CN102566500A - 基于直线段逼近节点的数控系统轮廓误差控制方法 - Google Patents

基于直线段逼近节点的数控系统轮廓误差控制方法 Download PDF

Info

Publication number
CN102566500A
CN102566500A CN2011103789805A CN201110378980A CN102566500A CN 102566500 A CN102566500 A CN 102566500A CN 2011103789805 A CN2011103789805 A CN 2011103789805A CN 201110378980 A CN201110378980 A CN 201110378980A CN 102566500 A CN102566500 A CN 102566500A
Authority
CN
China
Prior art keywords
axle
profile errors
line segment
error
contour error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103789805A
Other languages
English (en)
Other versions
CN102566500B (zh
Inventor
赵国勇
赵玉刚
张丽丽
申永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN 201110378980 priority Critical patent/CN102566500B/zh
Publication of CN102566500A publication Critical patent/CN102566500A/zh
Application granted granted Critical
Publication of CN102566500B publication Critical patent/CN102566500B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

本发明提供一种基于直线段逼近节点的数控系统轮廓误差控制方法,采用以下步骤:1)轮廓误差计算,2)轮廓误差补偿,其特征在于:步骤1)中,用直线段按等误差法逼近加工零件刀心轨迹指令曲线后,在零件数控直线插补加工的每个采样周期,根据当前实际刀位点和用直线段逼近刀心轨迹指令曲线时的逼近节点,计算当前实际刀位点到刀心轨迹指令曲线的最短距离,即轮廓误差;步骤2)中,将计算得到的轮廓误差与当前采样周期的跟随误差相叠加,将叠加结果送到数控系统PID位置控制器中计算位置控制量,并输出到伺服执行机构,实现轮廓误差补偿。本发明优点是:轮廓误差计算方法稳定,计算精度高;轮廓误差补偿方法计算简单、实时性好。

Description

基于直线段逼近节点的数控系统轮廓误差控制方法
技术领域
本发明涉及一种误差补偿控制方法,特别是涉及一种基于直线段逼近节点的数控系统轮廓误差补偿控制方法。
背景技术
在制造业中,许多零件的轮廓形状较复杂,轮廓曲线包括解析曲线、分段曲线、列表曲线等。对于这些复杂零件的加工,往往先用直线段逼近复杂的刀心轨迹指令曲线,再用多轴数控机床加工。对多轴数控机床而言,轮廓精度是决定其加工精度的最重要因素。轮廓精度的提高涉及到机床各进给轴动态特性是否匹配,是各坐标轴单轴位置精度和多轴联动精度的综合。由于数控机床伺服驱动比较复杂,且涉及机械、电气、控制及在运动过程中各种参数的变化,所以各轴之间实际动态性能不匹配具有一定的普遍性,这直接影响了轮廓精度的提高。相对于先进的单轴伺服控制器,对轮廓误差计算并直接补偿的方法,是提高系统轮廓精度的更有效途径。
对现有的技术文献检索发现,耿丽荣等在学术期刊《制造技术与机床》(2004,6:P22-25)上发表的论文“基于时间序列预测技术的数控机床轮廓误差实时补偿方法研究”中,针对平面和空间曲线,将当前实际刀位点到本采样周期和上个采样周期,两插补指令点间直线段的距离作为本采样周期的轮廓误差;Syh-Shiuh Yeh等在学术期刊《IEEE TRANSACTIONS ONCONTROL SYSTEMS TECHNOLOGY》(2003,11(3):P375-382)上发表的论文“Analysis and Designof Integrated Control for Multi-Axis Motion Systems”中,将某采样周期刀具实际位置到指令曲线上理想插补点处切线的距离近似为轮廓误差,称为轮廓误差“切线近似法”,这种近似方法适合轮廓曲线曲率较小的场合。上述方法较简单,但由于惯性、摩擦力等原因,实际数控机床各进给轴运动存在滞后现象,且滞后程度很难准确预测,因此上述轮廓误差计算方法不足之处是计算不稳定,当伺服滞后超过一个采样周期时,计算误差较大,计算误差不易控制。
Myung-Hoon LEE等在学术期刊《JSME International Journal》(2004,47(1):P144-149)上发表的论文“A multi-axis contour error controller for free form curves”中,除了对X轴、Y轴、Z轴分别设计PID位置控制器外,对于近似计算得到的轮廓误差,另外设计一套PID轮廓误差控制器,计算较繁锁,限制了数控系统的实时性。
综上所述,在复杂零件数控插补加工中,如何在每个采样周期高精度的计算轮廓误差,并对各进给轴伺服电机进行有效补偿控制以提高轮廓精度,已成为本领域技术人员急需解决的技术问题。
发明内容
本发明的目的是提供一种能克服现有技术的不足、计算误差稳定、计算精度高、实时性好的数控系统轮廓误差控制方法。其技术方案为:
采用以下步骤:1)轮廓误差计算,2)轮廓误差补偿,其特征在于:步骤1)中,用直线段按等误差法逼近加工零件刀心轨迹指令曲线后,在零件数控直线插补加工的每个采样周期,根据当前实际刀位点和用直线段逼近刀心轨迹指令曲线时的逼近节点,计算当前实际刀位点到刀心轨迹指令曲线的最短距离,即轮廓误差;步骤2)中,将计算得到的轮廓误差与当前采样周期的跟随误差相叠加,将叠加结果送到数控系统PID位置控制器中计算位置控制量,并输出到伺服执行机构,实现轮廓误差补偿。
所述的基于直线段逼近节点的数控系统轮廓误差控制方法,在步骤1)中,用直线段按等误差法逼近加工零件刀心轨迹指令曲线时,逼近误差取零件最终允许公差的
Figure BDA0000112006980000021
在每个采样周期,先找到刀心轨迹指令曲线上距当前实际刀位点R最近的三个逼近节点A、B、C,求出实际刀位点R到直线段AB、BC的距离|RM|、|RN|,如果|RM|≤|RN|,令轮廓误差ε≈RM;如果|RM|>|RN|,令轮廓误差ε≈RN。
所述的基于直线段逼近节点的数控系统轮廓误差控制方法,在步骤2)中,将计算得到的轮廓误差ε沿X轴、Y轴、Z轴进给方向分解,分别得到εx、εy、εz;将当前采样周期的跟随误差E沿X轴、Y轴、Z轴进给方向分解,分别得到Ex、Ey、Ez;分别将X轴、Y轴、Z轴的轮廓误差与跟随误差相叠加,μx=Exx,μy=Eyy,μz=Ezz,将μx、μy、μz作为当前采样周期轮廓误差补偿后沿X轴、Y轴、Z轴方向的进给位移量;然后将μx、μy、μz分别输入X轴、Y轴、Z轴进给方向各自PID位置控制器,以控制X轴、Y轴、Z轴的伺服执行机构。
本发明与现有方法相比,其优点是:
1、即使在数控机床进给轴运动存在伺服滞后时,轮廓误差计算方法仍能计算稳定,计算误差小于等于逼近误差,计算精度高,计算较简单;
2、将当前采样周期的轮廓误差和跟随误差相叠加,利用各进给轴的位置控制器,进行轮廓误差补偿,不再额外增加轮廓误差控制器,使计算简单、实时性好。
附图说明
图1是本发明的数控系统轮廓误差控制方法流程图。
图2是本发明的数控系统轮廓误差计算方法示意图。
图3是本发明的数控系统轮廓误差计算补偿程序流程图。
图4是采用本发明的三轴联动数控运动平台硬件结构图。
图5是采用现有技术中轮廓误差“切线近似法”时插补进给的轮廓误差图。
图6是采用本发明时插补进给的轮廓误差图。
具体实施方式
下面结合图1~3对本发明做进一步详细描述:
步骤1),用直线段按等误差法逼近加工零件刀心轨迹指令曲线后,在零件数控直线插补加工的每个采样周期,根据进给轴、工作台的位置检测量计算当前采样周期实际刀位点坐标,根据实际刀位点和用直线段逼近刀心轨迹指令曲线时的逼近节点,计算当前实际刀位点到刀心轨迹指令曲线的最短距离,即轮廓误差。具体如图2所示,设用直线段AB、BC等按精度要求逼近零件的刀心轨迹指令曲线L。设在某采样周期,实际刀位点在R,先找到刀心轨迹指令曲线L上距实际刀位点R最近的三个逼近节点A、B、C,求出实际刀位点R到直线段AB、BC的距离|RM|、|RN|。本发明基于空间解析几何和矢量代数理论,用矢量法计算R到直线段AB、BC的距离|RM|、|RN|:
| RM | = | AB × AR | | AB | - - - ( 1 )
| RN | = | BC × BR | | BC | - - - ( 2 )
逼近节点A、B、C以及实际刀位点R坐标均为已知,因此式(1)、式(2)的计算较简单。
①如果|RM|≤|RN|,令轮廓误差
ε≈RM    (3)
用直线段逼近曲线L时逼近误差为常数,如图2中ST所示,设RM与曲线L交于点P,则式(3)计算误差为MP,而|MP|≤|ST|,即轮廓误差的计算误差小于等于逼近误差。
②如果|RM|>|RN|,令轮廓误差
ε≈RN    (4)
同理,此时轮廓误差的计算误差小于等于逼近误差。
步骤2),将计算得到的轮廓误差与当前采样周期的跟随误差相叠加,将叠加结果送到数控系统PID位置控制器中计算位置控制量控制伺服电机,以补偿轮廓误差提高轮廓精度。图3是基于直线段逼近节点的数控系统轮廓误差计算补偿程序流程图:在读入第n个加工程序段译码及预处理结果后,在第k采样周期,插补计算得到跟随误差Ex、Ey、Ez,找到与当前采样周期实际刀位点最接近的三个逼近节点,计算轮廓误差ε,将ε分解为εx、εy、εz,计算当前采样周期各进给轴轮廓误差补偿后位移量μx、μy、μz,然后将μx、μy、μz分别输入X轴、Y轴、Z轴进给方向各自PID位置控制器计算控制量,以控制X轴、Y轴、Z轴的伺服执行机构。
本发明在图4所示的三轴联动数控运动平台的数控系统中获得实现:
该三轴联动数控运动平台采用PC机和DSP运动控制器构成上下位机结构,通过USB2.0实现上位机与下位机之间的数据通信。PC机作为上位机充当人机接口,实现命令控制、代码编辑、状态检测及显示等功能,DSP运动控制器采用SEED-DEC2812运动控制卡,其中核心DSP处理芯片为TMS320-F2812,该DSP芯片主频为150MHz,采用哈佛结构,在逻辑上有4M×16位程序空间和4M×16位数据空间,但物理上已将程序空间和数据空间统一为一个4M×16位的存储空间,该DSP芯片开发环境为CCS2.0。在SEED-DEC2812运动控制卡里实现插补、轮廓误差计算补偿、位置控制等,X、Y、Z轴均采用松下伺服驱动器和伺服电机。插补周期和采样周期均为4ms。
下面结合图5、图6所示的实验结果对本发明做进一步说明:
在SEED-DEC2812运动控制卡中轮廓误差控制部分,分别编写现有技术中的轮廓误差“切线近似法”控制模块(详见背景技术),以及本发明的轮廓误差补偿控制模块。设某零件刀心轨迹指令曲线为L1,用NURBS曲线描述:控制顶点为A1(50,0,50),A2(50,50,50),A3(0,50,0),A4(-50,50,-50),A5(-50,0,-50),A6(-50,-50,-50),A7(0,-50,0),A8(50,-50,50),A9(50,0,50);权因子为(1,0.6,1,0.4,1,0.4,1,0.6,1);节点参数为(0,0,0,0,0.25,0.375,0.5,0.625,0.75,1,1,1,1)。
图5为采用现有技术中轮廓误差“切线近似法”时插补进给的轮廓误差图,轮廓误差最大值为0.061mm左右;取零件最终允许公差为0.12mm,用直线段按等误差法逼近曲线L1时,逼近误差取零件允许公差的
Figure BDA0000112006980000051
即0.02mm,在同样的工作条件下,采用本发明方法,直线插补进给的轮廓误差如图6所示,轮廓误差最大值为0.039mm左右,相比图5轮廓误差显著减小,相应的提高了轮廓精度。原因在于,本发明中轮廓误差计算方法稳定,即使在进给轴运动存在伺服滞后时,对轮廓误差的计算误差一直小于等于逼近误差,计算精度高;将得到的较为准确的轮廓误差和当前采样周期的跟随误差相叠加,利用各进给轴的位置控制器,有效地进行了轮廓误差补偿,所以提高了轮廓精度。

Claims (3)

1.一种基于直线段逼近节点的数控系统轮廓误差控制方法,采用以下步骤:1)轮廓误差计算,2)轮廓误差补偿,其特征在于:步骤1)中,用直线段按等误差法逼近加工零件刀心轨迹指令曲线后,在零件数控直线插补加工的每个采样周期,根据当前实际刀位点和用直线段逼近刀心轨迹指令曲线时的逼近节点,计算当前实际刀位点到刀心轨迹指令曲线的最短距离,即轮廓误差;步骤2)中,将计算得到的轮廓误差与当前采样周期的跟随误差相叠加,将叠加结果送到数控系统PID位置控制器中计算位置控制量,并输出到伺服执行机构,实现轮廓误差补偿。
2.如权利要求1所述的基于直线段逼近节点的数控系统轮廓误差控制方法,其特征在于:在步骤1)中,用直线段按等误差法逼近加工零件刀心轨迹指令曲线时,逼近误差取零件最终允许公差的
Figure FDA0000112006970000011
在每个采样周期,先找到刀心轨迹指令曲线上距当前实际刀位点R最近的三个逼近节点A、B、C,求出实际刀位点R到直线段AB、BC的距离|RM|、|RN|,如果|RM|≤|RN|,令轮廓误差ε≈RM;如果|RM|>|RN|,令轮廓误差ε≈RN。
3.如权利要求1所述的基于直线段逼近节点的数控系统轮廓误差控制方法,其特征在于:在步骤2)中,将计算得到的轮廓误差ε沿X轴、Y轴、Z轴进给方向分解,分别得到εx、εy、εz;将当前采样周期的跟随误差E沿X轴、Y轴、Z轴进给方向分解,分别得到Ex、Ey、Ez;分别将X轴、Y轴、Z轴的轮廓误差与跟随误差相叠加,μx=Exx,μy=Eyy,μz=Ezz,将μx、μy、μz作为当前采样周期轮廓误差补偿后沿X轴、Y轴、Z轴方向的进给位移量;然后将μx、μy、μz分别输入X轴、Y轴、Z轴进给方向各自PID位置控制器,以控制X轴、Y轴、Z轴的伺服执行机构。
CN 201110378980 2011-11-24 2011-11-24 基于直线段逼近节点的数控系统轮廓误差控制方法 Expired - Fee Related CN102566500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110378980 CN102566500B (zh) 2011-11-24 2011-11-24 基于直线段逼近节点的数控系统轮廓误差控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110378980 CN102566500B (zh) 2011-11-24 2011-11-24 基于直线段逼近节点的数控系统轮廓误差控制方法

Publications (2)

Publication Number Publication Date
CN102566500A true CN102566500A (zh) 2012-07-11
CN102566500B CN102566500B (zh) 2013-09-18

Family

ID=46412146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110378980 Expired - Fee Related CN102566500B (zh) 2011-11-24 2011-11-24 基于直线段逼近节点的数控系统轮廓误差控制方法

Country Status (1)

Country Link
CN (1) CN102566500B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388840A (zh) * 2015-12-24 2016-03-09 上海交通大学 实时自适应轮廓误差估计方法
CN105911959A (zh) * 2015-02-24 2016-08-31 发那科株式会社 具有车齿加工的工具修正功能的数值控制装置
CN107703883A (zh) * 2017-11-10 2018-02-16 中国计量大学 建立直线电机轮廓误差计算模型的方法及装置
CN108008379A (zh) * 2016-11-02 2018-05-08 戴尔菲技术公司 根据检测数据提供车辆环境轮廓折线的方法
CN108994838A (zh) * 2018-08-21 2018-12-14 智久(厦门)机器人科技有限公司上海分公司 机器人位置与规划路径的关系计算方法及系统
WO2019047457A1 (zh) * 2017-09-11 2019-03-14 大连理工大学 一种等效平面交叉耦合控制方法
US10838403B2 (en) 2018-11-28 2020-11-17 Industrial Technology Research Institute Simulation method for milling by use of dynamic position error
CN113848813A (zh) * 2021-09-23 2021-12-28 合肥工业大学 一种基于plc单元的三轴运动控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102517A2 (en) * 2005-03-23 2006-09-28 Hurco Companies, Inc. Method of tolerance-based trajectory planning and control
CN101178594A (zh) * 2007-11-30 2008-05-14 上海奈凯电子科技有限公司 数控机床系统中实现对刀路进行插补控制的方法
CN101907876A (zh) * 2010-05-28 2010-12-08 沈阳高精数控技术有限公司 适用于数控装置的指令点整形压缩插补方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102517A2 (en) * 2005-03-23 2006-09-28 Hurco Companies, Inc. Method of tolerance-based trajectory planning and control
US20070046677A1 (en) * 2005-03-23 2007-03-01 Hurco Companies, Inc. Method of tolerance-based trajectory planning
CN101178594A (zh) * 2007-11-30 2008-05-14 上海奈凯电子科技有限公司 数控机床系统中实现对刀路进行插补控制的方法
CN101907876A (zh) * 2010-05-28 2010-12-08 沈阳高精数控技术有限公司 适用于数控装置的指令点整形压缩插补方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911959A (zh) * 2015-02-24 2016-08-31 发那科株式会社 具有车齿加工的工具修正功能的数值控制装置
CN105911959B (zh) * 2015-02-24 2018-10-09 发那科株式会社 具有车齿加工的工具修正功能的数值控制装置
CN105388840A (zh) * 2015-12-24 2016-03-09 上海交通大学 实时自适应轮廓误差估计方法
CN108008379A (zh) * 2016-11-02 2018-05-08 戴尔菲技术公司 根据检测数据提供车辆环境轮廓折线的方法
CN108008379B (zh) * 2016-11-02 2021-07-23 戴尔菲技术公司 生成表示车辆环境的物体的轮廓的折线的方法
WO2019047457A1 (zh) * 2017-09-11 2019-03-14 大连理工大学 一种等效平面交叉耦合控制方法
US10921772B2 (en) 2017-09-11 2021-02-16 Dalian University Of Technology Equivalent-plane cross-coupling control method
CN107703883A (zh) * 2017-11-10 2018-02-16 中国计量大学 建立直线电机轮廓误差计算模型的方法及装置
CN107703883B (zh) * 2017-11-10 2019-11-19 中国计量大学 建立直线电机轮廓误差计算模型的方法及装置
CN108994838A (zh) * 2018-08-21 2018-12-14 智久(厦门)机器人科技有限公司上海分公司 机器人位置与规划路径的关系计算方法及系统
US10838403B2 (en) 2018-11-28 2020-11-17 Industrial Technology Research Institute Simulation method for milling by use of dynamic position error
CN113848813A (zh) * 2021-09-23 2021-12-28 合肥工业大学 一种基于plc单元的三轴运动控制系统

Also Published As

Publication number Publication date
CN102566500B (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
CN102566500B (zh) 基于直线段逼近节点的数控系统轮廓误差控制方法
CN102591257B (zh) 面向参数曲线刀具轨迹的数控系统轮廓误差控制方法
CN102147600B (zh) 实时生成曲率连续路径的数控插补系统
Wang et al. An accelerated convergence approach for real-time deformation compensation in large thin-walled parts machining
CN103176428B (zh) 基于球坐标的cnc系统插补算法及实现该算法的装置
CN102354146B (zh) 一种运动控制系统及其位置控制方法
CN101825884B (zh) 用五轴四联动的数控系统实现五轴五联动轨迹控制的方法
CN101980091A (zh) 双转台五轴联动数控加工旋转刀具中心点补偿方法
CN104460516A (zh) 一种基于后置处理五轴刀具半径补偿方法
CN111427308B (zh) 一种用于数控平台轨迹规划的误差补偿综合控制方法
CN102662351B (zh) 面向圆柱凸轮加工的三轴联动轮廓误差补偿控制方法
CN102707671A (zh) 应用于工具机的加工路径最佳化方法
Song et al. Estimation and compensation for continuous-path running trajectory error in high-feed-speed machining
Wu et al. Fast NURBS interpolation based on the biarc guide curve
Mohan et al. Parametric NURBS Curve Interpolators: A Review: A Review
CN104597846A (zh) 一种多轴联动管道插补全闭环运动控制方法
My et al. New feed rate optimization formulation in a parametric domain for 5-axis milling robots
Liu et al. Developing continuous machining strategy for cost-effective five-axis CNC milling systems with a four-axis controller
CN105278457A (zh) 基于分步体对角线测量法的空间误差补偿方法
Li et al. An improved tool path discretization method for five-axis sculptured surface machining
Sheng et al. A comparison strategy for improving the precision of contour error estimation
Zhao et al. Smooth trajectory generation based on contour error constraint and parameter correction b-spline
Park et al. Near net-shape five-axis face milling of marine propellers
Kong et al. Research on servo matching of a five-axis hybrid machine tool
Nagata et al. Intelligent machining system for the artistic design of wooden paint rollers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130918

Termination date: 20141124

EXPY Termination of patent right or utility model