present P in same clauses and subclauses iOtherwise think that error pattern can not correct, current text carries out discard processing.
4. a kind of satellite navigation message error correction method based on CRC coding according to claim 1, it is characterized in that: the concrete grammar that said step 4 pair correctable error pattern is carried out error correction is: the errors present P that obtains according to step 3 i, with navigation message P iIndividual bit overturns, thereby corrects 1 bit mistake.
5. a kind of method of using the CRC coding to correct the satellite navigation message mistake according to claim 1 is characterized in that: said method is applicable to the satellite navigation system of any use CRC as the navigation message check code.
CN2012100623658A 2012-03-12 2012-03-12 Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors Pending CN102571294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100623658A CN102571294A (en) 2012-03-12 2012-03-12 Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100623658A CN102571294A (en) 2012-03-12 2012-03-12 Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors

Publications (1)

Publication Number Publication Date
CN102571294A true CN102571294A (en) 2012-07-11

Family

ID=46415842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100623658A Pending CN102571294A (en) 2012-03-12 2012-03-12 Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors

Country Status (1)

Country Link
CN (1) CN102571294A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283639A (en) * 2014-09-16 2015-01-14 上海卫星工程研究所 Troubleshooting system and method of data transmission sub system based on two stages of check codes
CN105450281A (en) * 2016-01-27 2016-03-30 中国人民解放军国防科学技术大学 System and method for diversity reception of multiple identical user receiver inbound signals
CN103746773B (en) * 2013-12-31 2017-02-15 深圳信息职业技术学院 Method and system for correcting errors of decoded data by using UMTS (Universal Mobile Telecommunications System) receiver
WO2017092617A1 (en) * 2015-11-30 2017-06-08 华为技术有限公司 Error estimation method, base station and terminal
CN108549096A (en) * 2018-04-17 2018-09-18 中国科学院微电子研究所 Method and device for error correction and decoding of GPS navigation message
CN111030710A (en) * 2019-12-02 2020-04-17 北京北方联星科技有限公司 Method for adaptively improving decoding speed of Galileo navigation system E5 signal
CN112564858A (en) * 2020-11-05 2021-03-26 山东中科泰岳电子科技有限公司 CRC error correction method and system for satellite navigation
CN117452455A (en) * 2023-12-26 2024-01-26 中国人民解放军国防科技大学 Method for designing text decoding module of navigation receiver for embedded test
CN119556635A (en) * 2025-01-27 2025-03-04 西安微电子技术研究所 A method and module for executing a low-orbit near-Earth satellite flight control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2056465A (en) * 1935-03-02 1936-10-06 William H Juhnke Heater
CN101527615A (en) * 2009-04-07 2009-09-09 华为技术有限公司 Implementation method of cyclic redundancy check (CRC) codes and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2056465A (en) * 1935-03-02 1936-10-06 William H Juhnke Heater
CN101527615A (en) * 2009-04-07 2009-09-09 华为技术有限公司 Implementation method of cyclic redundancy check (CRC) codes and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨杰等: "无线传输中的循环冗余校验码纠错应用扩展", 《北京理工大学学报》, vol. 25, no. 8, 31 August 2005 (2005-08-31) *
陈金平等: "现代化GNSS导航电文设计分析", 《电子与信息学报》, vol. 33, no. 1, 31 January 2011 (2011-01-31) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746773B (en) * 2013-12-31 2017-02-15 深圳信息职业技术学院 Method and system for correcting errors of decoded data by using UMTS (Universal Mobile Telecommunications System) receiver
CN104283639B (en) * 2014-09-16 2018-02-09 上海卫星工程研究所 The troubleshooting system and its troubleshooting method of data transmission subsystem based on two-stage check code
CN104283639A (en) * 2014-09-16 2015-01-14 上海卫星工程研究所 Troubleshooting system and method of data transmission sub system based on two stages of check codes
WO2017092617A1 (en) * 2015-11-30 2017-06-08 华为技术有限公司 Error estimation method, base station and terminal
CN105450281B (en) * 2016-01-27 2018-11-02 中国人民解放军国防科学技术大学 A kind of system and method to more parts of same subscriber machine check-in signal diversity receptions
CN105450281A (en) * 2016-01-27 2016-03-30 中国人民解放军国防科学技术大学 System and method for diversity reception of multiple identical user receiver inbound signals
CN108549096A (en) * 2018-04-17 2018-09-18 中国科学院微电子研究所 Method and device for error correction and decoding of GPS navigation message
CN111030710A (en) * 2019-12-02 2020-04-17 北京北方联星科技有限公司 Method for adaptively improving decoding speed of Galileo navigation system E5 signal
CN112564858A (en) * 2020-11-05 2021-03-26 山东中科泰岳电子科技有限公司 CRC error correction method and system for satellite navigation
CN112564858B (en) * 2020-11-05 2022-08-09 山东中科泰岳电子科技有限公司 CRC error correction method and system for satellite navigation
CN117452455A (en) * 2023-12-26 2024-01-26 中国人民解放军国防科技大学 Method for designing text decoding module of navigation receiver for embedded test
CN117452455B (en) * 2023-12-26 2024-03-12 中国人民解放军国防科技大学 Method for designing text decoding module of navigation receiver for embedded test
CN119556635A (en) * 2025-01-27 2025-03-04 西安微电子技术研究所 A method and module for executing a low-orbit near-Earth satellite flight control system

Similar Documents

Publication Publication Date Title
CN102571294A (en) Cyclic redundancy check codes (CRC)-based method for correcting satellite navigation message errors
CN110098838B (en) Error Correction and Erasure Correction Iterative Decoding Method for LDPC-RS Product Codes
CN101379712A (en) Decodage de codes raptor
CN101459431B (en) Decoding method for channel error correcting BCH code and RS code
CN111628780B (en) Data encoding and decoding method and data processing system
US8032812B1 (en) Error correction decoding methods and apparatus
CN110007325B (en) Rapid frame synchronization method for satellite-based enhanced L5 signal
CN104639294A (en) Improved CRC (Cyclic redundancy check) implementation method
CN102891737B (en) Method and system for coding and decoding binary rateless codes
CN103546239A (en) A blind detection system and blind detection method for LTE downlink control channel
CN103312458A (en) Hybrid coding method
CN105609141A (en) Apparatus and method for automatically correcting access data of storage apparatus
CN104698479B (en) The coding/decoding method of navigation message and decoding apparatus
CN102545914B (en) BCH (Broadcast Channel) encoding and decoding method and device
CN102148665A (en) Decoding method for LT (language translation) codes
CN107276720B (en) A Beidou navigation message coding method based on the characteristics of punctured polar codes
CN110806948A (en) A data verification method and device
CN102742164B (en) Decoding method and decoding device
CN101938280A (en) Coding and decoding method and codec of error correction code
CN111224741B (en) BCH code decoding method for satellite navigation, decoder and satellite navigation receiver
CN111183748B (en) Error code resisting method based on cyclic redundancy check and erasure correction coding
CN104849733A (en) Redundancy-based method for correcting error codes of navigation messages
CN103873068A (en) Low-density-parity-check decoding method and electronic device
CN107743036A (en) BCH code decoding method
CN117713840A (en) Error correction and detection encoding method for spaceborne computer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120711