CN102541232A - 降压式变换电路 - Google Patents

降压式变换电路 Download PDF

Info

Publication number
CN102541232A
CN102541232A CN2010106114116A CN201010611411A CN102541232A CN 102541232 A CN102541232 A CN 102541232A CN 2010106114116 A CN2010106114116 A CN 2010106114116A CN 201010611411 A CN201010611411 A CN 201010611411A CN 102541232 A CN102541232 A CN 102541232A
Authority
CN
China
Prior art keywords
voltage
fet
unit
control module
translation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010106114116A
Other languages
English (en)
Other versions
CN102541232B (zh
Inventor
童松林
罗奇艳
陈鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Power Ltd By Share Ltd In Hong Kong
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CN201010611411.6A priority Critical patent/CN102541232B/zh
Priority to US13/093,209 priority patent/US8659281B2/en
Publication of CN102541232A publication Critical patent/CN102541232A/zh
Application granted granted Critical
Publication of CN102541232B publication Critical patent/CN102541232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种降压式变换电路,该降压式变换电路包括电压输入端、第一场效应管、第二场效应管、PWM驱动单元、电压输出端、控制单元、电压调节单元、输入电压采样单元、输入电流采样单元、输出电压采样单元及输出电流采样单元,输入电流采样单元测量降压式变换电路的输入电流,输入电压采样单元测量降压式变换电路的输入电压U_in,输出电流采样单元测量降压式变换电路的输出电流,输出电压采样单元测量降压式变换电路的输出电压U_out。上述的降压式变换电路根据每一个预设的PWM驱动单元的开关频率,分别计算得出相应的降压式变换电路的输出转换效率,从中获取最高输出转换效率所对应的开关频率。

Description

降压式变换电路
技术领域
本发明涉及一种降压式变换电路,尤其涉及一种应用于电脑主板的降压式变换电路。
背景技术
现有的电脑主板电源通常采用降压式变换电路(Buck电路)。降压式变换电路的开关频率需要与电脑系统匹配才能获得较高电源效率。获得与电脑系统相匹配的降压式变换电路的开关频率,成为业界亟需解决的技术问题。
发明内容
鉴于以上内容,有必要提供一种获得最佳开关频率的降压式变换电路。
一种降压式变换电路,该降压式变换电路包括电压输入端、第一场效应管、第二场效应管、PWM驱动单元及电压输出端,第一场效应管的漏极连接电压输入端,第一场效应管的源极与第二场效应管的漏极连接,第二场效应管的漏极通过串联的电感及电容接地,第二场效应管的源极接地,电压输出端连接至串联的电感及电容之间以输出一驱动电压给负载,PWM驱动单元分别与第一场效应管的栅极及第二场效应管的栅极连接,PWM驱动单元使得第一场效应管与第二场效应管交替导通,还包括控制单元、电压调节单元、输入电压采样单元、输入电流采样单元、输出电压采样单元及输出电流采样单元,控制单元与电压调节单元连接,电压调节单元与PWM驱动单元连接,控制单元控制电压调节单元输出阀值电压给PWM驱动单元以控制PWM驱动单元的开关频率,输入电流采样单元连接于电压输入端与第一场效应管的漏极之间以测量降压式变换电路的输入电流,输入电压采样单元与电压输入端连接以测量降压式变换电路的输入电压U_in,输出电流采样单元连接于电压输出端与电感之间以测量降压式变换电路的输出电流,输出电压采样单元与电压输出端连接以测量降压式变换电路的输出电压U_out。
上述的降压式变换电路根据每一个预设的PWM驱动单元的开关频率,分别计算得出相应的降压式变换电路的输出转换效率,从中获取最高输出转换效率所对应的开关频率。
附图说明
下面参照附图结合具体实施方式对本发明作进一步的描述。
图1为本发明较佳实施方式的降压式变换电路的电路图。
主要元件符号说明
PWM驱动单元     11
控制单元        12
输入电流采样单元13
第一采样电阻    131
第一电压采样单元132
输入电压采样单元141
输出电压采样单元142
输出电流采样单元15
第二采样电阻    151
第二电压采样单元152
输入单元        16
显示单元        17
缓冲单元        18
电压调节单元    19
引脚            RA1、RA2、RA3、RA4、RA5
电阻            R
第一电容        C1
第二电容    C2
第一场效应管Q1
第二场效应管Q2
电感        L
电压输入端  Vin
电压输出端  Vout
具体实施方式
请参照图1,本发明较佳实施方式提供降压式变换电路,包括电压输入端Vin、PWM(pulse width modulation,脉宽调制)驱动单元11、第一场效应管Q1、第二场效应管Q2、缓冲单元18、输入电流采样单元13、输入电压采样单元141、输出电流采样单元15、输出电压采样单元142、控制单元12、输入单元16、显示单元17及电压输出端Vout。
电压输入端Vin通过输入电流采样单元13连接至第一场效应管Q1的漏极,以将外部电源输入降压式变换电路10中。第一场效应管Q1的源极连接至第二场效应管Q2的漏极。第二场效应管Q2的漏极通过串联的电感L及第二电容C2接地。该电压输出端Vout连接至串联的电感L及第二电容C2之间,以输出一驱动电压给负载。
第二场效应管Q2的源极接地,第二场效应管Q2的漏极与源极之间并联一缓冲单元18。该缓冲单元18包括串联的电阻R和第一电容C1,其中电阻R与第二场效应管Q2的漏极连接,第一电容C1接地。
PWM驱动单元11分别连接至第一场效应管Q1的栅极及第二场效应管Q2的栅极。PWM驱动单元11分别为第一场效应管Q1及第二场效应管Q2提供高通驱动信号及低通驱动信号,以分别控制第一场效应管Q1及第二场效应管Q2的截止与导通,使得第一场效应管Q1及第二场效应管Q2交替导通。
输入电流采样单元13包括第一采样电阻131及第一电压采样单元132,第一采样电阻131连接于电压输入端Vin与第一场效应管Q1的漏极之间,第一电压采样单元132与第一采样电阻131连接以测量第一采样电阻131的电压U_1,第一电压采样单元132与控制单元12的引脚RA1连接以将电压U_1传送给控制单元12。在本实施方式中,第一采样电阻131为锰铜丝电阻。
输入电压采样单元141分别与电压输入端Vin和控制单元12的引脚RA2连接,输入电压采样单元141采集降压式变换电路的输入电压值U_in,并将输入电压值U_in传递给控制单元12。
输出电流采样单元15连接于电感L与电压输出端Vout之间。输出电流采样单元15包括第二采样电阻151及第二电压采样单元152,第二采样电阻151连接于电感L与电压输出端Vout之间,第二电压采样单元152与第二采样电阻151连接以测量第二采样电阻151的电压U_2,第二电压采样单元152与控制单元12的引脚RA3连接以将电压U_2传送给控制单元12。在本实施方式中,第二采样电阻151为锰铜丝电阻。
控制单元12预存第一采样电阻131的阻值R_1及第二采样电阻151的阻值R_2,控制单元12根据公式I_in=U_1/R_1以获得降压式变换电路的输入电流I_in,根据公式I_out=U_2/R_2以获得降压式变换电路的输出电流I_out,最终根据公式η=(U_in*I_in)/(U_out*I_out)计算降压式变换电路的输出效率η。
输入单元16与控制单元12连接,通过输入单元16向控制单元12输入预设的PWM驱动单元11的开关频率。在本实施方式中,输入单元16为键盘。
电压调节单元19分别与控制单元12和PWM驱动单元11连接,在本实施方式中,电压调节单元19采用X9241芯片。控制单元12根据输入单元16设定的开关频率选定相应的阀值电压,并控制电压调节单元19输出相应的阀值电压值。电压调节单元19的引脚RA5与PWM驱动单元11连接,电压调节单元19的引脚RA5的电压为PWM驱动单元11的阀值电压,从而调节PWM驱动单元11的开关频率。
控制单元12根据每一个预设的PWM驱动单元11的开关频率,分别计算得出相应的降压式变换电路的输出转换效率。控制单元12与显示单元17连接,显示单元17显示PWM驱动单元11的开关频率及相应的降压式变换电路的输出转换效率,故可从中获取最高输出转换效率所对应的开关频率,即为电脑主板电源选取与电脑系统相匹配的开关频率,使得电脑主板电源的输出效率最佳。
另外,本领域技术人员还可在本发明权利要求公开的范围和精神内做其他形式和细节上的各种修改、添加和替换。当然,这些依据本发明精神所做的各种修改、添加和替换等变化,都应包含在本发明所要求保护的范围之内。

Claims (7)

1.一种降压式变换电路,该降压式变换电路包括电压输入端、第一场效应管、第二场效应管、PWM驱动单元及电压输出端,第一场效应管的漏极连接电压输入端,第一场效应管的源极与第二场效应管的漏极连接,第二场效应管的漏极通过串联的电感及电容接地,第二场效应管的源极接地,电压输出端连接至串联的电感及电容之间以输出一驱动电压给负载,PWM驱动单元分别与第一场效应管的栅极及第二场效应管的栅极连接,PWM驱动单元使得第一场效应管与第二场效应管交替导通,其特征在于:还包括控制单元、电压调节单元、输入电压采样单元、输入电流采样单元、输出电压采样单元及输出电流采样单元,控制单元与电压调节单元连接,电压调节单元与PWM驱动单元连接,控制单元控制电压调节单元输出阀值电压给PWM驱动单元以控制PWM驱动单元的开关频率,输入电流采样单元连接于电压输入端与第一场效应管的漏极之间以测量降压式变换电路的输入电流I_in,输入电压采样单元与电压输入端连接以测量降压式变换电路的输入电压U_in,输出电流采样单元连接于电压输出端与电感之间以测量降压式变换电路的输出电流I_out,输出电压采样单元与电压输出端连接以测量降压式变换电路的输出电压U_out。
2.如权利要求1所述的降压式变换电路,其特征在于:第二场效应管的漏极与源极之间并联缓冲单元,该缓冲单元包括串联的电阻和另一电容,电阻与第二场效应管的漏极连接,该另一电容接地。
3.如权利要求1所述的降压式变换电路,其特征在于:输入电流采样单元包括第一采样电阻及第一电压采样单元,第一采样电阻连接于电压输入端与第一场效应管的漏极之间,第一电压采样单元与第一采样电阻连接以测量第一采样电阻的电压U_1,第一电压采样单元与控制单元连接以将电压U_1传送给控制单元,控制单元预存第一采样电阻的阻值R_1,控制单元根据公式I_in=U_1/R_1以获得降压式变换电路的输入电流I_in。
4.如权利要求3所述的降压式变换电路,其特征在于:输出电流采样单元包括第二采样电阻及第二电压采样单元,第二采样电阻连接于电感与电压输出端之间,第二电压采样单元与第二采样电阻连接以测量第二采样电阻的电压U_2,第二电压采样单元与控制单元连接以将电压U_2传送给控制单元,控制单元预存第二采样电阻的阻值R_2,控制单元根据公式I_out=U_2/R_2以获得降压式变换电路的输出电流I_out。
5.如权利要求4所述的降压式变换电路,其特征在于:控制单元根据公式η=(U_out*I_out)/(U_in*I_in)计算降压式变换电路的输出效率η。
6.如权利要求5所述的降压式变换电路,其特征在于:还包括输入单元,输入单元与控制单元连接,通过输入单元向控制单元输入预设的PWM驱动单元的开关频率,从而控制单元根据预设的PWM驱动单元的开关频率控制电压调节单元输出相应的阀值电压。
7.如权利要求6所述的降压式变换电路,其特征在于:还包括显示单元,该显示单元显示PWM驱动单元的开关频率及相应的输出效率η。
CN201010611411.6A 2010-12-29 2010-12-29 降压式变换电路 Active CN102541232B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201010611411.6A CN102541232B (zh) 2010-12-29 2010-12-29 降压式变换电路
US13/093,209 US8659281B2 (en) 2010-12-29 2011-04-25 Buck converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010611411.6A CN102541232B (zh) 2010-12-29 2010-12-29 降压式变换电路

Publications (2)

Publication Number Publication Date
CN102541232A true CN102541232A (zh) 2012-07-04
CN102541232B CN102541232B (zh) 2014-12-10

Family

ID=46348279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010611411.6A Active CN102541232B (zh) 2010-12-29 2010-12-29 降压式变换电路

Country Status (2)

Country Link
US (1) US8659281B2 (zh)
CN (1) CN102541232B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580478A (zh) * 2012-07-30 2014-02-12 瑞萨电子株式会社 电压调节器、半导体器件和数据处理系统
CN104283424A (zh) * 2013-03-14 2015-01-14 沃尔泰拉半导体公司 具有依赖于负载的偏置的电压调节器
CN105391315A (zh) * 2015-11-09 2016-03-09 上海芯哲微电子科技有限公司 一种可调式电源电路
CN107517051A (zh) * 2014-07-11 2017-12-26 朱保生 用于电机控制的桥式功率控制电路及其工作方法
WO2018040420A1 (zh) * 2016-08-31 2018-03-08 深圳Tcl数字技术有限公司 背光驱动装置和电视机
WO2021139804A1 (zh) * 2020-01-11 2021-07-15 深圳市合元科技有限公司 烟具控制电路和烟具
CN113641236A (zh) * 2021-08-30 2021-11-12 苏州浪潮智能科技有限公司 一种服务器主板及其降压供电电路
CN113641539A (zh) * 2021-06-25 2021-11-12 苏州浪潮智能科技有限公司 一种服务器上电异常的故障定位装置、方法和服务器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231477B2 (en) 2013-04-23 2016-01-05 Nvidia Corporation Control of a soft-switched variable frequency buck regulator
US20140312868A1 (en) * 2013-04-23 2014-10-23 Nvidia Corporation Control of a soft-switched variable frequency multi-phase regulator
TWI556203B (zh) * 2015-01-30 2016-11-01 友達光電股份有限公司 顯示器與控制轉換器的方法
US10224813B2 (en) 2016-03-24 2019-03-05 Nvidia Corporation Variable frequency soft-switching control of a buck converter
CN108347160A (zh) * 2017-01-24 2018-07-31 中兴通讯股份有限公司 一种dc-dc变换器的滤波方法、装置和终端
CN107037052B (zh) * 2017-04-06 2019-12-03 南京知行管业有限公司 一种用于光伏电池板外观检查的智能检测设备
US10348205B1 (en) * 2018-03-15 2019-07-09 Microchip Technology Incorporated Coupled-inductor cascaded buck converter with fast transient response

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229292B1 (en) * 1999-02-12 2001-05-08 Analog Devices, Inc. Voltage regulator compensation circuit and method
CN1677062A (zh) * 2004-03-31 2005-10-05 欧姆龙株式会社 非接触式传感器
US20050270005A1 (en) * 2004-03-11 2005-12-08 Jon Horner Method and apparatus for determining load current in a CPU core voltage regulator
US20100314945A1 (en) * 2006-07-31 2010-12-16 Mitsumi Electric Co., Ltd. Bidirectional converter and electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI279970B (en) * 2005-07-20 2007-04-21 Delta Electronics Inc Configuration and controlling method of boost circuit having pulse-width modulation limiting controller
US7667986B2 (en) * 2006-12-01 2010-02-23 Flextronics International Usa, Inc. Power system with power converters having an adaptive controller
US7586767B1 (en) * 2007-03-16 2009-09-08 Aleksandar Prodic Limit-cycle oscillation (LCO) based switch-mode power supply (SMPS) response evaluation
EP2325986A1 (en) * 2009-11-23 2011-05-25 Dialog Semiconductor GmbH Automatic current limit adjustment for linear and switching regulators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229292B1 (en) * 1999-02-12 2001-05-08 Analog Devices, Inc. Voltage regulator compensation circuit and method
US20050270005A1 (en) * 2004-03-11 2005-12-08 Jon Horner Method and apparatus for determining load current in a CPU core voltage regulator
CN1677062A (zh) * 2004-03-31 2005-10-05 欧姆龙株式会社 非接触式传感器
US20100314945A1 (en) * 2006-07-31 2010-12-16 Mitsumi Electric Co., Ltd. Bidirectional converter and electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580478A (zh) * 2012-07-30 2014-02-12 瑞萨电子株式会社 电压调节器、半导体器件和数据处理系统
CN104283424A (zh) * 2013-03-14 2015-01-14 沃尔泰拉半导体公司 具有依赖于负载的偏置的电压调节器
CN104283424B (zh) * 2013-03-14 2019-01-08 沃尔泰拉半导体公司 具有依赖于负载的偏置的电压调节器
CN107517051A (zh) * 2014-07-11 2017-12-26 朱保生 用于电机控制的桥式功率控制电路及其工作方法
CN107517051B (zh) * 2014-07-11 2020-07-10 上海联适导航技术有限公司 用于电机控制的桥式功率控制电路及其工作方法
CN105391315A (zh) * 2015-11-09 2016-03-09 上海芯哲微电子科技有限公司 一种可调式电源电路
WO2018040420A1 (zh) * 2016-08-31 2018-03-08 深圳Tcl数字技术有限公司 背光驱动装置和电视机
WO2021139804A1 (zh) * 2020-01-11 2021-07-15 深圳市合元科技有限公司 烟具控制电路和烟具
CN113641539A (zh) * 2021-06-25 2021-11-12 苏州浪潮智能科技有限公司 一种服务器上电异常的故障定位装置、方法和服务器
CN113641236A (zh) * 2021-08-30 2021-11-12 苏州浪潮智能科技有限公司 一种服务器主板及其降压供电电路
CN113641236B (zh) * 2021-08-30 2024-02-09 苏州浪潮智能科技有限公司 一种服务器主板及其降压供电电路

Also Published As

Publication number Publication date
US8659281B2 (en) 2014-02-25
US20120169314A1 (en) 2012-07-05
CN102541232B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN102541232B (zh) 降压式变换电路
CN104283422A (zh) 升压转换电路及其驱动控制模块
CN201335883Y (zh) 电压检测电路模块
CN102243521A (zh) 主板供电电路
CN102566732A (zh) 降压式变换电路的输出电流监测装置
CN202602609U (zh) 一种直流固态继电器
CN101783581A (zh) 多相驱动电路
CN202206620U (zh) 发光二极管驱动电路
CN104426372A (zh) 切换式电源转换装置及提高其转换效率的方法
CN202008814U (zh) 驱动电路以及液晶电视机
CN103187870B (zh) 降压式变换电路
CN105576816A (zh) 切换电路
CN105101572A (zh) 一种高功率因数led驱动集成电路
CN202178745U (zh) 一种隔离驱动的双向模拟开关电路
CN106950414A (zh) Mos管电流采样电路和推挽电路
CN201113813Y (zh) 电源转换装置
CN202975087U (zh) 用于智能电表的电源电路模块
CN103902009A (zh) 放电电路
CN201029011Y (zh) 供电电路
CN202145638U (zh) 一种高电压模拟开关电路
CN204205950U (zh) 高效率升压电路
CN203135726U (zh) 开关电源电路及电源装置
CN105390108A (zh) 驱动电路
CN202334443U (zh) 一种可以直接耦合的放大器
CN203352492U (zh) 一种光伏组件输出功率优化装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NANJING ZHONGGANG ELECTRIC POWER TECHNOLOGY CO., L

Free format text: FORMER OWNER: HONGFUJIN PRECISE INDUSTRY (SHENZHEN) CO., LTD.

Effective date: 20150710

Free format text: FORMER OWNER: HONGFUJIN PRECISE INDUSTRY CO., LTD.

Effective date: 20150710

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150710

Address after: 1131, room 1, building 17, No. 211300, Huashan Road, Gaochun Economic Development Zone, Jiangsu, Nanjing

Patentee after: NANJING ZHONGGANG ELECTRIC POWER TECHNOLOGY CO., LTD.

Address before: 518109 Guangdong city of Shenzhen province Baoan District Longhua Town Industrial Zone tabulaeformis tenth East Ring Road No. 2 two

Patentee before: Hongfujin Precise Industry (Shenzhen) Co., Ltd.

Patentee before: Hon Hai Precision Industry Co., Ltd.

CP01 Change in the name or title of a patent holder

Address after: 1131, room 1, building 17, No. 211300, Huashan Road, Gaochun Economic Development Zone, Jiangsu, Nanjing

Patentee after: Nanjing power Limited by Share Ltd in Hong Kong

Address before: 1131, room 1, building 17, No. 211300, Huashan Road, Gaochun Economic Development Zone, Jiangsu, Nanjing

Patentee before: NANJING ZHONGGANG ELECTRIC POWER TECHNOLOGY CO., LTD.

CP01 Change in the name or title of a patent holder