CN102538685A - Displacement detection system with twist error correcting function - Google Patents
Displacement detection system with twist error correcting function Download PDFInfo
- Publication number
- CN102538685A CN102538685A CN2011104494365A CN201110449436A CN102538685A CN 102538685 A CN102538685 A CN 102538685A CN 2011104494365 A CN2011104494365 A CN 2011104494365A CN 201110449436 A CN201110449436 A CN 201110449436A CN 102538685 A CN102538685 A CN 102538685A
- Authority
- CN
- China
- Prior art keywords
- position signal
- detection system
- displacement
- signal detection
- standard grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 67
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 41
- 238000005070 sampling Methods 0.000 claims abstract description 9
- 238000004458 analytical method Methods 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 21
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000009434 installation Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000001444 catalytic combustion detection Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种位移检测系统,具体涉及一种具有修正扭转误差功能的位移检测系统。用于高精度和高稳定测量长度的测量系统。The invention relates to a displacement detection system, in particular to a displacement detection system with the function of correcting torsion errors. Measuring system for measuring lengths with high precision and stability.
背景技术 Background technique
光栅线位移测量系统在数控中主要作为闭环控制中的位置反馈元件,其精度和可靠性影响到加工精度,而全闭环相对于半闭环的优势主要在于能够消除传动误差,对于加工刀具位置和工件位置的直接测量。国内外光栅尺的精度已经能够达到较高的测量精度要求,但是国内的机床本身存在安装精度不够高的情况,使得高精度的测量仪器的高精度优势很难在自己的数控系统中得到充分的发挥,原因之一就是数控系统中的各种影响因素,包括移动体在滑块上的运动不是绝对的直线运动,对于位移的测量仍然存在误差。如果不能处理好同机床搭配的问题,那么就无法发挥全闭环加工的优势,其稳定性和精度可能还不如安装精度高的半闭环系统,这样的情况阻碍了对高精度数控系统的研究,使得人们对于机床的改装存在较大的困难。The grating line displacement measurement system is mainly used as the position feedback element in the closed-loop control in the numerical control. Its accuracy and reliability affect the machining accuracy. The advantage of the full-closed loop compared with the semi-closed loop is mainly that it can eliminate transmission errors. For machining tool position and workpiece Direct measurement of position. The accuracy of grating rulers at home and abroad has been able to meet higher measurement accuracy requirements, but the installation accuracy of domestic machine tools is not high enough, making it difficult for the high-precision advantages of high-precision measuring instruments to be fully utilized in their own numerical control systems. One of the reasons is that there are various influencing factors in the numerical control system, including that the motion of the moving body on the slider is not an absolute linear motion, and there are still errors in the measurement of displacement. If the problem of matching with the machine tool cannot be handled well, then the advantages of full closed-loop machining cannot be brought into play, and its stability and accuracy may not be as good as semi-closed-loop systems with high installation precision. This situation hinders the research on high-precision CNC systems, making People have great difficulties in refitting machine tools.
一般解决测量误差的方法就是提高系统各个部件的精度和光栅尺的精度来减小测量误差,但是系统的长期运行的精度和稳定性仍然需要对于运行中出现的偏差进行修正。The general way to solve the measurement error is to improve the accuracy of each component of the system and the accuracy of the grating ruler to reduce the measurement error, but the long-term operation accuracy and stability of the system still need to correct the deviation that occurs during operation.
发明内容 Contents of the invention
本发明为解决现有的位移测量技术主要是针对测量仪器本身的测量精度来设计的,虽然能够达到很高的测量精度,但是由于机床本身的机械结构精度或者安装精度的原因,测量仪器本身的测量精度不能够得到充分的发挥,为了在已有的机床设计的精度的基础上,提高系统位移测量的稳定性,尽量减小由于轨道运动非直线性导致的偏差,减小对于安装精度的要求,提供一种具有修正扭转误差功能的位移检测系统。In order to solve the existing displacement measurement technology, the present invention is mainly designed for the measurement accuracy of the measuring instrument itself. Although it can achieve high measurement accuracy, due to the mechanical structure accuracy or installation accuracy of the machine tool itself, the measuring instrument itself cannot The measurement accuracy cannot be fully utilized. In order to improve the stability of the system displacement measurement on the basis of the accuracy of the existing machine tool design, minimize the deviation caused by the non-linearity of the orbital motion, and reduce the requirements for installation accuracy , providing a displacement detection system with the function of correcting torsion errors.
具有修正扭转误差功能的位移检测系统,该系统包括第一标准光栅、第二标准光栅、采样控制模块、第一位置信号探测系统、第二位置信号探测系统和位置分析模块;所述采样控制模块发出采集信号,第一位置信号探测系统和第二位置信号探测系统分别对移动体相对于第一标准光栅和第二标准光栅上的位移信号进行采集,获得第一位置信号和第二位置信号,所述位置分析模块对第一位置信号和第二位置信号进行加权平均计算,获得修正后的移动体的位移值,并将所述移动体的位移值经结果输出模块输出。A displacement detection system with the function of correcting torsion error, the system includes a first standard grating, a second standard grating, a sampling control module, a first position signal detection system, a second position signal detection system and a position analysis module; the sampling control module Send out the acquisition signal, the first position signal detection system and the second position signal detection system collect the displacement signals of the moving body relative to the first standard grating and the second standard grating respectively, and obtain the first position signal and the second position signal, The position analysis module performs weighted average calculation on the first position signal and the second position signal to obtain the corrected displacement value of the moving body, and outputs the displacement value of the moving body through the result output module.
本发明的有益效果:本发明所述的位移检测系统通过两个分别安装在两个轨道上的第一位置信号探测系统和第二位置信号探测系统,两个探测系统分别对应于移动体在两个轨道上的移动位移,那么通过比较得到的两个位移值就能够分析得到移动体在运动过程中的扭转情况,从而得到修正后的位移测量值,这是单独通过一个位置探测系统所难以做到的。本发明用于提高测量系统的读数稳定性和自检能力,同时消除或者尽量减小扭转误差。Beneficial effects of the present invention: the displacement detection system of the present invention uses two first position signal detection systems and a second position signal detection system respectively installed on two rails, and the two detection systems correspond to the movement of the moving body at the two The moving displacement on a track, then by comparing the two displacement values obtained, the torsion of the moving body during the movement can be analyzed to obtain the corrected displacement measurement value, which is difficult to do through a position detection system alone. arrived. The invention is used to improve the reading stability and self-inspection ability of the measurement system, and simultaneously eliminate or minimize the torsion error.
附图说明 Description of drawings
图1为本发明所述的具有修正扭转误差功能的位移检测系统的结构图;Fig. 1 is a structural diagram of a displacement detection system with a function of correcting torsion error according to the present invention;
图2为本发明所述的具有修正扭转误差功能的位移检测系统在理想情况下进行检测的位置示意图;2 is a schematic diagram of the position of the displacement detection system with the function of correcting the torsion error described in the present invention under ideal conditions;
图3为非理想情况下的具有修正扭转误差功能的位移检测系统的位置示意图。Fig. 3 is a schematic diagram of the position of the displacement detection system with the function of correcting the torsion error under the non-ideal condition.
具体实施方式 Detailed ways
结合图1至图3说明本实施方式,具有修正扭转误差功能的位移检测系统,该系统包括第一标准光栅101、第二标准光栅201、采样控制模块10、第一位置信号探测系统21、第二位置信号探测系统22和位置分析模块30;1 to 3 to illustrate this embodiment, the displacement detection system with the function of correcting torsional errors, the system includes a first
所述位置分析模块30接收来自第一位置信号探测系统21和第二位置信号探测系统22的位置信号,所述第一位置信号探测系统21和第二位置信号探测系统22由采样控制模块10统一发出采集信号,位置分析模块30通过分析比较来自第一位置信号探测系统21和第二位置信号探测系统22的获得的移动体300相对于第一标准光栅101和第二标准光栅201的位移信号,对两个位移信号进行加权平均计算移动体300的位移值。The
本实施方式中所述的第一标准光栅101和第二标准光栅201分别固定在第一轨道100和第二轨道200上,在第一标准光栅101和第二标准光栅201上有标志着位置信息的图案,为了得到绝对位置信息,在第一标准光栅101和第二标准光栅201上至少有一个标准光栅上有标志绝对位置信息的图案。在第一位置信号探测系统21和第二位置信号探测系统22固定在移动体上,第一位置信号探测系统21和第二位置信号探测系统22把在第一标准光栅101和第二标准光栅201上的长度的信息分别扫描到第一位置信号探测系统21和第二位置信号探测系统22中,所述第一位置信号探测系统21和第二位置信号探测系统22通过光电扫描的方式进行扫描。所述第一位置信号探测系统21和第二位置信号探测系统22为CMOS(Complementary Metal Oxide Semiconductor)、光电池阵列或者CCD。The first
本实施方式所述的第一位置信号探测系统21为光电池阵列,其固定在移动体上,第二位置信号探测系统22为光电池阵列,其固定在移动体上。第一位置信号探测系统21和第二位置信号探测系统22中至少任意一方具有绝对位置信号探测功能。The first position
本实施方式所述的第一标准光栅101和第二标准光栅201可以是反射式光栅或者透射式光栅。第一位置信号探测系统21和第二位置信号探测系统22的接收芯片可以是硅光电池或者CCD。The first
结合图3对本实施方式作进一步说明,当系统存在一定的运动偏差,存在一定的扭转,扭转的角度在图示中表示为α,而第一位置信号探测系统21和第二位置信号探测系统22都分别沿着各自的轨道100和200运动,并没有随着移动体的扭转而扭转,形成了图3中的形态,这样,使得在两个轨道上运动的位移值不相同,经过位置分析模块30的位置细分模块后,对应于轨道100和轨道200的读数分别为X1和X2,结合图2,假设两轨道上的刻线101和201间距表示为L,可以根据图3所示的位置关系得到移动体中心(在本实例中假设移动体的形状和位置相对于两轨道是对称的,这样移动体的中心点处于与两轨道等距的线上,并且不随扭转运动而运动,即不动点)相对两轨道等距离的点的位移值可以表示为:This embodiment is further described in conjunction with FIG. 3. When the system has a certain movement deviation and a certain twist, the twist angle is represented as α in the figure, and the first position
X=(X1+X2)/2 ①X=(X1+X2)/2 ①
扭转角α可以通过下面的公式计算出来:The twist angle α can be calculated by the following formula:
α=arctan[(X1-X2)/L] ②α=arctan[(X1-X2)/L] ②
为了描述方便在本实例中把移动体的形状假设成矩形,但是不影响结论的推广,假设移动体运行位移为X,那么两读数头的读数将分别为:For the convenience of description, the shape of the moving body is assumed to be a rectangle in this example, but it does not affect the extension of the conclusion. Assuming that the running displacement of the moving body is X, then the readings of the two reading heads will be:
X1=X+L*tan(α)/2 ③X1=X+L*tan(α)/2 ③
X2=X-L*tan(α)/2 ④X2=X-L*tan(α)/2 ④
这样不动点的位置X就可以表示为式①,计算式①中得到的值独立于扭转角α,所述α为很小的偏转角,例如α的角度为10′。In this way, the position X of the fixed point can be expressed as formula ①, and the value obtained in formula ① is independent of the torsion angle α, which is a small deflection angle, for example, the angle of α is 10′.
下面分析以上计算公式的合理性,The rationality of the above calculation formula is analyzed below,
为了描述方便在本实例中把移动体的形状假设成矩形,但是不影响结论的推广,假设移动体运行位移为X,那么两读数头的读数将分别为式③和式④For the convenience of description, the shape of the moving body is assumed to be a rectangle in this example, but it does not affect the extension of the conclusion. Assuming that the running displacement of the moving body is X, then the readings of the two reading heads will be formula ③ and formula ④ respectively
比如,X1等于20.345mm,而X2等于20.355mm,这样通过式①计算得到X为20.350mm,如果L等于200mm,则通过式②计算得到偏转角α等于10.3角秒,误差降低了约5微米。For example, X1 is equal to 20.345mm, and X2 is equal to 20.355mm. In this way, X is 20.350mm calculated by formula ①. If L is equal to 200mm, the deflection angle α is calculated by formula ② to be equal to 10.3 arc seconds, and the error is reduced by about 5 microns.
如此,在本发明中,只需要一个处理电路,通过增加一个读数系统,两条标准光栅固定在两个轨道上,通过读数系统得到两个独立的位置值,并通过比较分析体系中不动点所在的位置,用这个位置来表示体系所在的位置,有效的克服了由于移动体扭转带来的测量误差,同时能够通过角度α来监测其扭转量,测量方法简单。这种测量方法能有效提高测量精度和测量的可靠性,特别适用于安装精度不够高,而测量精度要求高的环境,而不需要对于安装设备和方法有很高的苛求。In this way, in the present invention, only one processing circuit is needed, by adding a reading system, two standard gratings are fixed on the two tracks, two independent position values are obtained through the reading system, and the fixed point in the analysis system is compared The position, using this position to indicate the position of the system, effectively overcomes the measurement error caused by the torsion of the moving body, and at the same time can monitor the amount of torsion through the angle α, and the measurement method is simple. This measurement method can effectively improve the measurement accuracy and measurement reliability, and is especially suitable for environments where the installation accuracy is not high enough but the measurement accuracy is high, without requiring high requirements for installation equipment and methods.
此外,本发明中的测量方法还可以用于以下情况,以某一条轨道作为正常使用时所用的轨道,而另外一条轨道用于检验和修正位置值,只需要进行一定周期的检测,检测时对前一条轨道的测量值进行修正,这样就把安装误差同时考虑进去,第一条轨道得到的数值是包括了除读数系统本身以外的体系的整体误差,而不仅仅是对于光栅尺本身的修正。In addition, the measurement method in the present invention can also be used in the following situations, using a certain track as the track used in normal use, while the other track is used to check and correct the position value, only a certain period of detection is required. The measured value of the previous track is corrected, so that the installation error is taken into account at the same time. The value obtained by the first track includes the overall error of the system other than the reading system itself, not just the correction of the grating ruler itself.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104494365A CN102538685A (en) | 2011-12-29 | 2011-12-29 | Displacement detection system with twist error correcting function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104494365A CN102538685A (en) | 2011-12-29 | 2011-12-29 | Displacement detection system with twist error correcting function |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102538685A true CN102538685A (en) | 2012-07-04 |
Family
ID=46346191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011104494365A Pending CN102538685A (en) | 2011-12-29 | 2011-12-29 | Displacement detection system with twist error correcting function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102538685A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103759660A (en) * | 2014-01-28 | 2014-04-30 | 广东工业大学 | Method for auxiliary installation and error compensation of absolute optical grating ruler |
CN103868466A (en) * | 2014-02-08 | 2014-06-18 | 合肥工业大学 | Comprehensive measuring device for deformation of parallel double-joint coordinate measuring machine rotating arm |
CN104567598A (en) * | 2014-12-31 | 2015-04-29 | 彩虹(合肥)液晶玻璃有限公司 | Device and method for measuring forming furnace-discharging deviation of liquid crystal substrate glass |
CN108153234A (en) * | 2018-01-30 | 2018-06-12 | 中国工程物理研究院机械制造工艺研究所 | The full degree of freedom accuracy detecting device of lathe linear motion run mode |
CN110530310A (en) * | 2019-08-26 | 2019-12-03 | 广西交通设计集团有限公司 | A kind of deep soil movement monitoring device and method |
CN114132531A (en) * | 2022-01-28 | 2022-03-04 | 中国人民解放军32035部队 | Low-orbit space target orbit correction method and device and electronic equipment |
CN114172503A (en) * | 2021-11-23 | 2022-03-11 | 成都飞机工业(集团)有限责任公司 | Synchronous position error compensation correction method based on proximity switch |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080094604A1 (en) * | 2006-09-01 | 2008-04-24 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
CN102175147A (en) * | 2011-01-10 | 2011-09-07 | 昆山双虎电子科技有限公司 | Dynamic revising method of three-coordinate measuring machine |
-
2011
- 2011-12-29 CN CN2011104494365A patent/CN102538685A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080094604A1 (en) * | 2006-09-01 | 2008-04-24 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
CN102175147A (en) * | 2011-01-10 | 2011-09-07 | 昆山双虎电子科技有限公司 | Dynamic revising method of three-coordinate measuring machine |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103759660A (en) * | 2014-01-28 | 2014-04-30 | 广东工业大学 | Method for auxiliary installation and error compensation of absolute optical grating ruler |
CN103759660B (en) * | 2014-01-28 | 2016-03-23 | 广东工业大学 | A kind of absolute grating ruler is auxiliary to be installed and error compensating method |
CN103868466A (en) * | 2014-02-08 | 2014-06-18 | 合肥工业大学 | Comprehensive measuring device for deformation of parallel double-joint coordinate measuring machine rotating arm |
CN103868466B (en) * | 2014-02-08 | 2017-05-17 | 合肥工业大学 | Comprehensive measuring device for deformation of parallel double-joint coordinate measuring machine rotating arm |
CN104567598A (en) * | 2014-12-31 | 2015-04-29 | 彩虹(合肥)液晶玻璃有限公司 | Device and method for measuring forming furnace-discharging deviation of liquid crystal substrate glass |
CN108153234A (en) * | 2018-01-30 | 2018-06-12 | 中国工程物理研究院机械制造工艺研究所 | The full degree of freedom accuracy detecting device of lathe linear motion run mode |
CN108153234B (en) * | 2018-01-30 | 2023-08-04 | 中国工程物理研究院机械制造工艺研究所 | Full-freedom degree precision detection device for linear motion running state of machine tool |
CN110530310A (en) * | 2019-08-26 | 2019-12-03 | 广西交通设计集团有限公司 | A kind of deep soil movement monitoring device and method |
CN114172503A (en) * | 2021-11-23 | 2022-03-11 | 成都飞机工业(集团)有限责任公司 | Synchronous position error compensation correction method based on proximity switch |
CN114132531A (en) * | 2022-01-28 | 2022-03-04 | 中国人民解放军32035部队 | Low-orbit space target orbit correction method and device and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102538685A (en) | Displacement detection system with twist error correcting function | |
CN104075890B (en) | A kind of servomotor and harmonic wave speed reducing machine comprehensive test platform | |
CN105547344B (en) | A kind of test equipment calibrating installation and its calibration method | |
CN100462678C (en) | Laser vision dynamic measurement method for rail wear | |
CN203981405U (en) | A kind of servomotor and harmonic wave speed reducing machine comprehensive test platform | |
CN110906861B (en) | Real-time measuring device and method for rolling angle error of guide rail movement | |
CN107588742A (en) | A kind of cylindrical gear profile bias measurement method based on line-structured light | |
CN103630099A (en) | Automated linear displacement sensor calibration device | |
CN109032070A (en) | A kind of contactless R-test measuring instrument scaling method using eddy current displacement sensor | |
CN110530296B (en) | Method for determining line laser installation error angle | |
CN107255453B (en) | A device and method for measuring the eccentric shaft diameter of an industrial robot joint reducer | |
CN106767512A (en) | Optical element high precision measuring device based on real-time monitoring kinematic error | |
CN101419044B (en) | Micron-nano grade three-dimensional measurement '331' system and measurement method thereof | |
CN110398359A (en) | A dynamic detection method and device for comprehensive error of mechanical transmission chain | |
CN111288922A (en) | On-machine measurement method for rail vehicle wheel and tread profile | |
CN111895947A (en) | Temperature compensation system and temperature compensation method based on three-coordinate measuring machine | |
CN103223628A (en) | Method for detecting tooth profile error of big gear wheel on line | |
CN110514119A (en) | A device and method for measuring the overall error of gears based on double circular gratings | |
CN113136752A (en) | Device and method for calibrating equipment for measuring creeping and close-fitting clearance of switch rail | |
CN108871248B (en) | An absolute position detection device applicable to ultra-large stroke detection | |
CN105157583B (en) | A kind of axle journal length measuring system | |
CN106289058A (en) | The method that a kind of grating scale location assignment accuracy compensates | |
CN112665477B (en) | Detection tool and method for testing plane positioning accuracy of end effector | |
CN101183049B (en) | Nc milling machine error automatic sizing device | |
CN208042983U (en) | A kind of guide rail linearity measuring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120704 |