CN102564319B - 利用图像处理技术检测晶圆直线传输中滑移量的方法 - Google Patents

利用图像处理技术检测晶圆直线传输中滑移量的方法 Download PDF

Info

Publication number
CN102564319B
CN102564319B CN201110457188.9A CN201110457188A CN102564319B CN 102564319 B CN102564319 B CN 102564319B CN 201110457188 A CN201110457188 A CN 201110457188A CN 102564319 B CN102564319 B CN 102564319B
Authority
CN
China
Prior art keywords
wafer
point
distance
camera
end effector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110457188.9A
Other languages
English (en)
Other versions
CN102564319A (zh
Inventor
陈恳
边柯柯
高雨浩
周于
付翱
付成龙
杨开明
朱煜
孙勇
伍三忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201110457188.9A priority Critical patent/CN102564319B/zh
Publication of CN102564319A publication Critical patent/CN102564319A/zh
Application granted granted Critical
Publication of CN102564319B publication Critical patent/CN102564319B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明是一种利用图像处理技术检测晶圆直线传输中滑移量的方法,包括步骤:S1,将摄像机安装在输片机械手上方,并在晶圆及机械手末端执行器上加以标记;S2,利用摄像机分别对机械手收缩和伸展状态进行拍摄,依据拍摄图像微调所述标记,完成上述操作后用摄像机获取机械手直线输片的视频;S3,基于几何光学基本原理及CCD像素分布参数,计算所述视频的每一帧图像中晶圆相对机械手的位置;S4,逐帧分析对比晶圆相对机械手的位置变化,计算并拟合获得滑移量随时间的变化曲线。本发明能够满足不同精度等级下滑移量检测要求;可为晶圆传输机械手的速度、加速度优化控制提供理论和实验依据,从而满足输送精度的情况下达到更高的输送效率。

Description

利用图像处理技术检测晶圆直线传输中滑移量的方法
技术领域
本发明涉及集成电路(IC)制造中晶圆传输系统,尤其涉及一种利用图像处理技术检测晶圆直线传输中滑移量的方法。
背景技术
晶圆传输系统是集成电路(IC)制造中必不可少的组成部分,其传输精度直接影响集成电路(IC)工艺的精度。现有的研究大多侧重于提高负责晶圆传输的机械手的定位精度,却尚未见到精密检测传输过程中晶圆滑移量的方法。因此,只能通过直观限速或者附加额外夹持机构来保证足够小的滑移量,导致对机械手的速度、加速度优化控制缺乏有效的理论和实验依据。
发明内容
(一)要解决的技术问题
本发明的目的是针对晶圆传输过程中缺乏精密检测晶圆滑移量的问题,提出一种利用图像处理技术检测晶圆直线传输中滑移量的方法,从而为机械手输片过程中的速度、加速度优化控制提供有力的理论和实验依据。
(二)技术方案
为了解决上述技术问题,本发明提供一种利用图像处理技术检测晶圆直线传输中滑移量的方法,包括步骤:
S1,将摄像机安装在输片机械手上方,并在晶圆及机械手末端执行器上加以标记;
S2,利用摄像机分别对机械手收缩和伸展状态进行拍摄,依据拍摄图像微调所述标记,完成上述操作后用摄像机获取机械手直线输片的视频;
S3,基于几何光学基本原理及CCD像素分布参数,计算所述视频的每一帧图像中晶圆相对机械手的位置;
S4,逐帧分析对比晶圆相对机械手的位置变化,计算并拟合获得滑移量随时间的变化曲线。
优选地,所述步骤S1具体包括:
S11,将机械手机体安装于水平基面上,其机械手的末端执行器以及晶圆保持水平;
S12,将高速摄像机固定在待测装置上方,其光学系统轴线与输片机械手的安装基面垂直;
S13,从高速摄像机的前端镜头圆周上不同的三点处分别垂下重锤线,标记三个落点并求出由三个落点确定的圆心,该圆心即为高速摄像机的光学系统轴线在安装基面上的投影点;
S14,在通过上述光学系统轴线在安装基面上的投影点,且平行于机械手末端执行器直线作动方向的直线上作给定距离的标记点A、B,并在晶圆上作给定距离的标记点C、D,使得直线CD位于直线AB与光学系统轴线所确定的平面上。
优选地,所述步骤S2具体包括:
S21,启动机械手使之处于收缩、伸展的状态,分别利用高速摄像机对相应状态进行静态图像采集;
S22,分析拍摄图像,从像素上判断观察上述标记点A、B、C、D是否均位于图像横向的正中,若从像素上分析标记点的位置偏差较大,则进行轻微调节使上述4个标记点均位于静态图像横向的正中位置;
S23,启动高速摄像机开始录像,随后控制输片机械手持晶圆进行多次直线往复运动,获得机械手直线输片的视频。
优选地,所述步骤S3具体包括:
S31,通过对视频每一帧图像中标记点A、B的分析计算摄像机光学焦点到机械手末端执行器平面的距离,其计算公式为
Figure BDA0000127561090000031
其中标记点距离LAB为事先设定值,标记点在CCD上的成像点距离LA′B′可根据图像上标记点A、B之间的像素点数NA′B′以及相机的CCD像素情况求出,f是摄像机的光学焦距,h是摄像机光学焦点到机械手末端执行器平面的距离;
S32,通过对图像中标记点C、D的分析计算晶圆平面与机械手末端执行器平面的高度差,其计算公式为
Figure BDA0000127561090000032
其中标记点距离LCD为事先设定值,标记点在CCD上的成像点距离LC′D′可根据图像上标记点C、D之间的像素点数NC′D′以及相机的CCD像素情况求出,f是摄像机的光学焦距,h是摄像机的光学焦点到机械手末端执行器平面的距离,δh是晶圆平面到机械手末端执行器平面的距离;
S33,通过对图像中各标记点的分析计算晶圆和机械手末端执行器的相对距离,其计算公式包括
Figure BDA0000127561090000033
Figure BDA0000127561090000034
其中B1是标记点B和摄像机焦点O所在的直线与晶圆平面的交点,B2是标记点B在晶圆平面上的垂足点,O1是图像中的像素中点,
Figure BDA0000127561090000036
是B1和B2之间的距离,
Figure BDA0000127561090000037
可以根据图像上点B′和图像中点O1之间的像素点数
Figure BDA0000127561090000038
以及相机的CCD像素情况求出,f是摄像机的光学焦距,δh是晶圆平面到机械手末端执行器平面的距离,
Figure BDA0000127561090000039
是B1和标记点D之间的距离,LAB为标记点A与B之间的距离,NB′D′为B′与D′之间的像素点数,NA′B′为A′与B′之间的像素点数;根据上述距离的计算即可求出该图像中晶圆和机械手末端执行器的相对距离d。
优选地,所述步骤S4具体包括:
S41,将每一帧图像中晶圆相对机械手末端执行器的位置dx与初始位置时的d0比较求滑移量δdx
S42,按照高速摄像机的每秒帧数计算每一帧图像的时间点;
S43,将上述离散滑移量以及相应的时间点进行拟合,获得滑移量δd随时间t的动态变化曲线。
(三)有益效果
本发明的优点在于:1)能够满足不同精度等级下滑移量检测要求;2)可为晶圆传输机械手的速度、加速度优化控制提供理论和实验依据,从而使得晶圆传输机械手在满足输送精度的情况下达到更高的输送效率。
附图说明
图1为本发明方法的流程图;
图2为本发明一实施例中的设备布局轴测图;
图3为本发明一实施例中的标记点布局俯视示意图;
图4为本发明一实施例中的滑移测量平面内机械手上标记点图像分析图;
图5为本发明一实施例中的滑移测量平面内晶圆上待测点图像分析图;
图6为本发明一实施例中的滑移测量平面内晶圆相对位置分析图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不是限制本发明的范围。
如图1所示,本发明所述的利用图像处理技术检测晶圆直线传输中滑移量的方法,包括步骤:S1,将摄像机安装在输片机械手上方,并在晶圆及机械手末端执行器上加以标记;S2,利用摄像机分别对机械手收缩和伸展状态进行拍摄,依据拍摄图像微调所述标记,完成上述操作后用摄像机获取机械手直线输片的视频;S3,基于几何光学基本原理及CCD像素分布参数,计算所述视频的每一帧图像中晶圆相对机械手的位置;S4,逐帧分析对比晶圆相对机械手的位置变化,计算并拟合获得滑移量随时间的变化曲线。
本发明旨在通过简单的设备和分析运算,测出晶圆在机械手直线传输过程中的动态滑移情况,为机械手速度设计分析提供有效的实验数据。
如图2所示,将机械手机体1安装于水平基面上,其机械手2的末端执行器以及晶圆3保持水平;高速摄像机4固定在待测装置上方,如图中A、B点附近的正上方,保证其光学系统轴线与输片机械手的安装基面垂直;从高速摄像机4的前端镜头圆周上不同的三点处分别垂下重锤线,标记落点并找出圆心,即为摄像机的光学系统轴线在安装基面上的投影点O3
如图3所示,在通过上述光学系统轴线在安装基面上的投影点O3,且平行于机械手2末端执行器直线作动方向的直线上作给定距离的标记点A、B,并在晶圆上作给定距离的标记点C、D,使得直线CD位于直线AB与光学系统轴线所确定的平面上,定义该平面为滑移测量平面;启动机械手2使之处于收缩、伸展的状态,分别利用高速摄像机4对相应状态进行静态图像采集;分析拍摄图像,从像素上判断观察上述标记点A、B、C、D是否均位于图像横向的正中,若从像素上分析标记点的位置偏差较大,则进行轻微调节使上述4个标记点均位于静态图像横向的正中位置。
上述实验装置安装、标定完成后,启动高速摄像机4开始录像,随后控制输片机械手2持晶圆3进行多次直线往复运动,获得机械手直线输片的视频;然后基于几何光学基本原理及CCD像素分布参数,计算每一帧图像中晶圆相对机械手的位置,其具体计算原理及过程如下:
步骤1:通过对图像中参考点A、B的分析计算相机焦点高度。
如图4所示,在滑移测量平面内,机械手末端执行器上的参考标记点A、B所在直线即为机械手末端执行器面的投影,O点为摄像机的焦点,粗线O1B′A′为摄像机CCD成像平面的投影,O3为垂足点;根据光路几何性质知
Figure BDA0000127561090000061
其中摄像机焦距f及参考点距离LAB为事先设定值,参考点在CCD上的成像点距离LA′B′可根据图像上参考点A、B之间的像素点数NA′B′以及相机的CCD像素情况求出,根据上述公式即可求得摄像机焦点到晶圆所在平面的高度h;
步骤2:通过对图像中待测点C、D的分析计算晶圆平面与机械手末端执行器参考点平面的高度差。
如图5所示,在滑移测量平面内,晶圆上的参考标记点C、D所在直线即为晶圆所在平面的投影,根据光路几何性质可知
Figure BDA0000127561090000062
其中摄像机焦距f及待测点距离LCD为事先设定值,待测点在CCD上的成像点距离LC′D′可根据图像上参考点C、D之间的像素点数NC′D′以及相机的CCD像素情况求出,再根据上述步骤1中所求出的h即可求得晶圆平面与机械手末端执行器参考点平面的高度差δh;
步骤3:通过对图像中各标记点的分析计算机械手的相对位置。
如图6所示,在滑移测量平面内,机械手末端执行器上的参考标记点A、B与晶圆上的待测标记点C、D之间的距离即可以表示晶圆与机械手托盘的相对位置,为了方便求得滑移量,先求出其中某一对标记点B与D(亦可以用A与D、A与C或B与C)的水平距离;图3中O1点为图像中的像素中点,根据三角形B′O1O与三角形B1B2B的相似性,有其中f为已知且δh也在步骤2中已经求出,通过图像分析可以根据图像上参考点B′和图像中点O1之间的像素点数
Figure BDA0000127561090000072
以及相机的CCD像素情况求出
Figure BDA0000127561090000073
根据上述公式即可求出
Figure BDA0000127561090000074
又根据几何性质以及图像像素与实际距离的比例关系可知
Figure BDA0000127561090000075
其中图像上标记点B′与D′之间的像素点数NB′D′以及标记点A′与B′之间的像素点数NA′B′可以通过图像分析得出,参考标记点A与B之间的距离LAB为事先设定,根据上述参数及公式即可求出
Figure BDA0000127561090000076
根据上述距离的计算即可求出该图像中晶圆和机械手末端执行器的相对距离 d = L B 2 D = L B 1 D - L B 1 B 2 .
将每一帧图像通过上述3个步骤处理方法得出每一帧图像上晶圆和机械手末端执行器的相对距离,然后将每一帧图像中晶圆相对机械手的位置dx与初始位置时的d0比较求滑移量δdx;按照高速摄像机的FPS(每秒帧数)计算每一帧图像的时间点;将上述离散滑移量以及相应的时间点进行拟合,获得滑移量δd随时间t的动态变化曲线,将上述滑移量变化曲线与输片机械手的速度、加速度曲线相结合,即可进行理论分析,对输片机械手的速度进行更好的规划。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (4)

1.一种利用图像处理技术检测晶圆直线传输中滑移量的方法,其特征在于,包括步骤:
S1,将摄像机安装在输片机械手上方,并在晶圆及机械手末端执行器上加以标记;
S2,利用摄像机分别对机械手收缩和伸展状态进行拍摄,依据拍摄图像微调所述标记,完成上述操作后用摄像机获取机械手直线输片的视频;
S3,基于几何光学基本原理及CCD像素分布参数,计算所述视频的每一帧图像中晶圆相对机械手的位置;
S4,逐帧分析对比晶圆相对机械手的位置变化,计算并拟合获得滑移量随时间的变化曲线;
其中,所述步骤S1具体包括:
S11,将机械手机体(1)安装于水平基面上,其机械手(2)的末端执行器以及晶圆(3)保持水平;
S12,将高速摄像机(4)固定在待测装置上方,其光学系统轴线与输片机械手(2)的安装基面垂直;
S13,从高速摄像机(4)的前端镜头圆周上不同的三点处分别垂下重锤线,标记三个落点并求出由三个落点确定的圆心,该圆心即为高速摄像机(4)的光学系统轴线在安装基面上的投影点;
S14,在通过上述光学系统轴线在安装基面上的投影点,且平行于机械手(2)末端执行器直线作动方向的直线上作给定距离的标记点A、B,并在晶圆上作给定距离的标记点C、D,使得直线CD位于直线AB与光学系统轴线所确定的平面上。
2.根据权利要求1所述的利用图像处理技术检测晶圆直线传输中滑移量的方法,其特征在于,所述步骤S2具体包括:
S21,启动机械手(2)使之处于收缩、伸展的状态,分别利用高速摄像机(4)对相应状态进行静态图像采集;
S22,分析拍摄图像,从像素上判断观察上述标记点A、B、C、D是否均位于图像横向的正中,若从像素上分析标记点的位置偏差较大,则进行轻微调节使上述4个标记点均位于静态图像横向的正中位置;
S23,启动高速摄像机(4)开始录像,随后控制输片机械手(2)持晶圆(3)进行多次直线往复运动,获得机械手直线输片的视频。
3.根据权利要求2所述的利用图像处理技术检测晶圆直线传输中滑移量的方法,其特征在于,所述步骤S3具体包括:
S31,通过对视频每一帧图像中标记点A、B的分析计算摄像机光学焦点到机械手末端执行器平面的距离,其计算公式为
Figure FDA0000388094170000021
其中标记点距离LAB为事先设定值,标记点在CCD上的成像点距离LA′B′可根据图像上标记点A、B之间的像素点数NA′B′以及相机的CCD像素情况求出,f是摄像机的光学焦距,h是摄像机光学焦点到机械手末端执行器平面的距离;
S32,通过对图像中标记点C、D的分析计算晶圆平面与机械手末端执行器平面的高度差,其计算公式为
Figure FDA0000388094170000022
其中标记点距离LCD为事先设定值,标记点在CCD上的成像点距离LC′D′可根据图像上标记点C、D之间的像素点数NC′D′以及相机的CCD像素情况求出,f是摄像机的光学焦距,h是摄像机的光学焦点到机械手末端执行器平面的距离,δh是晶圆平面到机械手末端执行器平面的距离;
S33,通过对图像中各标记点的分析计算晶圆和机械手末端执行器的相对距离,其计算公式包括
Figure FDA0000388094170000023
Figure FDA0000388094170000031
其中B1是标记点B和摄像机焦点O所在的直线与晶圆平面的交点,B2是标记点B在晶圆平面上的垂足点,O1是图像中的像素中点,
Figure FDA0000388094170000033
是B1和B2之间的距离,
Figure FDA0000388094170000032
可以根据图像上点B′和图像中点O1之间的像素点数
Figure FDA0000388094170000034
以及相机的CCD像素情况求出,f是摄像机的光学焦距,δh是晶圆平面到机械手末端执行器平面的距离,
Figure FDA0000388094170000035
是B1和标记点D之间的距离,LAB为标记点A与B之间的距离,NB′D′为B′与D′之间的像素点数,NA′B′为A′与B′之间的像素点数;根据上述距离的计算即可求出该图像中晶圆和机械手末端执行器的相对距离d。
4.根据权利要求3所述的利用图像处理技术检测晶圆直线传输中滑移量的方法,其特征在于,所述步骤S4具体包括:
S41,将每一帧图像中晶圆相对机械手末端执行器的位置dx与初始位置时的d0比较求滑移量δdx
S42,按照高速摄像机的每秒帧数计算每一帧图像的时间点;
S43,将上述离散滑移量以及相应的时间点进行拟合,获得滑移量δd随时间t的动态变化曲线。
CN201110457188.9A 2011-12-30 2011-12-30 利用图像处理技术检测晶圆直线传输中滑移量的方法 Expired - Fee Related CN102564319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110457188.9A CN102564319B (zh) 2011-12-30 2011-12-30 利用图像处理技术检测晶圆直线传输中滑移量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110457188.9A CN102564319B (zh) 2011-12-30 2011-12-30 利用图像处理技术检测晶圆直线传输中滑移量的方法

Publications (2)

Publication Number Publication Date
CN102564319A CN102564319A (zh) 2012-07-11
CN102564319B true CN102564319B (zh) 2014-03-12

Family

ID=46410395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110457188.9A Expired - Fee Related CN102564319B (zh) 2011-12-30 2011-12-30 利用图像处理技术检测晶圆直线传输中滑移量的方法

Country Status (1)

Country Link
CN (1) CN102564319B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033381B (zh) * 2012-12-13 2015-07-15 北京自动化技术研究院 一种晶圆传输机械手测试装置
US9184084B2 (en) * 2014-01-28 2015-11-10 Lam Research Corporation Wafer handling traction control system
CN104022051A (zh) * 2014-04-22 2014-09-03 上海华力微电子有限公司 一种检测机台机械臂出现异常的方法
CN104506919B (zh) * 2014-12-26 2018-08-31 上海昭宁信息科技有限公司 显示内容与显示屏运动的同步方法及其系统
CN104778700B (zh) * 2015-04-15 2017-09-29 上海瑞伯德智能系统股份有限公司 一种电容屏与oca胶膜贴合前位置的校正方法
CN106610264B (zh) * 2015-10-22 2019-04-30 沈阳新松机器人自动化股份有限公司 预对准机坐标系的标定方法
CN105513991B (zh) * 2015-12-14 2018-07-20 重庆远创光电科技有限公司 利用芯片运动像机静止方式来获取芯片图像的控制方法
CN108858251B (zh) * 2018-08-30 2020-11-24 东北大学 一种高速运动机械手的防碰撞系统
CN110017769A (zh) * 2019-03-12 2019-07-16 精诚工科汽车系统有限公司 基于工业机器人的零件检测方法及系统
CN109817092A (zh) * 2019-03-21 2019-05-28 京东方科技集团股份有限公司 一种偏光片对位装置及对位方法
JP6983206B2 (ja) * 2019-10-15 2021-12-17 株式会社アルバック 基板搬送装置、および、基板搬送方法
CN116741685B (zh) * 2023-08-14 2023-10-13 泓浒(苏州)半导体科技有限公司 一种晶圆安全传输控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201233224Y (zh) * 2008-07-30 2009-05-06 上海维宏电子科技有限公司 Ccd激光三角位移传感器
CN102120326A (zh) * 2011-01-14 2011-07-13 常州大学 一种基于图像处理技术的机器手抓握滑移检测方法及装置
CN102120307A (zh) * 2010-12-23 2011-07-13 中国科学院自动化研究所 一种基于视觉信息的工业机器人磨削系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292126A (ja) * 1999-04-01 2000-10-20 Hitachi Ltd 外観検査装置およびそれを使用した半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201233224Y (zh) * 2008-07-30 2009-05-06 上海维宏电子科技有限公司 Ccd激光三角位移传感器
CN102120307A (zh) * 2010-12-23 2011-07-13 中国科学院自动化研究所 一种基于视觉信息的工业机器人磨削系统及方法
CN102120326A (zh) * 2011-01-14 2011-07-13 常州大学 一种基于图像处理技术的机器手抓握滑移检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2000-292126A 2000.10.20

Also Published As

Publication number Publication date
CN102564319A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
CN102564319B (zh) 利用图像处理技术检测晶圆直线传输中滑移量的方法
CN109029257B (zh) 基于立体视觉和结构光视觉的大型工件位姿测量系统、方法
US8339463B2 (en) Camera lens calibration system
CN107121093A (zh) 一种基于主动视觉的齿轮测量装置及测量方法
CN109066861A (zh) 基于机器视觉的智能巡检机器人自动充电控制方法
CN103604815B (zh) 玻璃晶片检测装置与标定方法
CN106780623A (zh) 一种机器人视觉系统快速标定方法
CN103792760B (zh) 一种自动调焦执行机构的定位计算与位置校正方法
CN110259067B (zh) 机器人的瓷砖铺设位置识别方法和系统
CN103575227A (zh) 一种基于数字散斑的视觉引伸计实现方法
US20180106607A1 (en) Shape measurement apparatus and shape measurement method
CN107817044B (zh) 基于机器视觉的板材振动的测量装置及方法
CN105323455B (zh) 一种基于机器视觉的定位补偿方法
CN108805940B (zh) 一种变倍相机在变倍过程中跟踪定位的方法
CN102445329B (zh) 一种连续变焦镜头的光轴的快速确定方法
CN102954772A (zh) 一种基于线激光器的海冰表面粗糙度测量方法
CN104930976A (zh) 便携式裂纹长度测量装置及方法
CN106289086A (zh) 一种用于光学标识点间距离精确标定的双相机测量方法
CN111780715A (zh) 一种视觉测距方法
CN101719041A (zh) 摄像头安装调试的装置与方法
CN103323216B (zh) 一种检测平行光管视差的装置及方法
CN109738061A (zh) 一种面向照度计检定的照度计位置自动对准方法及系统
CN103192399A (zh) 一种基于目标运动的显微视觉手眼标定方法
CN206583440U (zh) 一种投影图像视距检测系统
CN108709509A (zh) 轮廓照相机、配套的超大直径回转体工件非接触式测径仪以及非接触式回转体测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140312

Termination date: 20191230

CF01 Termination of patent right due to non-payment of annual fee