CN102540281A - Wedge-shaped film in white-light interfering displacement sensor and manufacturing method thereof - Google Patents
Wedge-shaped film in white-light interfering displacement sensor and manufacturing method thereof Download PDFInfo
- Publication number
- CN102540281A CN102540281A CN2012100225434A CN201210022543A CN102540281A CN 102540281 A CN102540281 A CN 102540281A CN 2012100225434 A CN2012100225434 A CN 2012100225434A CN 201210022543 A CN201210022543 A CN 201210022543A CN 102540281 A CN102540281 A CN 102540281A
- Authority
- CN
- China
- Prior art keywords
- glue
- wedge
- release agent
- film
- template
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title abstract description 13
- 230000002452 interceptive effect Effects 0.000 title abstract 3
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000003292 glue Substances 0.000 claims description 44
- 239000003795 chemical substances by application Substances 0.000 claims description 29
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 15
- 238000004380 ashing Methods 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 238000007747 plating Methods 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims 2
- 238000001291 vacuum drying Methods 0.000 claims 2
- 238000010792 warming Methods 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000002310 reflectometry Methods 0.000 abstract 1
- 238000004049 embossing Methods 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
技术领域 technical field
本发明涉及楔形膜制作的技术领域,特别涉及一种白光干涉位移传感器中楔形膜及其制作方法。The invention relates to the technical field of wedge-shaped membrane production, in particular to a wedge-shaped membrane in a white light interference displacement sensor and a manufacturing method thereof.
背景技术 Background technique
现有技术1:采用镀介质膜的方法制作楔形膜。该方法的工艺过程是:首先,在光学基板上镀制半透半反膜,然后在半透半反膜上镀楔形介质膜,最后在介质膜上镀一层半透半反膜,从而形成斐索干涉仪中的楔形膜。该方法的缺点是:一、镀厚度在5μm-40μm间线性变化的介质膜,其控制难度大,成功率低;二、厚度较厚的介质膜由镀膜机的真空环境中取出时,在空气中受到湿度和内应力的影响,容易产生褶皱而损坏;三、镀制介质膜的设备昂贵,镀40μm的介质膜需要20小时以上,制作成本较高。Prior Art 1: A wedge-shaped film is fabricated by plating a dielectric film. The process of this method is as follows: firstly, a semi-transparent and semi-reflective film is coated on the optical substrate, then a wedge-shaped dielectric film is coated on the semi-transparent and semi-reflective film, and finally a layer of semi-transparent and semi-reflective film is coated on the dielectric film to form A wedge-shaped membrane in a Fizeau interferometer. The disadvantages of this method are: 1. It is difficult to control the dielectric film whose thickness varies linearly between 5 μm and 40 μm, and the success rate is low; 2. When the thicker dielectric film is taken out from the vacuum environment of the coating machine, it will Influenced by humidity and internal stress, it is easy to cause wrinkles and damage; 3. The equipment for plating dielectric film is expensive, and it takes more than 20 hours to plate a 40 μm dielectric film, and the production cost is relatively high.
现有技术2:利用两个单面镀制有半透半反膜的光学基板,基板一端用40μm左右的间隔装置,另一端直接接触,形成楔形空气间隔。此方法虽然简单,但为了保证楔形空腔的腔长和位置的线性关系,两个光学基板的镀膜面必须有较好的面型,而基板厚度是保证面型的基础,这增加了斐索干涉仪的空间尺寸。同时,每一个斐索干涉仪中均有两个面要求加工出较高的面型,这大大增加了制作成本。Prior art 2: Utilize two optical substrates coated with a semi-transparent and semi-reflective film on one side, a spacer of about 40 μm is used at one end of the substrate, and the other end is in direct contact to form a wedge-shaped air gap. Although this method is simple, in order to ensure the linear relationship between the cavity length and position of the wedge-shaped cavity, the coating surfaces of the two optical substrates must have a good surface shape, and the thickness of the substrate is the basis for ensuring the surface shape, which increases Fizeau Spatial dimensions of the interferometer. At the same time, there are two surfaces in each Fizeau interferometer that require processing with a higher surface shape, which greatly increases the production cost.
目前采用白光干涉位移传感器进行位移测量的技术能实现全光的位移测量,其中对楔形膜的要求是:楔形,厚度变化为线性,前后两个面的透射率按某一比例关系。At present, the technology of displacement measurement using white light interference displacement sensor can realize all-optical displacement measurement. The requirements for the wedge-shaped film are: wedge-shaped, the thickness change is linear, and the transmittance of the front and rear surfaces is in a certain ratio.
白光干涉位移传感器工作原理:Working principle of white light interference displacement sensor:
见图11,宽光谱的白光8经过Y型光纤9中的一根光纤入射到楔形膜,经过楔形膜10(连接到待测物)上下表面反射后,带有波长信息的光通过Y型光纤9中的另一根光纤传输到透镜11,经透镜11准直扩束后,均匀照射到楔形膜12上,与光纤入射到楔形膜10位移处厚度相等的位置处出现白光自相关干涉信号,该信号被楔形膜12后的CCD光敏元件13接收,根据在CCD上信号的位置,判断光纤入射到楔形膜10上光斑位置,从而进行位移解调。As shown in Fig. 11, the wide-spectrum white light 8 enters the wedge-shaped film through one of the Y-shaped optical fibers 9, and after being reflected from the upper and lower surfaces of the wedge-shaped film 10 (connected to the object to be measured), the light with wavelength information passes through the Y-shaped optical fiber The other optical fiber in 9 is transmitted to the
本发明的目的是为了解决目前白光干涉位移传感器中厚度在5μm-50μm间厚度线性变化的楔形腔制作难、成本高或组成楔形腔的光学元件空间尺寸太大的问题,而提出的一种采用有机材料通过两次复制压印的方式制作白光干涉位移传感器中需求的楔形结构的方法。The purpose of the present invention is to solve the problem that the wedge-shaped cavity whose thickness varies linearly between 5 μm and 50 μm in the current white light interference displacement sensor is difficult to manufacture, the cost is high, or the space size of the optical elements forming the wedge-shaped cavity is too large. A method for manufacturing the wedge-shaped structure required in the white light interference displacement sensor by means of two copy imprints of organic materials.
发明内容 Contents of the invention
本发明为了解决上述制作楔形膜中存在的问题,提出一种适用于白光干涉位移传感器中需求的厚度在5μm-50μm间线性变化的楔形膜制备方法。In order to solve the above-mentioned problems in the manufacture of wedge-shaped membranes, the present invention proposes a method for preparing wedge-shaped membranes whose thickness varies linearly between 5 μm and 50 μm, which is suitable for white light interference displacement sensors.
本发明采用的技术方案为:一种白光干涉位移传感器中楔形膜的制作方法,该方法的步骤如下:The technical scheme adopted in the present invention is: a method for manufacturing a wedge-shaped film in a white light interference displacement sensor, the steps of which are as follows:
步骤1、光学基板涂SU8胶,模板涂脱模剂。在厚度为2~3mm光学基板上旋涂SU8胶,胶的厚度约为25μm,前烘65℃,烘烤10分钟,然后升温至95℃,烘烤30~60分钟;面型为1/10波长(波长为632.8nm)的光学模板表面涂脱模剂;
步骤2、复制模板面型:将涂有脱模剂的模板压印在涂有SU8胶的光学基板上,施加一定的压力,保证二者完全贴合,放入真空烘箱加热,温度在100~120℃之间,时间2~3小时;
步骤3、紫外固化SU8胶:紫外固化模板和基板之间的SU8胶,再次将模板和基板一起放入烘箱,后烘温度为95~120℃之间,时间为30分钟,烘完后随烘箱冷却至室温;然后坚膜,烘箱温度升至150℃,时间15分钟,烘完随烘箱冷却至室温;
步骤4、脱模并去除脱模剂:脱模后,利用辉光放电灰化去除基板上SU8表面的脱模剂;
步骤5、镀半透半反膜:利用溅射镀膜机在固化后的SU8表面镀制铬膜,厚度20-25nm之间;
步骤6、铬膜表面涂SU8胶,模板涂脱模剂:在铬膜表面上旋涂SU8,厚度约50μm,前烘65℃10分钟,然后升温至100℃,50~70分钟;在面型为1/10波长(波长为632.8nm)的光学模板表面涂脱模剂;Step 6. Apply SU8 glue on the surface of the chrome film, and apply release agent on the template: spin-coat SU8 on the surface of the chrome film with a thickness of about 50 μm, pre-bake at 65°C for 10 minutes, then raise the temperature to 100°C for 50-70 minutes; Apply a release agent to the surface of the optical template with 1/10 wavelength (wavelength is 632.8nm);
步骤7、电镀制作台阶:将一端的SU8胶清洗干净,电镀30~50μm的台阶;Step 7. Make steps by electroplating: clean the SU8 glue at one end, and electroplate steps of 30-50 μm;
步骤8、压印形成楔形:再次将涂有脱模剂的模板压印在SU8表面,施加一定的压力,并放入真空烘箱,温度在100~120℃之间,时间2~3小时,加热过程中保持压力恒定;Step 8. Embossing to form a wedge shape: emboss the template coated with the release agent on the surface of SU8 again, apply a certain pressure, and put it in a vacuum oven at a temperature of 100-120°C for 2-3 hours, then heat Keep the pressure constant during the process;
步骤9、紫外固化SU8胶:紫外固化模板和铬膜之间的SU8胶,再次将模板和基板一起放入烘箱,后烘温度为95~120℃之间,时间为30分钟;Step 9, UV-cured SU8 glue: UV-cured SU8 glue between the template and the chrome film, put the template and the substrate together in the oven again, and the post-baking temperature is between 95 and 120°C for 30 minutes;
步骤10、脱模并去除脱模剂:脱模后,利用辉光放电灰化去除基板上SU8表面的脱模剂;
步骤11、镀金属膜:利用溅射镀膜机镀制金属膜,厚度2~6nm之间;
步骤12、楔形膜制作完成。
一种白光干涉位移传感器中楔形膜,采用上述方法制备而成。A wedge-shaped film in a white light interference displacement sensor is prepared by the above method.
本发明的优点和积极效果:Advantage and positive effect of the present invention:
1、采用模板复制技术,光学基片不需要有很高的面型要求,只需把模板的面型做到0.1个波长,通过两次压印复制技术,使楔形膜上下两个表面的面型与模板一致,保证了楔形膜的厚度变化为线性变化。同时相对于现有技术2,降低了光学基板的加工成本,减小了基板的厚度,即减小了斐索干涉仪中楔形膜的空间尺寸;1. Using the template replication technology, the optical substrate does not need to have a high surface shape requirement. It only needs to make the surface shape of the template 0.1 wavelength, and through the two-time embossing replication technology, the surface of the upper and lower surfaces of the wedge-shaped film The shape is consistent with the template, which ensures that the thickness of the wedge-shaped film changes linearly. At the same time, compared with the
2、采用目前常用的有机材料SU8胶作为楔形膜中间的材料,替换了现有技术中采用镀介质膜的方法,大大降低了成本,不需要镀介质膜的专用设备。SU8胶固化后呈现玻璃态,受温度变化影响小,能够承受高低温的变化。2. The commonly used organic material SU8 glue is used as the material in the middle of the wedge-shaped film, which replaces the method of plating the dielectric film in the prior art, greatly reduces the cost, and does not require special equipment for plating the dielectric film. After curing, the SU8 glue is in a glass state, which is less affected by temperature changes and can withstand high and low temperature changes.
附图说明 Description of drawings
图1在光学基板1上涂SU8胶2;Figure 1 is coated with
图2用涂有脱模剂的模板3压印在涂有SU8胶2的光学基板1上,进行加热,紫外固化,使SU8胶的面型和3的面型一致;Figure 2 uses the
图3固化SU8胶2后,将模板3分离,用灰化方法处理2表面残留的脱模剂;Figure 3 After the
图4在SU8胶表面溅射镀金属铬膜4;Figure 4 sputters
图5在铬膜表面再次旋涂SU8胶5,厚度在30~50μm之间;Figure 5 Spin-
图6去除一端的SU8,电镀形成30-50μm的台阶6,再次用涂有脱模剂的模板3压印SU8胶5,在3上施加恒定的力,同时进行加热,固化处理;Figure 6 Remove the SU8 at one end, electroplating to form a step 6 of 30-50 μm, and emboss the
图7固化SU8胶5后,用灰化设备处理SU8胶5表面,去除残留的脱模剂;Figure 7 After curing the
图8在SU8胶5表面镀金属膜(Au,Al等);Figure 8 is coated with a metal film (Au, Al, etc.) on the surface of
图9切割去除端部无楔形膜的部分,制备完成。Figure 9 cuts and removes the part without wedge-shaped membrane at the end, and the preparation is completed.
图10压印法制作白光干涉位移传感器中楔形膜的流程图。Fig. 10 is a flow chart of making wedge-shaped film in white light interference displacement sensor by embossing method.
图11白光干涉位移传感器的工作原理图。Fig. 11 Schematic diagram of the working principle of the white light interference displacement sensor.
具体实施方式 Detailed ways
实施例一:Embodiment one:
在厚度为2mm,两个面均为光学表面的BK7光学玻璃上旋涂上SU8胶,厚度为20μm,通过前烘65℃,时间10分钟,升温至95℃,时间40分钟,如图1在面型为1/10波长(波长为632.8nm)的光学模板表面涂脱模剂。Spin-coat SU8 glue on the BK7 optical glass with a thickness of 2mm and both sides are optical surfaces, with a thickness of 20μm. After pre-baking at 65°C for 10 minutes, heat up to 95°C for 40 minutes, as shown in Figure 1. The surface of the optical template whose surface type is 1/10 wavelength (wavelength is 632.8nm) is coated with a release agent.
将涂有脱模剂的模板压印在涂有SU8胶的光学基板上,施加一定的压力,保证二者完全贴合,放入真空烘箱加热,温度在100℃,时间2小时,如图3。Emboss the template coated with the release agent on the optical substrate coated with SU8 glue, apply a certain pressure to ensure that the two are completely bonded, and heat in a vacuum oven at 100°C for 2 hours, as shown in Figure 3 .
紫外固化模板和基板之间的SU8胶,再放入烘箱,温度为95-120℃之间,时间为30分钟,烘完后随烘箱冷却至室温;然后坚膜,烘箱温度升至150℃,时间15分钟,烘完随烘箱冷却至室温。UV-cure the SU8 glue between the template and the substrate, and then put it into the oven at a temperature of 95-120°C for 30 minutes. After baking, cool to room temperature with the oven; then harden the film, and the temperature of the oven rises to 150°C. The time is 15 minutes, after drying, cool to room temperature with the oven.
脱模后,利用辉光放电灰化去除基板上SU8表面的脱模剂,如图3利用溅射镀膜机镀制铬膜,厚度20nm如图4。After demoulding, use glow discharge ashing to remove the release agent on the SU8 surface on the substrate, as shown in Figure 3, use a sputter coater to plate a chromium film with a thickness of 20nm as shown in Figure 4.
在基板的铬膜表面上旋涂SU8,厚度约50μm,前烘65℃10分钟,然后升温至100℃,60分钟,如图5,在模板上涂脱模剂。Spin-coat SU8 on the surface of the chrome film on the substrate with a thickness of about 50 μm, pre-bake at 65°C for 10 minutes, then raise the temperature to 100°C for 60 minutes, as shown in Figure 5, and coat the mold release agent on the template.
将一端的SU8胶清洗干净,铬膜表面电镀形成30-50μm的台阶6,再次将涂有脱模剂的模板压印在SU8表面,施加一定的压力,并放入真空烘箱,温度在100℃,时间2小时,加热过程中保持压力恒定,如图6。Clean the SU8 glue at one end, electroplate the surface of the chromium film to form a step 6 of 30-50 μm, and imprint the template coated with the release agent on the surface of the SU8 again, apply a certain pressure, and put it in a vacuum oven at a temperature of 100°C ,
利用辉光放电灰化去除基板上SU8胶5表面上的脱模剂,如图7,利用溅射镀膜机镀制金膜,厚度4nm如图8。Use glow discharge ashing to remove the release agent on the surface of
用玻璃刀切割去除顶端无楔形膜处,得到白光干涉位移传感器用楔形膜。如图9。Use a glass knife to cut and remove the top without the wedge-shaped film to obtain a wedge-shaped film for a white light interference displacement sensor. As shown in Figure 9.
实施例二:Embodiment two:
在厚度为3mm,两个面均为光学表面的石英光学基板上涂30μm的SU8胶,前烘,压印,脱模、灰化、镀铬膜和实施例一相同;二次涂SU8胶,厚度为45μm后,去除一端的SU8胶,电镀出40μm的台阶。On a quartz optical substrate with a thickness of 3 mm and both surfaces being optical surfaces, apply 30 μm of SU8 glue, pre-baking, embossing, demoulding, ashing, and chrome plating are the same as in Example 1; the second coating of SU8 glue, thickness After it is 45 μm, remove the SU8 glue at one end, and electroplate a step of 40 μm.
其余与实施例一相同。All the other are the same as the first embodiment.
实施例三:Embodiment three:
在光学基板上涂20μm的SU8胶,前烘,压印,脱模、灰化、镀铬膜和实施例一相同;二次涂SU8胶,厚度为35μm后,去除一端的SU8胶,电镀出30μm的台阶。中间过程与实施例一相同,利用辉光放电灰化去除基板上SU8胶5表面上的脱模剂,如图7,去除电镀台阶6,镀制铝膜,厚度6nm,如图8。Apply 20 μm SU8 glue on the optical substrate, pre-baking, embossing, demoulding, ashing, and chrome plating are the same as in Example 1; apply SU8 glue twice, after the thickness is 35 μm, remove the SU8 glue at one end, and electroplate 30 μm steps. The intermediate process is the same as the first embodiment, using glow discharge ashing to remove the release agent on the surface of the
其余与实施例一相同。All the other are the same as the first embodiment.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210022543.4A CN102540281B (en) | 2012-02-01 | 2012-02-01 | A wedge-shaped film in a white light interference displacement sensor and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210022543.4A CN102540281B (en) | 2012-02-01 | 2012-02-01 | A wedge-shaped film in a white light interference displacement sensor and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102540281A true CN102540281A (en) | 2012-07-04 |
CN102540281B CN102540281B (en) | 2014-09-24 |
Family
ID=46347588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210022543.4A Expired - Fee Related CN102540281B (en) | 2012-02-01 | 2012-02-01 | A wedge-shaped film in a white light interference displacement sensor and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102540281B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107478156A (en) * | 2017-07-12 | 2017-12-15 | 中国航空工业集团公司西安飞行自动控制研究所 | A kind of Optical displacement sensor based on recombined white light interfered device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4468775A (en) * | 1980-10-09 | 1984-08-28 | Centre National De La Recherche Scientifique | Optical selector device using a Fizeau wedge for reflection |
CN1323980A (en) * | 2001-07-03 | 2001-11-28 | 大连理工大学 | Light wavelength measuring technology based on wedged Fabry-Perot interference filter |
CN201199268Y (en) * | 2008-05-21 | 2009-02-25 | 中国华录·松下电子信息有限公司 | Correction plate for plating wedge-shaped film |
CN102229082A (en) * | 2011-06-03 | 2011-11-02 | 中国兵器工业第二〇五研究所 | A kind of manufacturing method of wedge mirror |
CN102311094A (en) * | 2011-07-29 | 2012-01-11 | 中国科学技术大学 | Method for producing nano fluid pathway with large area and available size base on SU-8 photosensitive resist |
-
2012
- 2012-02-01 CN CN201210022543.4A patent/CN102540281B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4468775A (en) * | 1980-10-09 | 1984-08-28 | Centre National De La Recherche Scientifique | Optical selector device using a Fizeau wedge for reflection |
CN1323980A (en) * | 2001-07-03 | 2001-11-28 | 大连理工大学 | Light wavelength measuring technology based on wedged Fabry-Perot interference filter |
CN201199268Y (en) * | 2008-05-21 | 2009-02-25 | 中国华录·松下电子信息有限公司 | Correction plate for plating wedge-shaped film |
CN102229082A (en) * | 2011-06-03 | 2011-11-02 | 中国兵器工业第二〇五研究所 | A kind of manufacturing method of wedge mirror |
CN102311094A (en) * | 2011-07-29 | 2012-01-11 | 中国科学技术大学 | Method for producing nano fluid pathway with large area and available size base on SU-8 photosensitive resist |
Non-Patent Citations (1)
Title |
---|
MINH-HANG NGUYEN ETC: "SU8 3D prisms with ultra small inclined angle for low-insertion-loss fiber/waveguide interconnection", 《OPTICS EXPRESS》, vol. 19, no. 20, 14 September 2011 (2011-09-14) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107478156A (en) * | 2017-07-12 | 2017-12-15 | 中国航空工业集团公司西安飞行自动控制研究所 | A kind of Optical displacement sensor based on recombined white light interfered device |
Also Published As
Publication number | Publication date |
---|---|
CN102540281B (en) | 2014-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107290813A (en) | A mid-infrared double-layer nano-metal grating and its preparation method | |
JP2008044093A5 (en) | ||
KR102194832B1 (en) | Method for Fabricating Nanostructured Surface on Curved Lens | |
CN103522686B (en) | A kind of opal film with double-deck holographic effect and preparation method thereof | |
NL2013093B1 (en) | Method for manufacturing a lens structure. | |
FR2992313A1 (en) | VITROCERAMIC ARTICLE AND METHOD OF MANUFACTURE | |
TWI672212B (en) | Nano imprinting assembly and imprinting method thereof | |
CN101556345A (en) | Manufacturing method of micro lens | |
KR20100029577A (en) | Lens having nanopatterning and manufacturing method thereof | |
CN105487151A (en) | Grating preparation method through pattern transfer based on nano-imprint | |
CN104094140B (en) | Diffraction grating and manufacture method thereof | |
IL263169A (en) | Method for producing a volume hologram film having security elements formed as transfer sections | |
CN104228054A (en) | Large-area replication method of resistance-reducing micro grooves of bionic shark skin | |
CN102540281B (en) | A wedge-shaped film in a white light interference displacement sensor and its manufacturing method | |
CN110893732B (en) | Anti-fake card and its making process | |
JP2012247767A (en) | Method for manufacturing lens stamp and lens stamp manufactured by the same | |
WO2021164733A1 (en) | Method for transferring nano-structure and application thereof | |
JP2014506336A (en) | Method for manufacturing ophthalmic lens with base lens and membrane structure | |
US20080318170A1 (en) | Method of making an optical disc | |
CN202242137U (en) | Simple texture mold making structure | |
JP5822446B2 (en) | Method for manufacturing hologram sheet material | |
CN202985905U (en) | Device for making clamp by using wedge-shaped film | |
TWI402162B (en) | Composite micro-lens and composite micro-lens array | |
Li et al. | Shape-controllable plano-convex lenses with enhanced transmittance via electrowetting on a nanotextured dielectric | |
JP2009066827A (en) | Molding method of optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140924 Termination date: 20220201 |