CN102536940A - 基于完全壅塞流和非完全壅塞流并联气动系统 - Google Patents

基于完全壅塞流和非完全壅塞流并联气动系统 Download PDF

Info

Publication number
CN102536940A
CN102536940A CN2012100148334A CN201210014833A CN102536940A CN 102536940 A CN102536940 A CN 102536940A CN 2012100148334 A CN2012100148334 A CN 2012100148334A CN 201210014833 A CN201210014833 A CN 201210014833A CN 102536940 A CN102536940 A CN 102536940A
Authority
CN
China
Prior art keywords
valve
acting cylinder
complete
choked flow
pneumatic system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100148334A
Other languages
English (en)
Other versions
CN102536940B (zh
Inventor
章军
刘传江
刘光元
熊强
吕兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Shishuo Wujie Machinery Co ltd
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201210014833.4A priority Critical patent/CN102536940B/zh
Publication of CN102536940A publication Critical patent/CN102536940A/zh
Application granted granted Critical
Publication of CN102536940B publication Critical patent/CN102536940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

本发明涉及一种基于完全壅塞流和非完全壅塞流并联气动系统,此系统以气压源驱动,基于完全壅塞流和非完全壅塞流并联的气动控制原理,利用小孔节流阀和通用的可调节流阀并联使用方式,可作为气体驱动的低压、小流量的动力系统,属于气压传动的应用技术领域。本发明适当提高了系统压力的气压恒压源,先采用非完全壅塞流的大流量驱动模式,驱动执行件(如气缸)快速运动,后转变为完全壅塞流的微流量驱动模式,驱动执行件(如气缸)缓慢运动。本发明由于气体的弹性模量要比液体大得多,控制增益相对更为合理;利用小孔节流阀小孔处产生壅塞流原理,便于建立气缸位移、速度的动态方程,系统稳定性好,控制方式简单,成本低廉,有利于系统的伺服控制。

Description

基于完全壅塞流和非完全壅塞流并联气动系统
技术领域:
本发明涉及一种基于完全壅塞流和非完全壅塞流并联气动系统,此气动系统以气压源驱动,基于完全壅塞流和非完全壅塞流并联的气动控制原理,利用气体小孔节流阀和通用的可调节流阀并联使用方式,可作为气体驱动的低压、小流最的动力系统,属于气压传动的应用技术领域。
背景技术:
本发明以前,在已有技术中,对于气动驱动系统来说,现有的气动驱动系统节流基本采用非完全壅塞流,其不足之处是:由于气体节流阀开口大,出口处的气体质量流量是不断变化,出口流量和压力的非线性关系,运动平稳性差,需要复杂的伺服系统,才能达到出口压力的精确控制,得到较高的定位精度。
根据空气动力学,完全壅塞流控制原理是:采用小孔节流阀(带小孔的不可调节流阀),其开口大小是很小、且固定不变,相当于小孔的‘慢漏气’现象;当出口压力与进口压力之比小于0.528时,小孔节流阀小孔处的气体速度为声速,为完全壅塞流状态,由于出口的气体质量流量是恒定不变,便于流量计算与压力控制。
气动系统采用完全壅塞流控制原理,由于控制体积大,气缸等执行元件的反应缓慢,工作所需时间较长,所有不能应用在工程领域。
采用完全壅塞流的控制原理,授权发明专利“气-液串联复合驱动系统”(专利号:CN200610037764.3)在小孔节流阀之后使用柱塞缸隔离气路和液路,将柱塞缸之后的部分串联为液体驱动,气缸变为液力驱动缸,气体驱动柱塞缸、柱塞缸液力驱动执行元件;小孔节流阀之后、柱塞缸之前的气路部分的体积尽可能小,气体驱动迅速传递为液力驱动,串联复合驱动系统的执行元件反应速度快;在保证小孔节流阀的出口压力与进口压力之比小于0.528的前提下,通断小孔节流阀之前的、紧靠小孔节流阀的气体高速开关阀,实现反应速度开、定位精度高的控制要求。
但是,气-液串联复合驱动系统也存在以下问题:尽管液路的液体压力较小,但长时间使用下,液路存在的泄漏会影响控制模型的参数,需要经常测量和不断补偿;同时,液路的泄漏也会产生环境污染问题;而且,气体驱动优点还在于:由于气体的弹性模量要比液体大得多,控制增益相对更为合理;管路中流动气体的阻尼比流动液体的阻尼小的多,运动迅速。
发明内容:
本发明的目的在于克服上述不足之处,本发明为完全的气压驱动方式,采用基于完全壅塞流和非完全壅塞流并联气动系统,即:小孔节流阀与通用的可调节流阀并联使用,控制体积中的绝大部分气体由可调节流阀快速通过;当小孔节流阀后的反馈气体压力达到一定值时,高速开关阀关闭可调节流阀,利用小孔节流阀的完全壅塞流的控制原理,实现小孔节流阀出口压力的精确控制;为提高执行元件的驱动力,适当提高小孔节流阀前的系统压力。
本发明的主要解决方案是这样实现的:
本发明基于完全壅塞流和非完全壅塞流并联气动系统为:如附图1所示,带储气罐的恒压源的系统压力为pS,为提高执行元件的驱动力,须适当提高系统压力pS;pS也是小孔节流阀3的进口压力,小孔节流阀3的流量不可调,小孔节流阀3的出口压力为pA;当pA/pS<0.528时,小孔节流阀3为完全壅塞流的节流,而可调节流阀2的流量可调,为非完全壅塞流的节流;由高速通断阀1与可调节流阀2串联后,再与小孔节流阀3并联;并联后的前端与带储气罐的恒压源连接,并联后的后端与三位四通阀6的一口相通,三位四通阀6的一口与可调节流阀5相连,可调节流阀5与消声器4相连,三位四通阀6另外两通口中一口封闭,另一口为驱动系统动力输出端、并与压力变送器7相连;上述元件构成了本发明的基于完全壅塞流和非完全壅塞流并联气动系统,以下将简称为并联气动系统,并在附图2、3中用虚线框明确。
本发明基于完全壅塞流和非完全壅塞流并联气动系统驱动单作用气缸的实施例:如附图2所示,并联气动系统的动力输出端与单作用气缸8相连,单作用气缸8内压缩弹簧必须预紧,单作用气缸8出口与通断阀9相通;单作用气缸8外有直线位移传感器10,用于测量单作用气缸8活塞杆的位移与速度。
本发明基于完全壅塞流和非完全壅塞流并联气动系统驱动双作用气缸的实施例:如附图3所示,本实施例利用了两套并联气动系统(其中一套相同元件的附图标记增加了小写字母a,电磁铁的序号仍为单独标记),带储气罐的恒压源分别经过通断阀13和通断阀13a,进入并联连接的两套并联气动系统,两套并联气动系统的动力输出端分别连接双作用气缸11的两端,双作用气缸11外有高精度位移传感器12,用以精确测量双作用气缸11活塞杆的位移与速度。
本发明基于完全壅塞流和非完全壅塞流并联气动系统驱动气缸工作原理是:可调节流阀2的通流面积比小孔节流阀3大得多,可调节流阀2的流量比小孔节流阀3大得多;开始时,气体绝大部分通过可调节流阀2、极少部分通过小孔节流阀3进入驱动系统,驱动执行件(如气缸)快速运动,此时为非完全壅塞流的大流量驱动模式;执行件的运动接近目标位置时,并在小孔节流阀3进口压力pA和出口压力pS之比小于0.528的前提下,参照小孔节流阀3出口处的压力变送器7的反馈信号和直线位移传感器10(或高精度位移传感器12)的反馈信号,根据系统控制策略,迅速关闭高速通断阀1,此时为完全壅塞流的微流量驱动模式,驱动执行件(如气缸)缓慢运动;执行件的运动到达目标位置时,三位四通阀6的电磁铁失电、阀芯在中位状态,停止了执行件的运动。
本发明与已有技术相比具有以下优点:
本发明采用基于完全壅塞流和非完全壅塞流并联气动系统,适当提高了系统压力的气压恒压源,先采用非完全壅塞流的大流量驱动模式,驱动执行件(如气缸)快速运动,后转变为完全壅塞流的微流量驱动模式,驱动执行件(如气缸)缓慢运动。本发明由于气体的弹性模量要比液体大得多,控制增益相对更为合理;管路中气体的阻尼比液体的阻尼小的多,运动迅速;利用小孔节流阀小孔处产生壅塞流原理(即气体纤节流阀小孔排气的质量流量保持不变),便于建立气缸位移、速度的动态方程,系统稳定性好,控制方式简单,成本低廉,有利于系统的伺服控制。
附图说明:
图1为本发明基于完全壅塞流和非完全壅塞流并联气动系统的原理图
图2为本发明基于完全壅塞流和非完全壅塞流并联气动系统驱动单作用气缸的工作原理图
图3为本发明基于完全壅塞流和非完全壅塞流并联气动系统驱动双作用气缸的工作原理图
具体实施方式:
下面将结合附图说明本发明的工作原理及工作过程:
本发明基于完全壅塞流和非完全壅塞流并联气动系统驱动单作用气缸的实施例:
如附图2所示,带储气罐的恒压源的系统压力为pS,高速通断阀1的电磁铁3DT失电、高速通断阀1开通,三位四通阀6的电磁铁1DT得电,压缩空气绝大部分通过可调节流阀2、极少部分通过小孔节流阀3进入三位四通阀6,驱动单作用气缸8活塞杆克服单作用气缸8内压缩弹簧力而快速伸出运动,此时为非完全壅塞流的大流量驱动模式;单作用气缸8活塞杆的运动接近目标位置时,并在小孔节流阀3进口压力pA和出口压力pS之比小于0.528的前提下,参照小孔节流阀3出口处的压力变送器7的反馈信号和直线位移传感器10的反馈信号,根据系统控制策略,高速通断阀1的电磁铁3DT得电,高速通断阀1关闭,此时为完全壅塞流的微流量驱动模式,压缩空气仅通过小孔节流阀3,驱动单作用气缸8活塞杆缓慢运动;执行件的运动到达目标位置时,根据直线位移传感器10的反馈信号,三位四通阀6的电磁铁1DT失电、阀芯在中位状态,停止了单作用气缸8活塞杆的运动。在单作用气缸8的活塞杆伸出时,单作用气缸8内压缩弹簧起阻尼作用;当三位四通阀6的电磁铁2DT得电,靠单作用气缸8内压缩弹簧的作用,单作用气缸8内气体通过三位四通阀6、可调节流阀5、消声器4排到大气,单作用气缸8的活塞杆退回。在单作用气缸8的活塞杆伸出到达目标位置前,根据压力变送器7的反馈信号和直线位移传感器10的反馈信号,与单作用气缸8相连的通断阀9的电磁铁4DT得电,断开单作用气缸8气体排往大气的气路,起到阻尼作用;单作用气缸8的活塞杆退回时,通断阀9的电磁铁4DT失电。
本发明基于完全壅塞流和非完全壅塞流并联气动系统驱动双作用气缸的实施例:
如附图3所示,带储气罐的恒压源的系统压力为pS,活塞杆正向伸出运动,通断阀13的电磁铁8DT失电和通断阀13a的电磁铁9DT得电,右边的并联气动系统中,高速通断阀1的电磁铁3DT失电而开通,三位四通阀6的电磁铁1DT得电;左边的并联气动系统中,三位四通阀6a的电磁铁7DT得电;驱动双作用气缸11活塞杆快速伸出运动,此时为非完全壅塞流的大流量驱动模式;双作用气缸11活塞杆的运动接近目标位置时,并在小孔节流阀3进口压力pA和出口压力pS之比小于0.528的前提下,参照小孔节流阀3出口处的压力变送器7的反馈信号和高精度位移传感器12的反馈信号,根据系统控制策略,高速通断阀1的电磁铁3DT得电,高速通断阀1关闭,此时为完全壅塞流的微流量驱动模式,压缩空气仅通过小孔节流阀3,驱动双作用气缸11活塞杆缓慢伸出运动;执行件的运动到达目标位置时,根据高精度位移传感器12的反馈信号,三位四通阀6的电磁铁1DT失电、阀芯在中位状态,停止了单作用气缸8活塞杆的伸出运动。
活塞杆反向缩回运动,通断阀13的电磁铁8DT得电和通断阀13a的电磁铁9DT失电,右边的并联气动系统中,三位四通阀6的电磁铁2DT得电;左边的并联气动系统中,高速通断阀1a的电磁铁5DT失电而开通,三位四通阀6a的电磁铁8DT得电;驱动双作用气缸11活塞杆快速缩回运动,此时为非完全壅塞流的大流量驱动模式;双作用气缸11活塞杆的运动接近目标位置时,并在小孔节流阀3a进口压力pA和出口压力pS之比小于0.528的前提下,参照小孔节流阀3a出口处的压力变送器7a的反馈信号和高精度位移传感器12的反馈信号,根据系统控制策略,高速通断阀1a的电磁铁5DT得电,高速通断阀1关闭,此时为完全壅塞流的微流量驱动模式,压缩空气仅通过小孔节流阀3a,驱动双作用气缸11活塞杆缓慢缩回运动;执行件的运动到达目标位置时,根据高精度位移传感器12的反馈信号,三位四通阀6a的电磁铁8DT失电、阀芯在中位状态,停止了双作用气缸11活塞杆的缩回运动。

Claims (3)

1.一种基于完全壅塞流和非完全壅塞流并联气动系统,其特征是:由高速通断阀(1)与可调节流阀(2)串联后,再与小孔节流阀(3)并联,小孔节流阀(3)的流量不可调;并联后的前端与带储气罐的恒压源连接,并联后的后端与三位四通阀(6)的一口相通,三位四通阀(6)的一口与可调节流阀(5)相连,可调节流阀(5)与消声器(4)相连,三位四通阀(6)另外两通口中一口封闭,另一口为驱动系统动力输出端、并与压力变送器(7)相连。
2.根据权利要求1所述基于完全壅塞流和非完全壅塞流并联气动系统,采用此系统驱动单作用气缸的实施例的特征是:并联气动系统的动力输出端与单作用气缸(8)相连,单作用气缸8内压缩弹簧必须预紧,单作用气缸(8)出口与通断阀9相通;单作用气缸(8)外有直线位移传感器(10),用于测量单作用气缸(8)活塞杆的位移与速度。
3.根据权利要求1所述基于完全壅塞流和非完全壅塞流并联气动系统,采用此系统驱动双作用气缸的实施例的特征是:带储气罐的恒压源分别经过通断阀(13)和通断阀(13a),进入并联连接的两套并联气动系统,两套并联气动系统的动力输出端分别连接双作用气缸(11)的两端,双作用气缸(11)外有高精度位移传感器(12),用以精确测量双作用气缸(11)活塞杆的位移与速度。
CN201210014833.4A 2012-01-18 2012-01-18 基于完全壅塞流和非完全壅塞流并联气动系统 Active CN102536940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210014833.4A CN102536940B (zh) 2012-01-18 2012-01-18 基于完全壅塞流和非完全壅塞流并联气动系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210014833.4A CN102536940B (zh) 2012-01-18 2012-01-18 基于完全壅塞流和非完全壅塞流并联气动系统

Publications (2)

Publication Number Publication Date
CN102536940A true CN102536940A (zh) 2012-07-04
CN102536940B CN102536940B (zh) 2015-08-05

Family

ID=46344667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210014833.4A Active CN102536940B (zh) 2012-01-18 2012-01-18 基于完全壅塞流和非完全壅塞流并联气动系统

Country Status (1)

Country Link
CN (1) CN102536940B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272014A (zh) * 2019-07-05 2019-09-24 济南易恒技术有限公司 充注头液位管位置的精确控制方法及系统
CN113431811A (zh) * 2021-06-08 2021-09-24 江南大学 基于壅塞原理的软体机器人气动系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1811201A (zh) * 2006-01-10 2006-08-02 江南大学 气-液串联复合驱动系统
JP2008286306A (ja) * 2007-05-17 2008-11-27 Nippon Lift Kk 昇降装置用パワーユニット
CN101660503A (zh) * 2008-08-29 2010-03-03 江苏苏亚机电制造有限公司 风力发电机组柔性刹车系统
CN201565962U (zh) * 2009-11-03 2010-09-01 北京建筑工程学院 短小丝条状物料包装机械手气动控制系统及包装机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1811201A (zh) * 2006-01-10 2006-08-02 江南大学 气-液串联复合驱动系统
JP2008286306A (ja) * 2007-05-17 2008-11-27 Nippon Lift Kk 昇降装置用パワーユニット
CN101660503A (zh) * 2008-08-29 2010-03-03 江苏苏亚机电制造有限公司 风力发电机组柔性刹车系统
CN201565962U (zh) * 2009-11-03 2010-09-01 北京建筑工程学院 短小丝条状物料包装机械手气动控制系统及包装机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272014A (zh) * 2019-07-05 2019-09-24 济南易恒技术有限公司 充注头液位管位置的精确控制方法及系统
CN113431811A (zh) * 2021-06-08 2021-09-24 江南大学 基于壅塞原理的软体机器人气动系统
CN113431811B (zh) * 2021-06-08 2022-04-05 江南大学 基于壅塞原理的软体机器人气动系统

Also Published As

Publication number Publication date
CN102536940B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
CN103233932B (zh) 一种高集成性液压驱动单元结构
KR102206932B1 (ko) 액추에이터 제어기 및 액추에이터의 이동을 제어하는 방법
US7886652B2 (en) Positioning control mechanism for single-acting air cylinder
CN201497683U (zh) 一种用于撞击实验的可调速弹射装置
CN100458185C (zh) 随动液压伺服油缸
CN101624087B (zh) 减摇水舱控制装置
TW200916665A (en) Positioning contol mechanism for double-acting air cylinder
CN100507284C (zh) 气-液串联复合驱动系统
CN102536940B (zh) 基于完全壅塞流和非完全壅塞流并联气动系统
CN101344102A (zh) 柱塞式双出杆气液缸与气液联控位置和速度伺服控制装置
CN102878139A (zh) 压电液致动弹性膜位置电反馈式两级伺服阀及其控制方法
CN2900921Y (zh) 磁流变阻尼器及磁流变气动伺服系统
CN201254272Y (zh) 减摇水舱控制装置
CN105465079B (zh) 一种刹车控制油路
Lei et al. Sliding mode control in position control for asymmetrical hydraulic cylinder with chambers connected
CN110529465A (zh) 工程机械负载口独立控制液压模拟实验系统及控制方法
CN106991899B (zh) 一种多功能演示的气液增压缸教具
CN202070140U (zh) 运动座椅运动控制装置
CN102536937A (zh) 一种高精度和高稳定性的先导控制多路阀的控制系统
CN204961982U (zh) 一种无级调节定位执行装置
DE602004000386D1 (de) Hydraulischer Kreislauf für den linearen Antrieb eines Werkzeugmaschinenschiebers in beide Richtungen
CN210752146U (zh) 一种自动气液控制流体配比装置及流体混合系统
ATE378151T1 (de) Pneumatische befestigungsmaschine
JP2017072241A (ja) 流量制御弁、流量制御装置およびエアシリンダ装置
CN107748511A (zh) 基于四开关阀同开策略的气动位置控制系统及其控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221213

Address after: 214028 plot B-14, phase II, Wangzhuang industrial supporting area, Xinwu District, Wuxi City, Jiangsu Province

Patentee after: Wuxi Shishuo WuJie Machinery Co.,Ltd.

Address before: 1800 No. 214122 Jiangsu city of Wuxi Province Li Lake Avenue

Patentee before: Jiangnan University

TR01 Transfer of patent right