CN102560289A - 一种纳米磷化镍(NiP)非晶态合金及其制备方法 - Google Patents

一种纳米磷化镍(NiP)非晶态合金及其制备方法 Download PDF

Info

Publication number
CN102560289A
CN102560289A CN 201010605437 CN201010605437A CN102560289A CN 102560289 A CN102560289 A CN 102560289A CN 201010605437 CN201010605437 CN 201010605437 CN 201010605437 A CN201010605437 A CN 201010605437A CN 102560289 A CN102560289 A CN 102560289A
Authority
CN
China
Prior art keywords
nip
amorphous alloy
nickel
preparation
nickel phosphide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010605437
Other languages
English (en)
Inventor
张东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Academy Nanotechnology & Engineering
Original Assignee
China National Academy Nanotechnology & Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Academy Nanotechnology & Engineering filed Critical China National Academy Nanotechnology & Engineering
Priority to CN 201010605437 priority Critical patent/CN102560289A/zh
Publication of CN102560289A publication Critical patent/CN102560289A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种纳米磷化镍(NiP)非晶态合金及其制备方法,上述方法是采用液相还原法制备粒径小,比表面积大的NiP非晶态合金,其中Ni的质量百分比为10%~80%,P的质量百分比为20%~90%。制备方法包括:(1)配置溶液;(2)生成沉淀;(3)洗涤沉淀物和保存。本发明的优越性在于该方法制备的NiP非晶态合金颗粒粒径小,比表面积大,且制备方法简单,有利于大规模生产,适合于催化加氢反应。

Description

一种纳米磷化镍(NiP)非晶态合金及其制备方法
(一)技术领域
本发明涉及一种磷化镍(NiP)合金,特别是一种纳米磷化镍(NiP)非晶态合金及其制备方法。
(二)背景技术
非晶态合金是一类具有原子排列长程无序而短程有序结构特点的材料。非晶态合金具有各向同性、活性位分布均匀、活性原子高度配位不饱和等特性,因此在多种催化反应中非晶态合金表现出独特的高活性和高选择性,现已在一些工业加氢反应中取代骨架镍作为催化剂使用。
淬冷法是目前工业上制备非晶态合金的主要方法,其主要步骤是:将熔融的合压置到高速旋转的铜辊上使其骤冷,其冷却速度达到106K/s,这样就制成了带状晶态合金。这种方法经进一步改进,也可以制备丝状非晶态合金。采用上述方法制备的非晶态合金催化剂,其不足之处在于其比表面积小(小于1m2/g),表面被氧化层覆盖,且步骤繁琐。
化学还原法是利用强还原剂KBH4和NaH2PO2等将金属离子还原来制备非晶态的方法。早在20世纪50年代就出现了用化学还原法制备细小合金颗粒的报道,到1986年Wonterghem等才首次利用这种方法制备了高效非晶态合金催化剂。还原法制备的非晶态合金粒度可以达到纳米级,所以,非晶态合金的比表面积大程度的提高。邓景发、陈懿等在进行非晶态合金催化剂研究时,成功地制备了一系列各种超细和负载型的非晶态合金。
所以如何在化学还原法的基础上制备粒径小,比表面积大的磷化镍(NiP)非晶态合金是亟待解决的。
(三)发明内容
本发明的目的在于提供一种纳米磷化镍(NiP)非晶态合金及其制备方法,该制备方法工艺简单,可以得到具有小粒径,高比表面积的磷化镍(NiP)非晶态合金。
本发明的技术方案:一种纳米磷化镍(NiP)非晶态合金,其特征在于该合金的活性组分由镍(Ni)和磷(P)组成,其中镍(Ni)的质量百分比为10%~80%,磷(P)的质量百分比为20%~90%。
一种纳米磷化镍(NiP)非晶态合金的制备方法,其特征在于它采用液相还原的方法,具体步骤如下:
(1)配置溶液:将镍离子(Ni+)溶于水中,加入5~20ml浓度为25%的氨水,使其溶液充分溶解,加入十二胺,形成镍(Ni)的络合物;
(2)生成沉淀物:向步骤(1)得到的溶液中滴加磷离子(P+),反应立即进行并发出氢气,得到形态为非晶态合金的黑色沉淀物磷化镍(NiP),反应过程中保持温度在10~80℃内,并通入惰性气体保护,以避免反应产物被氧化;
(3)洗涤:待无氢气放出后,用去离子水洗涤沉淀物;
(4)保存:将得到的黑色沉淀物磷化镍(NiP)保存在无水乙醇中。
所述的镍离子(Ni+)是硫酸镍(NiSO4)、氯化镍(NiCl2)、硝酸镍[Ni(NO3)2]中的至少一种。
所述的磷离子(P+)是次磷酸钠(NaH2PO2)、次磷酸钾(KH2PO2)中的至少一种。
所述的惰性气体是氮气(N2)或氩气(Ar)中的一种。
本发明的优越性在于:制备的磷化镍(NiP)非晶态合金具有粒径小,比表面积大的特点,制备方法操作简单,有利于大规模生产,且制备成本低廉。
(四)具体实施方式
实施例1:
一种纳米磷化镍(NiP)非晶态合金,其特征在于该合金的活性组分由镍(Ni)和磷(P)组成,其中镍(Ni)的质量百分比为10%~80%,磷(P)的质量百分比为20%~90%。
一种纳米磷化镍(NiP)非晶态合金的制备方法,其特征在于它采用液相还原的方法,具体步骤如下:
(1)配置溶液:称取六水硫酸镍(NiSO4·6H2O)1g加入50ml去离子水配制成硫酸镍(NiSO4)溶液,向溶液中加入5ml浓度为25%的氨水,使其溶液充分溶解,然后加入0.7g十二胺,搅拌1小时形成镍(Ni)的络合物;
(2)生成沉淀物:将1.36g次磷酸钠(NaH2PO2)加入到10ml去离子水中;室温下将次磷酸钠(NaH2PO2)溶液滴加到步骤(1)得到的溶液中,反应立即进行并发出氢气,得到形态为非晶态合金的黑色沉淀物磷化镍(NiP),反应过程中保持温度在10~80℃内,并通入氮气(N2)保护,以避免反应产物被氧化;
(3)洗涤:待无氢气放出后,用去离子水洗涤沉淀物;
(4)保存:将得到的黑色沉淀物磷化镍(NiP)保存在无水乙醇中。
产物磷化镍(NiP)的颗粒粒径在25~30nm左右,比表面积172.5m2/g。
实施例2:
一种纳米磷化镍(NiP)非晶态合金,其特征在于该合金的活性组分由镍(Ni)和磷(P)组成,其中镍(Ni)的质量百分比为10%~80%,磷(P)的质量百分比为20%~90%。
一种纳米磷化镍(NiP)非晶态合金的制备方法,其特征在于它采用液相还原的方法,具体步骤如下:
(1)配置溶液:称取氯化镍(NiCl2)1g加入50ml去离子水配制成氯化镍(NiCl2)溶液,向溶液中加入10ml浓度为25%的氨水,使其溶液充分溶解,然后加入0.8g十二胺,搅拌1小时形成镍(Ni)的络合物;
(2)生成沉淀物:将1.5g次磷酸钾(KH2PO2)加入到10ml去离子水中;室温下将次磷酸钾(KH2PO2)溶液滴加到步骤(1)得到的溶液中,反应立即进行并发出氢气,得到形态为非晶态合金的黑色沉淀物磷化镍(NiP),反应过程中保持温度在10~80℃内,并通入氮气(N2)保护,以避免反应产物被氧化;
(3)洗涤:待无氢气放出后,用去离子水洗涤沉淀物;
(4)保存:将得到的黑色沉淀物磷化镍(NiP)保存在无水乙醇中。
产物磷化镍(NiP)的颗粒粒径在10~15nm左右,比表面积250.3m2/g。
实施例3:
一种纳米磷化镍(NiP)非晶态合金,其特征在于该合金的活性组分由镍(Ni)和磷(P)组成,其中镍(Ni)的质量百分比为10%~80%,磷(P)的质量百分比为20%~90%。
一种纳米磷化镍(NiP)非晶态合金的制备方法,其特征在于它采用液相还原的方法,具体步骤如下:
(1)配置溶液:称取六水硝酸镍[Ni(NO3)2·6H2O]1g加入50ml去离子水配制成硝酸镍[Ni(NO3)2]溶液,向溶液中加入10ml浓度为25%的氨水,使其溶液充分溶解,然后加入0.6g十二胺,搅拌1小时形成镍(Ni)的络合物;
(2)生成沉淀物:将1.23g次磷酸钠(NaH2PO2)加入到10ml去离子水中;室温下将次磷酸钠(NaH2PO2)溶液滴加到步骤(1)得到的溶液中,反应立即进行并发出氢气,得到形态为非晶态合金的黑色沉淀物磷化镍(NiP),反应过程中保持温度在10~80℃内,并通入氩气(Ar)保护,以避免反应产物被氧化;
(3)洗涤:待无氢气放出后,用去离子水洗涤沉淀物;
(4)保存:将得到的黑色沉淀物磷化镍(NiP)保存在无水乙醇中。
产物磷化镍(NiP)的颗粒粒径在50~60nm左右,比表面积120.5m2/g。

Claims (5)

1.一种纳米磷化镍(NiP)非晶态合金,其特征在于该合金的活性组分由镍(Ni)和磷(P)组成,其中镍(Ni)的质量百分比为10%~80%,磷(P)的质量百分比为20%~90%。
2.一种纳米磷化镍(NiP)非晶态合金的制备方法,其特征在于它采用液相还原的方法,具体步骤如下:
(1)配置溶液:将镍离子(Ni+)溶于水中,加入5~20ml浓度为25%的氨水,使其溶液充分溶解,加入十二胺,形成镍(Ni)的络合物;
(2)生成沉淀物:向步骤(1)得到的溶液中滴加磷离子(P+),反应立即进行并发出氢气,得到形态为非晶态合金的黑色沉淀物磷化镍(NiP),反应过程中保持温度在10~80℃内,并通入惰性气体保护,以避免反应产物被氧化;
(3)洗涤:待无氢气放出后,用去离子水洗涤沉淀物;
(4)保存:将得到的黑色沉淀物磷化镍(NiP)保存在无水乙醇中。
3.根据权利要求2所述的一种纳米磷化镍(NiP)非晶态合金的制备方法,其特征在于所述的镍离子(Ni+)是硫酸镍(NiSO4)、氯化镍(NiCl2)、硝酸镍(NiNO3)中的至少一种。
4.根据权利要求2所述的一种纳米磷化镍(NiP)非晶态合金的制备方法,其特征在于所述的硼离子(B+)是次磷酸钠(NaH2PO2)、次磷酸钾(KH2PO2)中的至少一种。
5.根据权利要求2所述的一种纳米磷化镍(NiP)非晶态合金的制备方法,其特征在于所述的惰性气体是氮气(N2)或氩气(Ar)中的一种。
CN 201010605437 2010-12-24 2010-12-24 一种纳米磷化镍(NiP)非晶态合金及其制备方法 Pending CN102560289A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010605437 CN102560289A (zh) 2010-12-24 2010-12-24 一种纳米磷化镍(NiP)非晶态合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010605437 CN102560289A (zh) 2010-12-24 2010-12-24 一种纳米磷化镍(NiP)非晶态合金及其制备方法

Publications (1)

Publication Number Publication Date
CN102560289A true CN102560289A (zh) 2012-07-11

Family

ID=46406886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010605437 Pending CN102560289A (zh) 2010-12-24 2010-12-24 一种纳米磷化镍(NiP)非晶态合金及其制备方法

Country Status (1)

Country Link
CN (1) CN102560289A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754830A (zh) * 2017-09-29 2018-03-06 天津大学 一种非晶态合金催化剂、其制备方法及其用于肼分解制氢的应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754830A (zh) * 2017-09-29 2018-03-06 天津大学 一种非晶态合金催化剂、其制备方法及其用于肼分解制氢的应用

Similar Documents

Publication Publication Date Title
CN102560290A (zh) 一种纳米硼化镍(NiB)非晶态合金及其制备方法
Jiang et al. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage
Huo et al. Recent progress on high-entropy materials for electrocatalytic water splitting applications
Singh et al. Nanocatalysts for hydrogen generation from hydrazine
Wang et al. Noble-metal-free NiFeMo nanocatalyst for hydrogen generation from the decomposition of hydrous hydrazine
CN102489315B (zh) 一种钌催化剂、其制备方法及其在合成四氢糠醇中的应用
Zhong et al. Metal nanoparticle-catalyzed hydrogen generation from liquid chemical hydrides
Zhu et al. Nanocatalysis: Recent advances and applications in boron chemistry
Deka et al. Cu‐based nanoparticles as emerging environmental catalysts
Niu et al. Facile tailoring of the electronic structure and the d-band center of copper-doped cobaltate for efficient nitrate electrochemical hydrogenation
CN102019430A (zh) 一种碱性蚀刻废液回收铜及碱性蚀刻液的回收方法
Ma et al. Highly dispersed Pd on Co–B amorphous alloy: facile synthesis via galvanic replacement reaction and synergetic effect between Pd and Co
Xia et al. Effects of various metal doping on the structure and catalytic activity of CoB catalyst in hydrogen production from NaBH4 hydrolysis
Wu et al. One-step hydrothermal synthesis of silver nanoparticles loaded on N-doped carbon and application for catalytic reduction of 4-nitrophenol
Han et al. Mechanistic insights into the catalytic reduction of nitrophenols on noble metal nanoparticles/N-doped carbon black composites
Liu et al. Polymer hydrogel supported Pd–Ni–B nanoclusters as robust catalysts for hydrogen production from hydrolysis of sodium borohydride
Yuan et al. Cation/anion-doping induced electronic structure regulation strategy to boost the catalytic hydrogen evolution from ammonia borane hydrolysis
Hou et al. Mg alloy waste modified by (Mg10Ni) 90Ce10: A green hydrolysis hydrogen production strategy
Lim et al. Hydrogen production via activated waste aluminum cans and its potential for methanation
Asim et al. Synergetic effect of Au nanoparticles and transition metal phosphides for enhanced hydrogen evolution from ammonia-borane
CN107754831B (zh) 一种非晶态合金催化剂、其制备方法及其用于氨硼烷分解制氢的应用
Lewandowski et al. Transition metal borides of Ni-B (Co-B) as alternative non-precious catalytic materials: Advances, potentials, and challenges. Short review
Wang et al. Self-supported Cu (OH) 2@ Co2CO3 (OH) 2 core–shell nanowire array as a robust catalyst for ammonia-borane hydrolysis
Lai et al. Nanosizing ammonia borane with nickel–An all-solid and all-in-one approach for H2 generation by hydrolysis
CN102560289A (zh) 一种纳米磷化镍(NiP)非晶态合金及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120711