CN102544182B - 一种表面等离子共振整流天线及其制备方法 - Google Patents

一种表面等离子共振整流天线及其制备方法 Download PDF

Info

Publication number
CN102544182B
CN102544182B CN201210002179.5A CN201210002179A CN102544182B CN 102544182 B CN102544182 B CN 102544182B CN 201210002179 A CN201210002179 A CN 201210002179A CN 102544182 B CN102544182 B CN 102544182B
Authority
CN
China
Prior art keywords
tio
nano
preparation
metal
tube array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210002179.5A
Other languages
English (en)
Other versions
CN102544182A (zh
Inventor
陈福义
刘建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201210002179.5A priority Critical patent/CN102544182B/zh
Publication of CN102544182A publication Critical patent/CN102544182A/zh
Application granted granted Critical
Publication of CN102544182B publication Critical patent/CN102544182B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures

Abstract

一种表面等离子共振整流天线及其制备方法。所述的表面等离子共振整流天线为三层结构,下层为金属Ti,在金属Ti的一个表面氧化生成TiO2纳米管阵列层。在所述TiO2纳米管阵列层的表面通过光沉积有Cu纳米颗粒金属层。所述的Cu纳米颗粒金属层的微观表面形貌为纳米颗粒。本发明使用光沉积代替超高真空电子束蒸发技术,使用廉价金属铜Cu代替贵金属Au制备了Ti/TiO2NT/Cu结构的整流天线,解决了目前金属层沉积技术成本、设备投入成本及贵金属价格成本高,不能用于大规模工业化生产难题,有利于太阳能技术的绿色低成本发展。

Description

一种表面等离子共振整流天线及其制备方法
技术领域
本发明涉及光学整流天线领域,具体是用作整流天线的金属-绝缘体-金属MIM结构,可以将太阳能转化为直流电。
背景技术
将太阳光等电磁辐射转化成电能的装置主要有光伏电池、整流天线和热功器件,整流天线因成本低、结构简单、金属-绝缘体-金属二极管结构整流天线在2.45GHz波段具有90%的转化效率,因此,是一种很有前景的光能量转化技术。
整流天线的工作原理是,上层金属与绝缘层形成肖特基接触,入射光子与金属粒子作用形成自由电子的表面等离子共振,表面等离子共振转化为电荷密度波,引起金属电极的电势变化,诱导的高频电流通过金属-绝缘层界面的隧道结,产生直流电流。
文献Nano letter,DOI:10.1021/nl203196z中报道了一种使用Au-Al2O3-Au的MIM结构器件,从上至下其各层厚度为35nm、4nm、30nm,分别采用高真空电子束蒸发沉积、原子层沉积和高真空电子束蒸发沉积制备方法。
文献Journal of The Electrochemical Society,2011,158,65-74中分别制备了Ta/TaOx/Au和Ti/TiOx/Au三明治MIM结构,从上至下其各层厚度为5~100nm、4~8nm、6~18nm,其制备工艺同样采用了超高真空蒸发的方法。
文献Physical Review B,2007,76,235408报道了一种Ag-AlOx-Al结构的MIM整流天线,其各层厚度从上至下分别为70nm、4nm、50nm。其制备过程在超高真空室中进行,采用离子枪注入法和激光诱导方法。
文献Science,2011,332,702-704制备了以n型掺杂Si为基体(30nm),中间层为Ti(1nm),金属Au(30nm)为上层金属的15×20的MIM结构阵列,每个MIM结构长宽为250×250nm。其制备过程采用了电子束刻蚀的方法和电子束蒸发法。
申请号为200910301655.1的发明创造中,公开了一种在TiO2纳米管阵列上光沉积氧化亚铜的方法,其电解液为0.05mol/L硫酸铜溶液,且需要加入缓冲溶液1mol/L磷酸氢二钾,沉积前需在0.05mol/L的硫酸铜溶液中浸泡24小时。申请号为201010212628.X的发明中公开了一种在TiO2纳米管阵列上沉积纳米Cu2O颗粒的制备方法。其制备方法采用的是脉冲电沉积法,这种方法需要设定通断电压比、通断时间比等参数,沉积过程较为复杂。上述两个专利制备的样品用于光催化,主要机制是二氧化钛和氧化亚铜的光电效应。本申请发明的物理机制是一种整流效应。本申请发明的工艺是低温溶液光沉积方法,具有不加入缓冲剂,不需要浸泡,通过调节照射光功率、时间来控制光沉积过程等特点。
综上所述,目前整流天线的主要缺点是:
(1)MIM结构的各层厚度要求很薄,沉积方法一般采用超高真空电子束蒸发法和原子层沉积法,制备过程中厚度控制技术成本高,不适用于大规模、工业化生产,且不利于与目前低温溶液技术为主的大规模商业生产技术竞争。
(2)目前整流天线MIM结构使用贵金属Au作为MIM结构的金属部分,存在缺氧环境的不利影响。整流天线制备好后,一般需要进行封装,会造成缺氧环境,这对电极的性质有很大影响。文献ACS Applied Material Interfaces,2011,3,1492在大气环境和氩气环境下中比较了Cu、Au、Ag电极的稳定性,研究表明Au、Ag修饰后的电极在缺氧的氩气环境下光伏性能下降很快,而金属铜则表现出较好的稳定性。
发明内容
为克服现有技术中存在的技术成本高,不适用于大规模、工业化生产的不足,本发明提出了一种表面等离子共振整流天线及其制备方法。
本发明提出的表面等离子共振整流天线为三层结构,下层为金属Ti,在金属Ti的一个表面氧化生成TiO2纳米管阵列层。在所述TiO2纳米管阵列层的表面沉积有Cu纳米颗粒金属层。所述的Cu纳米颗粒金属层的微观表面形貌为纳米颗粒,其颗粒大小为50~80nm,无特定形态,附着在TiO2纳米管基体表面的管壁上,少量沉积物进入到管内。
本发明还提出了一种制备表面等离子共振整流天线的方法,其具体制备过程如下:
步骤1,处理钛箔基体:将钛箔切割成条状,经打磨后,在3.mol/L HF和5.6mol/LHNO3的混合溶液中进行2min化学抛光;分别用丙酮、无水乙醇和去离子水超声波清洗10min;
步骤2,配制电解液:所述的电解液包括用作制备TiO2纳米管阵列的混合溶液、用作光沉积Cu的乙酸铜溶液和测试电解液;其中,用作制备TiO2纳米管阵列的混合溶液为0.25~0.5wt%NH4F、2.24~5wt%H2O和94.5~97.51wt%乙二醇的混合溶液,并用2.0mol/L H2SO4溶液将其PH值调至4~6;用作光沉积Cu的乙酸铜溶液是将0.1mol/L乙酸铜与无水乙醇混合均匀后通入氮气1h得到;所述的乙酸铜与无水乙醇的体积比为1∶(5~20);用作测试电解液为0.001mol/L硫酸钠溶液;
步骤3,制备TiO2纳米管阵列;
步骤4,制备盐桥;
步骤5,光沉积Cu:光沉积Cu使用的照射光源为波长365nm,光强1400mw·cm-2;将TiO2纳米管阵列依次分别在丙酮、无水乙醇、去离子水中超声波清洗10min,晾干;光沉积前将清洗好的TiO2纳米管基体分别用乙醇、乙酸铜溶液浸湿,在TiO2纳米管基体上滴3~5滴乙酸铜溶液的电解液;调整光固机的焦距,使光斑直径为5~6mm,对TiO2纳米管基体二次照射:第一次照射时间为5min,照射功率为10~20%;第一次照射结束后,调整光照时间为10~40min,功率为1%,进行第二次照射;照射过程中,每5min用胶头滴管添加乙酸铜溶液电解液3~5滴;用去离子水清洗式样,并晾干,得到结构为Ti/TiO2NT/Cu整流天线。
本发明使用光沉积代替超高真空电子束蒸发技术,使用廉价金属铜Cu代替贵金属Au制备了Ti/TiO2NT/Cu结构的整流天线。本发明由中间异质层TiO2纳米管阵列层,上层Cu纳米颗粒金属层和下层金属Ti三部分组成。下层为金属Ti,在金属Ti的一个表面氧化生成TiO2纳米管阵列层,在所述TiO2纳米管阵列层的表面沉积有Cu纳米颗粒金属层。所述的TiO2纳米管阵列内孔径为100±10nm,管长2.2±0.2μm。光沉积后纳米颗粒Cu的微观形貌在扫描电镜放大20000倍的情况下为无定型沉积物和纳米棒两种。无定型Cu沉积物的特征是在TiO2表面附着无特定形态的Cu颗粒,其大小为50~150nm。纳米棒的特征是其长度在300nm~650nm之间,宽度大小基本保持不变,为110±5nm。
通过线性扫描法、瞬时电流法和交流阻抗法,测量了本发明制备的表面等离子共振整流天线在模拟太阳光照下的电流-电压曲线、电流时间曲线和电化学交流阻抗谱。得到的性能参数见表一。观察不同沉积时间的Ti/TiO2NT/Cu结构相比修饰前的Ti/TiO2NT结构,其短路电流密度提高了3~4倍,其中以用1%光强光照40min制得的Ti/TiO2NT/Cu结构提升最为显著。
表一不同沉积时间下制备Ti/TiO2NT/Cu结构的光电性能
Ti/TiO2NT/Cu结构提高光电性能的反应机理是:光子照射到Cu纳米颗粒上激发出自由电子的表面等离子共振,入射光子与金属粒子作用形成自由电子的表面等离子共振,表面等离子共振转化为电荷密度波,引起金属电极的电势变化,诱导的高频电流通过金属-绝缘层界面的隧道结,产生直流电流。而单纯的TiO2只对紫光波段的光线有响应,因此,沉积Cu纳米颗粒金属层的天线效应拓宽了其光响应频率范围,增加了光吸收效率,从而提高了电流密度。
本发明是综合现有改性方法,采用低成本工艺实现Cu纳米金属层的光沉积和对贵金属Au的替代,并获得了较好的光电性能,为整流天线太阳能电池的大规模生产应用提供了可能,最终达到缓解能源压力的目的。
本发明采用了Ti/TiO2NT/Cu结构的整流天线,主要的改进有三点:
一是TiO2纳米管(TiO2NT)作为中间层代替绝缘层薄膜,成倍地增加金属-绝缘体电极的有效面积,提高电子的传输效率,从而降低光电子的损耗。
二是使用光沉积的方法制备金属层代替超高真空电子束蒸发沉积的方法。光沉积方法具有简单易行,绿色无污染等特点,其原理是:紫光照射到TiO2基体上,产生电子-空穴对,电子跃迁到基体表面与溶液中得Cu2+离子反应,将Cu2+还原成Cu并在TiO2基体上形核长大。空穴则与水或是乙醇反应被消耗。
三是使用金属Cu代替Au电极,解决了整流天线封装后的缺氧环境对MIM结构器件的性能造成有害影响,同时,金属铜的使用也大大降低了产品的生产成本。
由附图2和附图3可以看到,经过光沉积铜的Ti/TiO2NT/Cu结构整流天线的短路电流密度和瞬时光电流密度比未经过沉铜的要高3~4倍。附图4解释了这一现象的原因,在光照下Ti/TiO2NT/Cu结构整流天线的阻抗比未沉铜的要小,表明铜纳米颗粒减小了电荷传输过程中的阻抗,在光照下Ti/TiO2NT/Cu结构整流天线产生了大量的光生电子,提高电荷分离效率,从而提高其光电流密度。
综上所述,本发明采用了一种简单的金属沉积方法来制备金属层,并使用廉价的金属Cu来取代贵金属Au,解决了目前金属层沉积技术成本、设备投入成本及贵金属价格成本高,不能用于大规模工业化生产难题,有利于太阳能技术的绿色低成本发展。
附图说明
附图1是制备Ti/TiO2NT/Cu结构的流程图;
附图2是不同光沉积时间下Ti/TiO2NT/Cu结构的电流密度-电压曲线;
附图3是不同光沉积时间下Ti/TiO2NT/Cu结构的光电流密度-时间曲线;
附图4是不同光沉积时间下Ti/TiO2NT/Cu结构的Nyquist图;
附图5是不同光沉积时间下Ti/TiO2NT/Cu结构的Bode图。
具体实施方式
实施例1
本实施例是一种表面等离子共振整流天线。所述的表面等离子共振整流天线为Ti/TiO2NT/Cu结构,具体是,表面等离子共振整流天线有三层,下层为金属Ti,在金属Ti的一个表面氧化生成TiO2纳米管阵列层,在所述TiO2纳米管阵列层的表面沉积有Cu纳米颗粒金属层。所述表面等离子共振整流天线中间的TiO2纳米管阵列层为异质层。所述的TiO2纳米管阵列内孔径为100±10nm,管长为2.2±0.2μm。光沉积过程经1%功率光照10min。产品尺寸为Φ5mm,颜色为灰色。
所述的Cu纳米颗粒金属层的微观表面形貌为纳米颗粒,其颗粒大小为50~80nm,无特定形态,附着在TiO2纳米管基体表面的管壁上,少量沉积物进入到管内。
本实施例还提出了一种表面等离子共振整流天线的制备方法,其具体过程如下:
步骤1,处理钛箔基体:将钛箔切割成1cm×5cm的小条,经过1000#、1200#砂纸打磨后,在3.mol/L HF和5.6mol/L HNO3的混合溶液中进行2min化学抛光,然后,分别用丙酮、无水乙醇和去离子水超声波清洗10min。
步骤2,配制电解液:所述的电解液包括用作制备TiO2纳米管阵列的混合溶液、用作光沉积Cu的乙酸铜溶液和测试电解液。其中,用作制备TiO2纳米管阵列的混合溶液为0.25wt%NH4F、2.24wt%H2O和97.51wt%乙二醇的混合溶液,并用2.0mol/LH2SO4溶液将其pH值调至4。用作光沉积Cu的乙酸铜溶液是将0.1mol/L乙酸铜与无水乙醇混合均匀后通入氮气1h得到;所述的乙酸铜与无水乙醇的体积比为1∶20。用作测试电解液为0.001mol/L硫酸钠溶液。
步骤3,制备TiO2纳米管阵列:采用常规方法制备TiO2纳米管阵列,具体过程是,制备TiO2纳米管阵列用的直流电源供应器的正极连接钛箔,负极连接铂网,将钛箔和铂网置于制备TiO2纳米管阵列的混合溶液中,使钛箔浸入液面下1cm,并且钛箔和铂网相邻表面之间的距离为1.5cm。在室温下将放置有钛箔和铂网的制备TiO2纳米管阵列的混合溶液置于磁力搅拌器上,以30V电压氧化4h。氧化结束后,用二次去离子水清洗样品,空气中干燥,随后将其放入电阻炉中在500℃加热保温1.5h,随炉冷却。得到TiO2纳米管阵列。
所使用的直流电源供应器为华泰公司生产的AAP-(03-150)DC POWER SUPPLY型。
步骤4,制备盐桥:采用常规方法制备盐桥,具体过程是,把90g的硝酸钾溶解在100g去离子水中形成溶液,通过水浴锅将溶液加热至60℃并保温,在溶液中加入质量为9.5g的琼脂,并将溶液升温至90℃使琼脂溶解。用直径为5-6mm的玻璃管弯成U形管,把溶液灌入U形管中,冷却到20℃,即形成装有硝酸钾和琼脂固体混合物的盐桥。
步骤5,光沉积Cu:光沉积Cu使用的照射光源为波长365nm,光强1400mw·cm-2的点光源光固机。将步骤3制备好的TiO2纳米管阵列依次分别在丙酮、无水乙醇、去离子水中超声波清洗10min,晾干。光沉积前将清洗好的TiO2纳米管基体分别用乙醇、乙酸铜溶液浸湿,用胶头滴管在TiO2纳米管基体上滴3~5滴乙酸铜溶液的电解液。调整光固机的焦距,使光斑直径为5~6mm,对TiO2纳米管基体二次照射:第一次照射时间为5min,照射功率为10%;第一次照射结束后,调整光照时间为10min,功率为1%,进行第二次照射。照射过程中,每5min用胶头滴管添加乙酸铜溶液电解液3~5滴。用去离子水清洗式样,并晾干,得到结构为Ti/TiO2NT/Cu整流天线。
对本实施例制备的Ti/TiO2NT/Cu整流天线进行光电性质测试。光电性质测试在室温下进行,使用CHI660C型电化学工作站进行数据采集。测量前将TiO2基体上未负载纳米Cu颗粒的部分用环氧树脂密封起来,暴露面积为Φ5mm。测试采用三电极体系,即以Ti/TiO2NT/Cu结构为工作电极,铂网为对电极,饱和甘汞为参比电极,电解池选用石英烧杯。将铂网和钛箔相对应的放置在步骤2制备的测试电解液中,饱和甘汞电极放置在饱和硝酸钾电解液中,利用步骤4制备的盐桥将两种电解液连接,保证盐桥的两端分别浸入在两种电解液中。使用氙灯稳流电源模拟太阳光,光照条件为AM1.5,功率100mW·cm-2。采用线性扫描伏安法在-1~0.1Vsce之间测量两种光照下的电流-电压曲线;电流-时间曲线在0.2Vsce偏压下测得,每隔100s进行100s的模拟太阳光光照,测量其瞬时光电流;并在模拟太阳光下进行电化学阻抗谱的测量,初始电位选为-0.2Vsce,振幅为5mV,频率范围为0.1Hz~100kHz。从曲线中短路电流密度、开路电压和电化学阻抗的变化情况,观察Ti/TiO2NT/Cu结构的光电性质。
实施例2
本实施例是一种表面等离子共振整流天线。所述的表面等离子共振整流天线为Ti/TiO2NT/Cu结构,具体是,表面等离子共振整流天线有三层,下层为金属Ti,在金属Ti的一个表面氧化生成TiO2纳米管阵列层,在所述TiO2纳米管阵列层的表面沉积有Cu纳米颗粒金属层。所述表面等离子共振整流天线中间的TiO2纳米管阵列层为异质层。所述的TiO2纳米管阵列内孔径为100±10nm,管长为2.2±0.2μm。光沉积过程经1%功率光照20min。产品尺寸为Φ5mm,颜色为灰绿色。
所述的Cu纳米颗粒金属层的微观表面形貌为纳米颗粒,其颗粒为100~150nm,无特定形态,其分布密度变大,附着在TiO2纳米管基体表面的管壁上,少量沉积物进入到管内。
本实施例还提出了一种表面等离子共振整流天线的制备方法,其具体过程如下:
步骤1,处理钛箔基体:将钛箔切割成1cm×5cm的小条,经过1000#、1200#砂纸打磨后,在3.mol/L HF和5.6mol/L HNO3的混合溶液中进行2min化学抛光,然后,分别用丙酮、无水乙醇和去离子水超声波清洗10min。
步骤2,配制电解液:所述的电解液包括用作制备TiO2纳米管阵列的混合溶液、用作光沉积Cu的乙酸铜溶液和测试电解液。其中,用作制备TiO2纳米管阵列的混合溶液为0.25wt%NH4F、2.24wt%H2O和97.51wt%乙二醇的混合溶液,并用2.0mol/LH2SO4溶液将其PH值调至4。用作光沉积Cu的乙酸铜溶液是将0.1mol/L乙酸铜与无水乙醇混合均匀后通入氮气1h得到;所述的乙酸铜与无水乙醇的体积比为1∶20。用作测试电解液为0.001mol/L硫酸钠溶液。
步骤3,制备TiO2纳米管阵列:采用常规方法制备TiO2纳米管阵列,具体过程是,制备TiO2纳米管阵列用的直流电源供应器的正极连接钛箔,负极连接铂网,将钛箔和铂网置于制备TiO2纳米管阵列的混合溶液中,使钛箔浸入液面下1cm,并且钛箔和铂网相邻表面之间的距离为1.5cm。在室温下将放置有钛箔和铂网的制备TiO2纳米管阵列的混合溶液置于磁力搅拌器上,以30V电压氧化4h。氧化结束后,用二次去离子水清洗样品,空气中干燥,随后将其放入电阻炉中在500℃加热保温1.5h,随炉冷却。得到TiO2纳米管阵列。
所使用的直流电源供应器为华泰公司生产的AAP-(03-150)DC POWER SUPPLY型。
步骤4,制备盐桥:采用常规方法制备盐桥,具体过程是,把90g的硝酸钾溶解在100g去离子水中形成溶液,通过水浴锅将溶液加热至60℃并保温,在溶液中加入质量为9.5g的琼脂,并将溶液升温至90℃使琼脂溶解。用直径为5-6mm的玻璃管弯成U形管,把溶液灌入U形管中,冷却到20℃,即形成装有硝酸钾和琼脂固体混合物的盐桥。
步骤5,光沉积Cu:光沉积Cu使用的照射光源为波长365nm,光强1400mw·cm-2的点光源光固机。将步骤3制备好的TiO2纳米管阵列依次分别在丙酮、无水乙醇、去离子水中超声波清洗10min,晾干。光沉积前将清洗好的TiO2纳米管基体分别用乙醇、乙酸铜溶液浸湿,用胶头滴管在TiO2纳米管基体上滴3~5滴乙酸铜溶液的电解液。调整光固机的焦距,使光斑直径为5~6mm,对TiO2纳米管基体二次照射:第一次照射时间为5min,照射功率为10%;第一次照射结束后,调整光照时间为20min,功率为1%,进行第二次照射。照射过程中,每5min用胶头滴管添加乙酸铜溶液电解液3~5滴。用去离子水清洗式样,并晾干,得到结构为Ti/TiO2NT/Cu整流天线。
对本实施例制备的Ti/TiO2NT/Cu整流天线进行光电性质测试。光电性质测试在室温下进行,使用CHI660C型电化学工作站进行数据采集。测量前将TiO2基体上未负载纳米Cu颗粒的部分用环氧树脂密封起来,暴露面积为Φ5mm。测试采用三电极体系,即以Ti/TiO2NT/Cu结构为工作电极,铂网为对电极,饱和甘汞为参比电极,电解池选用石英烧杯。将铂网和钛箔相对应的放置在步骤2制备的测试电解液中,饱和甘汞电极放置在饱和硝酸钾电解液中,利用步骤4制备的盐桥将两种电解液连接,保证盐桥的两端分别浸入在两种电解液中。使用氙灯稳流电源模拟太阳光,光照条件为AM1.5,功率100mW·cm-2。采用线性扫描伏安法在-1~0.1Vsce之间测量两种光照下的电流-电压曲线;电流-时间曲线在0.2Vsce偏压下测得,每隔100s进行100s的模拟太阳光光照,测量其瞬时光电流;并在模拟太阳光下进行电化学阻抗谱的测量,初始电位选为-0.2Vsce,振幅为5mV,频率范围为0.1Hz~100kHz。从曲线中短路电流密度、开路电压和电化学阻抗的变化情况,观察Ti/TiO2NT/Cu结构的光电性质。
实施例3
本实施例是一种表面等离子共振整流天线。所述的表面等离子共振整流天线为Ti/TiO2NT/Cu结构,具体是,表面等离子共振整流天线有三层,下层为金属Ti,在金属Ti的一个表面氧化生成TiO2纳米管阵列层,在所述TiO2纳米管阵列层的表面沉积有Cu纳米颗粒金属层。所述表面等离子共振整流天线中间的TiO2纳米管阵列层为异质层。所述的TiO2纳米管阵列内孔径为100±10nm,管长为2.2±0.2μm。光沉积过程经1%功率光照40min。产品尺寸为Φ5mm,颜色为浅暗红色。
本实施例的微观表面形貌为Cu纳米棒,其生长方向各异,长度在300nm~650nm之间,宽度大小基本不变,为110±5nm。纳米棒周围有少量的无特定形态的Cu沉积物。
制备过程如下:
步骤1,处理钛箔基体:将钛箔切割成1cm×5cm的小条,经过1000#、1200#砂纸打磨后,在3.mol/L HF和5.6mol/L HNO3的混合溶液中进行2min化学抛光,然后,分别用丙酮、无水乙醇和去离子水超声波清洗10min。
步骤2,配制电解液:所述的电解液包括用作制备TiO2纳米管阵列的混合溶液、用作光沉积Cu的乙酸铜溶液和测试电解液。其中,用作制备TiO2纳米管阵列的混合溶液为0.25wt%NH4F、2.24wt%H2O和97.51wt%乙二醇的混合溶液,并用2.0mol/LH2SO4溶液将其PH值调至4。用作光沉积Cu的乙酸铜溶液是将0.1mol/L乙酸铜与无水乙醇混合均匀后通入氮气1h得到;所述的乙酸铜与无水乙醇的体积比为1∶20。用作测试电解液为0.001mol/L硫酸钠溶液。
步骤3,制备TiO2纳米管阵列:采用常规方法制备TiO2纳米管阵列,具体过程是,制备TiO2纳米管阵列用的直流电源供应器的正极连接钛箔,负极连接铂网,将钛箔和铂网置于制备TiO2纳米管阵列的混合溶液中,使钛箔浸入液面下1cm,并且钛箔和铂网相邻表面之间的距离为1.5cm。在室温下将放置有钛箔和铂网的制备TiO2纳米管阵列的混合溶液置于磁力搅拌器上,以30V电压氧化4h。氧化结束后,用二次去离子水清洗样品,空气中干燥,随后将其放入电阻炉中在500℃加热保温1.5h,随炉冷却。得到TiO2纳米管阵列。
所使用的直流电源供应器为华泰公司生产的AAP-(03-150)DC POWER SUPPLY型。
步骤4,制备盐桥:采用常规方法制备盐桥,具体过程是,把90g的硝酸钾溶解在100g去离子水中形成溶液,通过水浴锅将溶液加热至60℃并保温,在溶液中加入质量为9.5g的琼脂,并将溶液升温至90℃使琼脂溶解。用直径为5-6mm的玻璃管弯成U形管,把溶液灌入U形管中,冷却到20℃,即形成装有硝酸钾和琼脂固体混合物的盐桥。
步骤5,光沉积Cu:光沉积Cu使用的照射光源为波长365nm,光强1400mw·cm-2的点光源光固机。将步骤3制备好的TiO2纳米管阵列依次分别在丙酮、无水乙醇、去离子水中超声波清洗10min,晾干。光沉积前将清洗好的TiO2纳米管基体分别用乙醇、乙酸铜溶液浸湿,用胶头滴管在TiO2纳米管基体上滴3~5滴乙酸铜溶液的电解液。调整光固机的焦距,使光斑直径为5~6mm,对TiO2纳米管基体二次照射:第一次照射时间为5min,照射功率为10%;第一次照射结束后,调整光照时间为40min,功率为1%,进行第二次照射。照射过程中,每5min用胶头滴管添加乙酸铜溶液电解液3~5滴。用去离子水清洗式样,并晾干,得到结构为Ti/TiO2NT/Cu整流天线。
对本实施例制备的Ti/TiO2NT/Cu整流天线进行光电性质测试。光电性质测试在室温下进行,使用CHI660C型电化学工作站进行数据采集。测量前将TiO2基体上未负载纳米Cu颗粒的部分用环氧树脂密封起来,暴露面积为Φ5mm。测试采用三电极体系,即以Ti/TiO2NT/Cu结构为工作电极,铂网为对电极,饱和甘汞为参比电极,电解池选用石英烧杯。将铂网和钛箔相对应的放置在步骤2制备的测试电解液中,饱和甘汞电极放置在饱和硝酸钾电解液中,利用步骤4制备的盐桥将两种电解液连接,保证盐桥的两端分别浸入在两种电解液中。使用氙灯稳流电源模拟太阳光,光照条件为AM1.5,功率100mW·cm-2。采用线性扫描伏安法在-1~0.1Vsce之间测量两种光照下的电流-电压曲线;电流-时间曲线在0.2Vsce偏压下测得,每隔100s进行100s的模拟太阳光光照,测量其瞬时光电流;并在模拟太阳光下进行电化学阻抗谱的测量,初始电位选为-0.2Vsce,振幅为5mV,频率范围为0.1Hz~100kHz。从曲线中短路电流密度、开路电压和电化学阻抗的变化情况,观察Ti/TiO2NT/Cu结构的光电性质。

Claims (1)

1.一种表面等离子共振整流天线的制备方法,所述的表面等离子共振整流天线为三层结构,下层为金属Ti,在金属Ti的一个表面氧化生成TiO2纳米管阵列层;其特征在于,在所述TiO2纳米管阵列层的表面沉积有Cu纳米颗粒金属层;所述的Cu纳米颗粒金属层的微观表面形貌为纳米颗粒,其颗粒大小为50~80nm,无特定形态,附着在TiO2纳米管基体表面的管壁上,少量沉积物进入到管内;具体制备过程如下:
步骤1,处理钛箔基体:将钛箔切割成条状,经打磨后,在3.mol/L HF和5.6mol/LHNO3的混合溶液中进行2min化学抛光;分别用丙酮、无水乙醇和去离子水超声波清洗10min;
步骤2,配制电解液:所述的电解液包括用作制备TiO2纳米管阵列的混合溶液、用作光沉积Cu的乙酸铜溶液和测试电解液;其中,用作制备TiO2纳米管阵列的混合溶液为0.25~0.5wt%NH4F、2.24~5wt%H2O和94.5~97.51wt%乙二醇的混合溶液,并用2.0mol/L H2SO4溶液将其PH值调至4~6;用作光沉积Cu的乙酸铜溶液是将0.1mol/L乙酸铜与无水乙醇混合均匀后通入氮气1h得到;所述的乙酸铜与无水乙醇的体积比为1:(5~20);用作测试电解液为0.001mol/L硫酸钠溶液;
步骤3,制备TiO2纳米管阵列;
步骤4,制备盐桥;
步骤5,光沉积Cu:光沉积Cu使用的照射光源为波长365nm,光强1400mw·cm-2;将TiO2纳米管阵列依次分别在丙酮、无水乙醇、去离子水中超声波清洗10min,晾干;光沉积前将清洗好的TiO2纳米管基体分别用乙醇、乙酸铜溶液浸湿,在TiO2纳米管基体上滴3~5滴乙酸铜溶液的电解液;调整光固机的焦距,使光斑直径为5~6mm,对TiO2纳米管基体二次照射:第一次照射时间为5min,照射功率为10~20%;第一次照射结束后,调整光照时间为10~40min,功率为1%,进行第二次照射;照射过程中,每5min用胶头滴管添加乙酸铜溶液电解液3~5滴;用去离子水清洗式样,并晾干,得到结构为Ti/TiO2NT/Cu整流天线。
CN201210002179.5A 2012-01-05 2012-01-05 一种表面等离子共振整流天线及其制备方法 Expired - Fee Related CN102544182B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210002179.5A CN102544182B (zh) 2012-01-05 2012-01-05 一种表面等离子共振整流天线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210002179.5A CN102544182B (zh) 2012-01-05 2012-01-05 一种表面等离子共振整流天线及其制备方法

Publications (2)

Publication Number Publication Date
CN102544182A CN102544182A (zh) 2012-07-04
CN102544182B true CN102544182B (zh) 2014-07-16

Family

ID=46350626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210002179.5A Expired - Fee Related CN102544182B (zh) 2012-01-05 2012-01-05 一种表面等离子共振整流天线及其制备方法

Country Status (1)

Country Link
CN (1) CN102544182B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8698096B2 (en) * 2012-08-16 2014-04-15 Empire Technology Development Llc Nano-antenna and methods for its preparation and use
CN106498478B (zh) * 2016-11-22 2019-05-14 华南理工大学 一种透明的独立二氧化钛纳米管阵列薄膜的制备方法
CN106910829A (zh) * 2017-03-08 2017-06-30 新乡学院 一种柔性太阳能电池的制备方法
CN108043410B (zh) * 2017-11-07 2020-05-19 国家纳米科学中心 顶端修饰Cu2O的ZnO纳米棒异质结及其制备方法与应用
CN110993719B (zh) * 2019-11-25 2021-11-02 国家纳米科学中心 一种光频响应电子隧穿结构、其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110453A (zh) * 2007-04-26 2008-01-23 复旦大学 一种有序纳米结构TiO2/金属阵列电极的制备方法
CN101871117A (zh) * 2010-06-30 2010-10-27 湖南大学 一种p型半导体纳米材料CuxSe/TiO2纳米管阵列及其制备方法
CN101899701A (zh) * 2010-07-19 2010-12-01 西南交通大学 一种硫化铜与二氧化钛纳米管复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8482197B2 (en) * 2006-07-05 2013-07-09 Hamamatsu Photonics K.K. Photocathode, electron tube, field assist type photocathode, field assist type photocathode array, and field assist type electron tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110453A (zh) * 2007-04-26 2008-01-23 复旦大学 一种有序纳米结构TiO2/金属阵列电极的制备方法
CN101871117A (zh) * 2010-06-30 2010-10-27 湖南大学 一种p型半导体纳米材料CuxSe/TiO2纳米管阵列及其制备方法
CN101899701A (zh) * 2010-07-19 2010-12-01 西南交通大学 一种硫化铜与二氧化钛纳米管复合材料的制备方法

Also Published As

Publication number Publication date
CN102544182A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
Ye et al. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes
Zhang et al. A perovskite solar cell-TiO 2@ BiVO 4 photoelectrochemical system for direct solar water splitting
Wang et al. An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting
Liang et al. Photoelectrochemical Characterization of Sprayed [alpha]-Fe2 O3 Thin Films: Influence of Si Doping and SnO2 Interfacial Layer
Zhou et al. Modulating oxygen vacancies in Sn-doped hematite film grown on silicon microwires for photoelectrochemical water oxidation
Fang et al. Mo-doping induced crystal orientation reconstruction and oxygen vacancy on BiVO4 homojunction for enhanced solar-driven water splitting
Vincent et al. Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting
Phuan et al. Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method
Hamd et al. Mesoporous α-Fe 2 O 3 thin films synthesized via the sol–gel process for light-driven water oxidation
Mahvelati-Shamsabadi et al. Z-scheme design of Ag@ g-C3N4/ZnS photoanode device for efficient solar water oxidation: An organic-inorganic electronic interface
CN102544182B (zh) 一种表面等离子共振整流天线及其制备方法
Alkuam et al. Fabrication of CdS nanorods and nanoparticles with PANI for (DSSCs) dye-sensitized solar cells
Xue et al. Photosensitization of TiO2 nanotube arrays with CdSe nanoparticles and their photoelectrochemical performance under visible light
CN104362412A (zh) 一种ZnO/g-C3N4纳米复合材料及其制备方法
Belchi et al. One-step synthesis of TiO2/graphene nanocomposites by laser pyrolysis with well-controlled properties and application in perovskite solar cells
CN108385131B (zh) 铁电复合Cu2O可见光光解水制氢光阴极及其制备方法
Feng et al. Nickel hydroxide decorated hydrogenated zinc oxide nanorod arrays with enhanced photoelectrochemical performance
Apolinario et al. Multilayered WO3 nanoplatelets for efficient photoelectrochemical water splitting: the role of the annealing ramp
Tolod et al. Visible light-driven catalysts for water oxidation: towards solar fuel biorefineries
Wang et al. Cu2O/CuO heterojunction formed by thermal oxidation and decorated with Pt co-catalyst as an efficient photocathode for photoelectrochemical water splitting
Li et al. Cadmium sulfide quantum dots sensitized tin dioxide–titanium dioxide heterojunction for efficient photoelectrochemical hydrogen production
Abdelkarim et al. Constructing quantum dots sensitized TiO2 nanotube pn heterojunction for photoelectrochemical hydrogen generation
Momeni et al. Effect of electrodeposition time on morphology and photoelecrochemical performance of bismuth vanadate films
Chen et al. Solution–processed Cu2O/ZnO/TiO2/Pt nanowire photocathode for efficient photoelectrochemical water splitting
Liang et al. Effects of cathodic electrodeposition conditions on morphology and photoelectrochemical response of α-Fe2O3 photoanode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140716

Termination date: 20190105

CF01 Termination of patent right due to non-payment of annual fee