CN102557123A - 一种有机分子夹层二硫化钛化合物的合成方法 - Google Patents
一种有机分子夹层二硫化钛化合物的合成方法 Download PDFInfo
- Publication number
- CN102557123A CN102557123A CN2012100329683A CN201210032968A CN102557123A CN 102557123 A CN102557123 A CN 102557123A CN 2012100329683 A CN2012100329683 A CN 2012100329683A CN 201210032968 A CN201210032968 A CN 201210032968A CN 102557123 A CN102557123 A CN 102557123A
- Authority
- CN
- China
- Prior art keywords
- titanium disulfide
- compound
- solution
- disulfide compound
- organic molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种有机分子夹层二硫化钛化合物的合成方法,首先合成出纯相化合物TiS2,将其研磨成粉末,配制一定的摩尔浓度的有机物溶液,称量适量TiS2粉末加入到有机物溶液中,并充分搅拌后将溶液加入到高压釜内胆中,密封后放入烘箱,120-150℃保温后,多次洗涤,过滤,烘干,即得到有机分子夹层二硫化钛化合物。该方法有效地降低了TiS2的热导率,为改善TiS2的热电性能提供了一种可能方法,该方法简单迅速。
Description
技术领域
本发明属层状化合物制备技术领域领域,尤其涉及一种有机分子夹层二硫化钛化合物的合成方法。
背景技术
二硫化钛(TiS2)是典型的过渡金属二硫族化物,对称空间群为P3ml,它通常以八面体和三角棱柱两种结构(1T和2H)存在,这两种结构的主要区别就是金属原子的配位方式的差异:1T-TiS2是八面体配位结构,而2H-TiS2是三角棱柱结构。其中最稳定存在的1T-TiS2具有六方密堆CdI2结构,六方基面垂直于基面呈高度各向异性;层内临近的六个S原子构成一个八面体,Ti位于八面体中心,形成一个TiS6八面体,它们以共价键结合;在c方向形成S-Ti-S的“三明治”层状结构,而层间通过很弱的范德瓦尔斯力结合。
层状结构的TiS2由于拥有间隙较大的范德瓦尔斯层,所以其他的分子原子很容易就能插层到其中,由于Li+能较容易的进出TiS2的范德瓦尔斯层,所以TiS2曾被作为非常有希望的锂离子电池的阴极材料被大量研究[M.StanleyWhittingham,Chemistry of intercalation compounds:Metal guests inchalcogenide hosts,Prog.Solid State Chem,12,(1978)41-99;Z.Mao andR.E.White,A model for the deliverable capacity of the TiS2 electrodein a Li/TiS2 cell,Journal of Power Sources,43,(1993)181-191;P.G.Bruce and M.Y.Saidi,The mechanism of electrointercalation,Journal ofElectroanalytical Chemistry,322,(1992)93-105]。除了Li,如Fe、Co、Ni等过渡金属原子也被成功地插层到TiS2的范德瓦尔斯层中,相关的夹层化合物的性质也都被详细地研究了。但是,据我们所知,没有关于有机分子夹层TiS2的合成方法或者研究被报道。
发明内容
本发明的目的是提出一种采用水热法的有机分子夹层二硫化钛化合物的合成方法。
为了实现上述目的本发明采用如下技术方案:
一种有机分子夹层二硫化钛化合物的合成方法,其特征在于:包括以下步骤:
(1)首先合成出纯相化合物二硫化钛TiS2,将其研磨成粉末,备用;
(2)配制摩尔浓度为0.01-0.1mol/L、35ml-40ml的有机物溶液备用;
(3)称量2-3克TiS2粉末加入到步骤(2)的溶液中,并充分搅拌;
(4)将步骤(3)溶液加入到高压釜内胆中,密封后放入烘箱,120-150℃保温,处理时间为24小时左右;
(5)对步骤(4)溶液洗涤,过滤,烘干,即得到有机分子夹层二硫化钛化合物。
所述的有机分子夹层二硫化钛化合物的合成方法,其特征在于:所述的有机物溶液中的有机分子指的是尿素,十六胺,对苯二胺,环己胺中的一种。
所述的有机分子夹层二硫化钛化合物的合成方法,其特征在于:所述的高压釜内压力为大于3个大气压。
所述的有机分子夹层二硫化钛化合物的合成方法,其特征在于:步骤(5)中溶液的洗涤次数为5-8次。
本发明的原理为:
本发明利用已经合成的TiS2多晶粉体,采取高压釜合成方法,在一定的温度和压力条件下将有机分子引入到TiS2的范德瓦尔斯层中,得到有机分子夹层TiS2化合物。
本发明的有益效果:
该方法有效地降低了TiS2的热导率,为改善TiS2的热电性能提供了一种可能方法,该方法简单迅速。
附图说明
图1为纯TiS2以及尿素夹层化合物的XRD衍射图谱;
图2为纯TiS2以及尿素夹层化合物的热导率。
具体实施方式
实施例1:一种有机分子夹层二硫化钛化合物的合成方法,其特征在于:包括以下步骤:
(1)首先合成出纯相化合物二硫化钛TiS2,将其研磨成粉末,备用;
(2)配制摩尔浓度为0.01-0.1mol/L的有机物溶液,其体积为高压釜内胆容量的80%-90%,备用;
(3)称量2-3克TiS2粉末加入到步骤(2)的30-40ml溶液中,并充分搅拌;
(4)将步骤(3)溶液加入到高压釜内胆中,密封后放入烘箱,120-150℃保温,处理时间为24小时左右;
(5)对步骤(4)溶液洗涤,过滤,烘干,即得到有机分子夹层二硫化钛化合物。
所述的有机分子夹层二硫化钛化合物的合成方法,其特征在于:所述的有机物溶液中的有机分子指的是尿素,十六胺,对苯二胺,环己胺中的一种。
所述的有机分子夹层二硫化钛化合物的合成方法,其特征在于:所述的高压釜内压力为大于3个大气压。
所述的有机分子夹层二硫化钛化合物的合成方法,其特征在于:步骤(5)中溶液的洗涤次数为5-8次:
实施例2:尿素分子的夹层TiS2化合物的合成方法
1)首先合成出纯相化合物TiS2,将其研磨成均匀粉末;
2)配制一定摩尔浓度(在本示例中我们分别采取12.5,25,50mmol/L三种浓度)的尿素溶液(体积为35ml-40ml);
3)称量3克TiS2粉末加入到步骤2)溶液中,并充分搅拌;
4)将步骤3)溶液加入到高压釜内胆中,压力为大于三个大气压,密封放入烘箱,120℃保温,在低温高压的合成环境中处理时间为24小时;
5)对步骤4)溶液多次洗涤,过滤,烘干即得到有机分子夹层二硫化钛化合物。
6)合成化合物的XRD衍射图以及合成样品的热导率如图1(其中曲线(a)是纯TiS2,曲线(b)S1#,(c)S2#,(d)S3#分别代表12.5,25,50mmol/L三种不同浓度的尿素溶液合成的样品。从图中可以看出:尿素分子的夹层的化合物的XRD衍射图谱与TiS2基本一致,说明夹层化合物与TiS2有着一致的晶体结构;另外,由图2可知夹层化合物的热导率相比于TiS2明显降低,对应于12.5mmol/L的尿素溶液合成的样品,其热导率降低了约50%,达到了1.5W·m-1K-1。
Claims (4)
1.一种有机分子夹层二硫化钛化合物的合成方法,其特征在于:
包括以下步骤:
(1)纯相化合物二硫化钛TiS2,将其研磨成粉末,备用;
(2)配制摩尔浓度为0.01-0.1 mol/L、35ml-40ml的有机物溶液备用;
(3)称量2-3克TiS2粉末加入到步骤(2)的溶液中,并充分搅拌;
(4)将步骤(3)溶液加入到高压釜内胆中,密封后放入烘箱,120-150℃保温,处理时间为24小时左右;
(5)对步骤(4)溶液洗涤,过滤,烘干,即得到有机分子夹层二硫化钛化合物。
2.根据权利要求1所述的有机分子夹层二硫化钛化合物的合成方法,其特征在于:所述的有机物溶液中的有机分子指的是尿素,十六胺,对苯二胺,环己胺中的一种。
3.根据权利要求1所述的有机分子夹层二硫化钛化合物的合成方法,其特征在于:所述的高压釜内压力为大于3个大气压。
4.根据权利要求1所述的有机分子夹层二硫化钛化合物的合成方法,其特征在于:步骤(5)中溶液的洗涤次数为5-8次。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210032968.3A CN102557123B (zh) | 2012-02-14 | 2012-02-14 | 一种有机分子夹层二硫化钛化合物的合成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210032968.3A CN102557123B (zh) | 2012-02-14 | 2012-02-14 | 一种有机分子夹层二硫化钛化合物的合成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102557123A true CN102557123A (zh) | 2012-07-11 |
CN102557123B CN102557123B (zh) | 2014-03-12 |
Family
ID=46403946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210032968.3A Expired - Fee Related CN102557123B (zh) | 2012-02-14 | 2012-02-14 | 一种有机分子夹层二硫化钛化合物的合成方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102557123B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107349936A (zh) * | 2017-06-05 | 2017-11-17 | 陕西科技大学 | 一种棒状二硫化钛与二氧化钛复合材料制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102101696A (zh) * | 2010-12-02 | 2011-06-22 | 华东师范大学 | 一种乙二胺插层二硫化锡化合物的制备方法 |
-
2012
- 2012-02-14 CN CN201210032968.3A patent/CN102557123B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102101696A (zh) * | 2010-12-02 | 2011-06-22 | 华东师范大学 | 一种乙二胺插层二硫化锡化合物的制备方法 |
Non-Patent Citations (2)
Title |
---|
R.R. CHIANELLI ET AL.: "Structural Studies of the Intercalation Complexes TiS2•NH3 and TaS2•NH3", 《INORGANIC CHEMISTRY》 * |
R.R. CHIANELLI ET AL.: "Structural Studies of the Intercalation Complexes TiS2•NH3 and TaS2•NH3", 《INORGANIC CHEMISTRY》, vol. 14, no. 7, 31 December 1975 (1975-12-31), pages 1691 - 1696 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107349936A (zh) * | 2017-06-05 | 2017-11-17 | 陕西科技大学 | 一种棒状二硫化钛与二氧化钛复合材料制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102557123B (zh) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumakura et al. | P′ 2-Na2/3Mn0. 9Me0. 1O2 (Me= Mg, Ti, Co, Ni, Cu, and Zn): correlation between orthorhombic distortion and electrochemical property | |
Li et al. | Collapse of LiNi1–x–y Co x Mn y O2 lattice at deep charge irrespective of nickel content in lithium-ion batteries | |
Yang et al. | Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides | |
Kim et al. | Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries | |
Shen et al. | Na-rich Prussian white cathodes for long-life sodium-ion batteries | |
Patra et al. | Effects of elemental modulation on phase purity and electrochemical properties of Co‐free high‐entropy spinel oxide anodes for lithium‐ion batteries | |
Chen et al. | Hard carbon wrapped Na3V2 (PO4) 3@ C porous composite extending cycling lifespan for sodium-ion batteries | |
Rousse et al. | Sulfate-based polyanionic compounds for Li-ion batteries: synthesis, crystal chemistry, and electrochemistry aspects | |
Meng et al. | Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag | |
He et al. | β-NaVOPO4 obtained by a low-temperature synthesis process: a new 3.3 V cathode for sodium-ion batteries | |
Lefevr et al. | Lithium conductivity and ions dynamics in LiBH4/SiO2 solid electrolytes studied by solid-state NMR and quasi-elastic neutron scattering and applied in lithium–sulfur batteries | |
Islam et al. | Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material | |
Rangappa et al. | Ultrathin nanosheets of Li2MSiO4 (M= Fe, Mn) as high-capacity Li-ion battery electrode | |
Ellis et al. | Structure and electrochemistry of two-electron redox couples in lithium metal fluorophosphates based on the tavorite structure | |
Rahman et al. | An ordered P2/P3 composite layered oxide cathode with long cycle life in sodium-ion batteries | |
Zhao et al. | Restraining oxygen loss and boosting reversible oxygen redox in a P2-type oxide cathode by trace anion substitution | |
Trad et al. | A layered iron (III) phosphate phase, Na3Fe3 (PO4) 4: synthesis, structure, and electrochemical properties as positive electrode in sodium batteries | |
Chen et al. | Binding TiO 2-B nanosheets with N-doped carbon enables highly durable anodes for lithium-ion batteries | |
Zhao et al. | Mo-modified P2-type manganese oxide nanoplates with an oriented stacking structure and exposed {010} active facets as a long-life sodium-ion battery cathode | |
Gutierrez et al. | High-capacity, aliovalently doped olivine LiMn1–3 x/2V x□ x/2PO4 cathodes without carbon coating | |
Rozier et al. | Cation-disordered Li3VO4: reversible Li insertion/deinsertion mechanism for quasi Li-rich layered Li1+ x [V1/2Li1/2] O2 (x= 0–1) | |
Pogosova et al. | Complex investigation of water impact on Li-Ion conductivity of Li1. 3Al0. 3Ti1. 7 (PO4) 3—Electrochemical, chemical, structural, and morphological aspects | |
Wang et al. | Investigation into the surface chemistry of Li4Ti5O12 nanoparticles for lithium ion batteries | |
Xu et al. | Promising Cathode Materials for Sodium-Ion Batteries from Lab to Application | |
Christensen et al. | Structural evolution during lithium-and magnesium-ion intercalation in vanadium oxide nanotube electrodes for battery applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140312 Termination date: 20150214 |
|
EXPY | Termination of patent right or utility model |