CN102528413B - 修改基底以在其中形成通路孔的方法和相关制品 - Google Patents

修改基底以在其中形成通路孔的方法和相关制品 Download PDF

Info

Publication number
CN102528413B
CN102528413B CN201110461800.XA CN201110461800A CN102528413B CN 102528413 B CN102528413 B CN 102528413B CN 201110461800 A CN201110461800 A CN 201110461800A CN 102528413 B CN102528413 B CN 102528413B
Authority
CN
China
Prior art keywords
knot
substrate
via hole
hole
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110461800.XA
Other languages
English (en)
Other versions
CN102528413A (zh
Inventor
R·S·班克
魏斌
H·齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102528413A publication Critical patent/CN102528413A/zh
Application granted granted Critical
Publication of CN102528413B publication Critical patent/CN102528413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/02Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/06Cooling passages of turbine components, e.g. unblocking or preventing blocking of cooling passages of turbine components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/13Manufacture by removing material using lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/14Micromachining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

本发明涉及一种修改基底以在其中形成通路孔的方法和相关制品。描述了一种用于在高温基底(64)中形成至少一个通路孔(100)的方法。对于各个所需通路孔或一组通路孔,首先通过激光熔凝工艺在基底(64)的外表面(62)上形成结(60)。该结用作用于各个通路孔(100)的预选入口区域。然后可形成穿过结(60)且进入基底(64)的通路孔(100)。还描述了相关制品,例如涡轮发动机部件。

Description

修改基底以在其中形成通路孔的方法和相关制品
技术领域
本发明的一般主题涉及高温基底,例如涡轮发动机部件,且更具体而言,涉及用于将冷却孔结合到那些部件的方法。
背景技术
燃气涡轮发动机包括在其中对发动机空气加压的压缩机。该发动机也包括燃烧器,其中加压空气与燃料混合以产生热燃烧气体。在一种典型设计(例如,用于飞行器发动机)中,从为压缩机提供动力的高压涡轮(HPT)中的气体和低压涡轮(LPT)中的气体抽取能量。低压涡轮为在涡轮风扇飞行器发动机应用中的风扇提供动力。在固定动力应用中,HPT和LPT通常在为压缩机提供动力并驱动发电机的一个轴上。
由于发动机通常在极热环境中工作,对燃气涡轮发动机中的冷却系统的需要是至关重要的。例如,发动机部件常常暴露于具有对于飞行器应用高达约3800°F(2093℃)而对于固定发电应用高达约2700°F(1482℃)的温度的热气体。为了冷却暴露于热气体的部件,这些“热气体通道”部件典型地具有内部对流和外部薄膜冷却两者。
在薄膜冷却的情况下,许多通道孔(即在这种情况下的冷却孔)可从部件的相对较冷的表面延伸至部件的“热”表面。冷却孔通常为以浅角度斜穿部件的金属壁的圆柱形钻孔。由于其减少了从热气体到部件表面的入射热通量,薄膜冷却是用于温度控制的重要机制。根据多种因素,例如,孔的所需深度和形状,可使用许多种技术来形成冷却孔。激光钻孔、研磨液(例如水)射流切削和放电机械加工(EDM)是常用于形成薄膜冷却孔的技术。薄膜冷却孔典型地布置成几排紧密地隔开的孔,这些孔共同提供在外表面上的大面积冷却表面层。
冷却空气典型地为压缩机排出的压缩空气,压缩空气随后在发动机的燃烧区周围绕过,并通过冷却孔供应至热表面。冷却剂在热部件表面和热气体流之间形成保护性“薄膜”,从而有助于保护部件不被加热。此外,热气体通道部件的壁常常用提供隔热的热障涂层(TBC)系统覆盖。TBC系统通常包括至少一个陶瓷外涂层和下面的金属结合层。热障涂层系统的益处是熟知的。
示例性薄膜冷却孔在美国专利7,328,580(C.P.Lee等人)中有所描述。该专利描述了超合金基涡轮发动机零件,这些零件包含终止于部件外表面处的精确构造的孔的图案。为孔提供了具体的人字形或三角形形状。例如,这些孔的出口区域可包括在两个“翼槽”之间横向地布置的中央脊。这些特征连接在一起形成一个结构,该结构可提供对从孔的下面的入口钻孔排出的加压冷却空气的最大扩散。在一些情况下,这可导致沿部件的外表面的关键部分的薄膜冷却覆盖率显著增加。在上述技术中,EDM工艺对于确保孔的出口区域的最佳精确构造常常是优选的。
存在一些与使用EDM有关的局限。例如,该工艺不能用来形成穿过如TBC的非导电陶瓷材料的通路孔。因此,将不得不在形成穿过基底的通路孔之后施加陶瓷涂层。然而,在此时沉积涂层可能涉及其它缺点,特别是在相对较大的零件中。例如,通过热喷涂技术沉积的涂层有时可严重地“向下涂覆”敞开的通路孔,且甚至可能阻塞孔的通道。在一些情况下,通过有意使通路孔更大来考虑一些涂层阻塞,可以解决该问题。然而,通过该技术为通路孔获得理想的形状和尺寸可能非常困难。此外,穿过TBC涂层钻孔有时可能以不合乎需要的裂缝或分层的方式来损坏涂层。
可用于形成通路孔的其它工艺不需要金属工件。示例包括激光技术和水射流研磨系统。因此,这类设备可用来形成同时穿过陶瓷涂层、金属结合层和基底的通路孔。这些技术可能在一些情况下有用。然而,对于其它情况来说,这些技术对于非常精确的通路孔形状无能为力,特别是在最靠近零件表面的孔的出口区域内。
考虑到这些考虑因素,与在高温基底中形成通路孔有关的新方法在本领域中将受到欢迎。在涡轮发动机部件的情况中,该方法应该使人们能够形成具有非常精确的形状的薄膜冷却孔,以允许最大化发动机工作期间的冷却效率。更具体而言,新方法应足够灵活,以允许使用包括依靠导电基底的那些技术(如EDM)在内的各种各样的孔形成技术。将通路孔附近的保护涂层缺陷的可能性最小化或消除这种可能性的方法也将受到很大关注。
发明内容
本发明的一个实施例涉及一种用于在高温基底中形成至少一个通路孔的方法,该方法包括下列步骤:
a)对于各个通路孔或对于一组通路孔,通过激光熔凝工艺在基底的外表面上形成结,其中结包括上表面,并且被定位为用于该通路孔或用于该组通路孔的预选入口区域;
b)在基底的外表面上施加保护涂层系统,其中该涂层系统包括至少一个下面的金属层和一个上面的陶瓷层;
c)形成穿过各个结并进入基底内的通路孔或一组通路孔,同时结的上表面基本上没有涂层系统。
另一个实施例涉及基底,该基底具有可暴露于高温的外表面和与外表面大致相对且可暴露于较低温度的内表面,其中至少一个通路孔从外表面向内表面延伸穿过基底,并且其中至少一个金属结设置在基底的外表面上,且被定位为用于通路孔的入口区域。
附图说明
图1是在本发明的实施例中使用的激光熔凝系统的示例性示意图。
图2是用于在基底上形成结的一个示例性激光熔凝图案的图示。
图3是在基底上沉积的球形结的照片。
图4是具有应用在其表面上的结的示例性基底的示意性剖视图。
图5是示例性基底和沉积的结的示意性剖视图,其中在基底表面上和结上施加了保护涂层。
图6是图5的示例性基底的示意性剖视图,其中已从结的表面移除了保护涂层。
图7是沉积在基底上的倾斜的结的示意性剖视图。
图8是图6的基底的示意性剖视图,其中已形成穿过结且穿过基底的通路孔。
部件列表:
参考符号 项目
10 激光熔凝系统
12
14 基底的表面
16 基底
18 激光束
20 进料材料
22 粉末源
24 载体气体
26 熔体池
40
42 结材料的层
44 激光沉积起点
50
52 基底表面
60
62 基底的外表面
64 基底
66 结的上表面
68 涂层系统
70 涂层部分
80
82 结的侧边
83 结表面
84 基底表面
100 通路孔
101 入口钻孔
102 内部区域
具体实施方式
本文所公开的数值范围是包括性的且是可组合的(例如,“高达约25%重量”或者更具体而言“约5%重量至约20%重量”的范围包括端点和范围内的所有中间值)。除非另外指明,就任何成分范围而言,在整个组合物的重量的基础上提供了重量水平;并且比率也以重量为基础提供。此外,术语“组合”包括掺合物、混合物、合金、反应产物等。
此外,本文中的术语“第一”、“第二”等不代表任何顺序、数量或重要性,而是用来区分一个元件与另一元件。本文中的术语“一个”和“一种”不表示数量上的限制,而是表示存在所引用项目中的至少一个。与数量结合使用的修饰词“约”包括所述值,并且具有由上下文决定的含义(例如,包括与特定量的测量相关的误差度)。
此外,在本说明书中,后缀“(一个或多个)”通常旨在包括其修饰的术语的单数和复数两者,从而包括一个或多个该术语(例如,除非另外指明,“通路孔”可包括一个或多个通路孔)。贯穿本说明书引用“一个实施例”、“另一个实施例”、“实施例”等表示结合该实施例描述的特定元素(例如特征、结构和/或特性)包括在本文所述的至少一个实施例中,并且可以存在或可以不存在于其它实施例中。此外,将理解,所描述的本发明的特征可以任何合适的方式在多个实施例中组合。
暴露于高温且需要冷却的任何基底都可用于本发明。经常地,如上所述,基底是燃气涡轮发动机部件的至少一个壁。这种壁和涡轮部件本身在许多参考文献中有所描述。非限制性示例包括美国专利6,234,755(Bunker等人)和美国专利7,328,580(Lee等人,下文称为“Lee”),这两份专利均以引用方式并入本文中。Lee的参考文献全面地描述了关于纵向或轴向中心线轴线轴对称的航空燃气涡轮发动机。按照确定了顺序的流连通,该发动机包括风扇、多级轴流式压缩机和环形燃烧器,该燃烧器后面又有高压涡轮(HPT)和低压涡轮(LPT)。
如上所述,需要在高温基底的许多段中形成成排或其它图案的通路孔(在大多数燃气涡轮应用中为薄膜冷却孔)。本领域的技术人员将能够容易地确定孔的恰当位置。对于各个通路孔或一组通路孔的所选位置,在基底的外表面上形成结。如本文所用,术语“结”意图描述各种各样的堆积的区域、隆起、小丘或“岛状物”。结可以是各种形状,例如正方形、矩形或圆形(如凸台)。此外,在一些情况下,结的形状可以十分不规则。
结的高度通常是小于或等于将要施加到基底外表面上的涂层的厚度(总厚度)的尺寸。结应具有足以包围伸出的通路孔的横向尺寸(即在基底的水平面上的“X”和“Y”尺寸),而不管其角度或“间距”。如下文也描述的,结有时可具有细长轨或台坎的形状,以用作许多个通路孔的单独的入口区域。
结通常(但并不总是)由与基底的组合物类似或至少在冶金方面与基底相容的组合物形成。通常,当基底由超合金材料形成时,结包括高温金属材料。影响具体结材料选择的其它因素包括用于形成结的具体激光沉积工艺、结材料与基底形成相对较强的结合的能力、以及有效形成穿过结材料的通路孔的能力。在超合金基底的情况下,结自身常常由超合金材料(即基于镍、钴或铁的超合金材料)形成。
在大多数实施例中,结通过激光熔凝工艺形成在基底的外表面上。这样的工艺是本领域已知的,并且在许多参考文献中有所描述。该工艺常常被称为”激光包覆”、“激光焊接”、“激光工程化净成形”等。该工艺的非限制性示例在下列美国专利和已公布的专利申请中提供,这些专利以引用方式并入本文中:美国专利No.6,429,402(Dixon等人);美国专利No.6,269,540(Islam等人);美国专利No.5,043,548(Whitney等人);美国专利No.5,038,014(Pratt等人);美国专利No.4,730,093(Mehta等人);美国专利No.4,724,299(Hammeke);美国专利No.4,323,756(Brown等人);美国专利公开2007/0003416(Bewlay等人);以及2008/0135530(Lee等人)。
图1提供了对一种激光熔凝系统10的总体描绘。在基底16的外表面14上进行对例如结12的所需制品的形成。根据下文所述的常规激光器参数,将激光束18聚焦在基底的所选区域上。通常借助合适的载体气体24从粉末源22递送进料材料(沉积材料)20。进料材料通常被导向基底上的区域,该区域非常靠近能量束与基底表面14相交所处的点。熔体池26在该相交处形成,并且固化以形成“包层轨道”12,该包层轨道在这种情况下呈结的形式。如下文进一步描述的,多个包层轨道可被沉积为彼此紧邻和/或彼此叠置,以完成所需的结形状。典型地,当沉积设备向上递加时,结以三维形式逐步趋于完成(其它相关细节可见于上述公开2007/0003416和2008/0135530)。
在图1的系统中可使用各种各样的激光器-只要其具有足以实现本文讨论的熔融功能的功率输出。典型地使用在约0.1kw至约30kw的功率范围内工作的二氧化碳激光器,但该范围可显著地变化。适用于本发明的其它类型的激光器的非限制性示例为Nd:YAG激光器、纤维激光器、二极管激光器、灯泵浦固态激光器、二极管泵浦固态激光器、以及受激准分子激光器。这些激光器是可商购获得的,并且本领域的技术人员非常熟悉其操作。激光器可在或者脉冲模式或者连续模式下操作。如公开2007/0003416中所述,激光能量应足以熔融大致与在基底表面处的“光束斑”重合的一池材料(即此处的结形成材料)。通常,激光能量以在约103至约107瓦每平方厘米范围内的功率密度施加。
形成结的进料材料的沉积可在计算机化的运动控制下进行。如下所述,可使用一个或多个计算机处理器来控制激光器、进料材料流和基底的移动。更具体而言,计算机辅助设计(如CAD-CAM)领域的技术人员理解,所需结可初始地由图纸或由通过诸如浇铸、机加工等的常规方法在以前形成的制品来表征形状。一旦在数值上表征了结的形状,就可使用可用的数控计算机程序针对激光熔凝设备为部件(或等价地,沉积头)的移动进行编程。这些程序形成关于部件在各“道”沉积实施期间的移动和其在多道(实施)之间的横向位移的一种类型的指令。所得的结非常准确地再现了该数字表征的形状,甚至对于复杂的形状也是如此。
关于激光熔凝设备和工艺的其它细节在上文阐述的参考文献(如U.S.2007/0003416)中提供。示例性细节和可选特征包括用于在此前形成的层上堆积层的其它技术、沉积中使用的粉末递送角度、用于粉末材料的多个进料喷嘴的使用、以及相对于彼此移动基底或激光设备的机械细节。例如,基底可支承在能够在“X、Y和Z”方向上移动的可动支承系统上。支承平台可以是复杂的多轴计算机数字控制(CNC)机器的一部分。这些机器是本领域已知的和可商购获得的。使用这类机器来操纵基底在美国专利7,351,290(Rutkowski等人)中有所描述,该专利以引用方式并入本文中。如在序列号No.10/622,063中所述,使用此类机器允许将基底沿着一个或多个旋转轴线相对于线性轴线X和Y进行移动。例如,常规的旋转心轴可用来提供旋转移动。本领域的技术人员可利用此信息根据对尺寸、形状和位置的非常精确的要求有效地将结施加到高温基底上。此外,熟悉激光熔凝的人员理解,在某些情况下,可使用所需结材料的一个或多个进料线来代替粉末形式的材料。
图2是一种利用激光熔凝形成结的技术的图示。在该图中,通过从所选起点开始激光沉积许多层结材料42来制备结40。激光头通常按照“缝合”图案来回移动,并且根据特定层的位置调节激光的速度。(在该示例性图示中,缝合的图案被外周层包围)。本领域的技术人员理解,在确定最合适的激光速度时,常常把例如层厚度、合金组成和激光器功率的因素和特性一起考虑。通常,希望缩短整个沉积所需的总时间,同时仍然获得与基底在冶金上完美的结合。理想地,将产生最小的空隙、夹杂物和孔隙率,并且也将最多存在对基底的最小的微结构变化。
如上所述,利用各道激光束,此前沉积的材料的一部分(即图2中的相邻平行层42)熔融,从而得到在层之间的焊接结合。这样,所有层42最终熔凝成具有非常均匀的形状和高度的单独的一块。在该图中,结40为细长的,并且可充当旨在用于通路孔的一定跨度的区域上的“轨”,如下文所述。
在图3中,使用激光熔凝技术形成具有“凸台”或纽扣形状的结50。激光束(未示出,但与通过计算机控制的粉末递送装置有关,如上所述)在基底表面52上的所选区域处指向盘绕的螺旋中。该(激光)束可被编程为将材料(如镍基超合金)沉积为螺旋,该螺旋朝中心点“向内”盘绕或者向外盘绕,即从中心点开始向外盘绕。以与图2的结类似的方式,形成螺旋的各个同心圆的层熔凝成具有所需形状和尺寸的单独的一块。在这种情况下,形状为部分球形。如本文所述,各个结50可定位为用于通路孔的预选入口区域。
图4-6和图8描述了用于利用本文所述技术形成通路孔的一个示例性方案。结60通过上述激光熔凝工艺形成在基底64的外表面62上,基底为例如涡轮翼型件(或任何其它类型的高温基底)。应当理解,图4是剖视图,并且结60可因而具有在垂直于基底的所示表面的方向上显著延伸的三维形状。例如,结可被形成为用作沿着任意间距的涡轮翼型件的多个预选的入口部位,各个部位用于单独的通路孔。结的上表面66显示为相对平坦,但其它表面轮廓也是可能的。
根据一个实施例,可接着在基底的外表面62上施加保护涂层系统68,如图5中所示。多种材料可用于涂层系统68。在一个实施例中,可使用一个或多个金属涂层。此类金属涂层的非限制性示例包括金属铝化物,例如铝化镍(NiAl)或铝化铂(PtAl)。其它示例包括式MCrAl(X)的组合物,其中“M”为选自由Fe、Co和Ni以及它们的组合组成的组的元素;并且“X”为钇、钽、硅、铪、钛、锆、硼、碳或它们的组合。其它合适的金属涂层(包括其它类型的“MCrAl(X)”组合物)也在引用的专利申请S.N.12/953,177以及美国专利5,626,462(Jackson等人)和6,511,762(Lee等人)中有所描述,这些专利以引用方式并入本文中。有时也可使用超合金材料(Ni基、Co基或Fe基)。
金属涂层可通过多种技术施加。非限制性示例包括物理气相沉积(PVD)工艺,例如电子束(EB)、离子-等离子体沉积或溅射。也可使用热喷涂工艺,例如,空气等离子体喷涂(APS)、低压等离子体喷涂(LPPS)、高速氧燃料(HVOF)喷涂或高速空气燃料喷涂(HVAF)。在一些情况下,离子等离子体沉积尤其合适,例如,阴极弧离子等离子体沉积,如2008年6月12日公开的Weaver等人的已公开的美国专利申请No.2008/0138529中所描述的,该专利以引用方式并入本文中。
如此前提到的,常常在金属涂层上或多个金属涂层上施加陶瓷涂层。对于各种涡轮发动机零件来说尤其是这样(在这些情况下,下面的金属涂层常常部分地充当结合层)。陶瓷涂层通常具有热障涂层(TBC)的形式,并且可包括多种陶瓷氧化物,例如氧化锆(ZrO2)、氧化钇(Y2O3)和氧化镁(MgO)。在一个优选的实施例中,TBC包括氧化钇稳定的氧化锆(YSZ)。这样的组合物与下面的金属层形成强结合,并且为基底提供相对较高程度的热保护(美国专利6,511,762提供了对TBC涂层系统的一些方面的描述)。
TBC可通过许多种技术来施加。具体技术的选择将取决于多种因素,例如,涂层的组成、其所需厚度、下面的金属层(一个或多个)的组成、上面施加了涂层的区域以及部件的形状。合适的涂覆技术的非限制性示例包括PVD和等离子体喷涂技术。在某些情况下,希望TBC具有一定的孔隙度。例如,可利用PVD或等离子体喷涂技术形成多孔的YSZ结构。
TBC的厚度将取决于多种因素,例如,其组成以及部件将在其中操作的热环境。通常(但并不总是如此),用于基于地面的涡轮发动机的TBC将具有在约0.2mm至约1mm的范围内的总厚度。通常(但并不总是如此),用于航空应用(如喷气发动机)的TBC将具有在约0.1mm至约0.5mm的范围内的总厚度。
如之前所述,结常常呈覆盖多个通路孔的将来位置的细长轨或台坎的形式。在某些情况下,如果孔足够靠近在一起,则可能沿着轨的长度和在孔的一般入口部位之间不存在对任何TBC材料的需要。例如,紧密地隔开的孔的累积效应可提供足够程度的冷却剂空气保护,而不需要任何保护涂层。可以为计划的一组孔提供非常普遍的准则,各个孔具有平均直径“D”。在这种情况下,如果孔之间沿线性跨距的中心至中心间距小于约(3xD),则沿该跨距将不需要TBC材料。反之,如果该间距大于约(3xD),则单独的结(即“岛状片”)将可能是优选的,同时保留计划的通路孔之间的TBC材料。可进行对热暴露和薄膜冷却剂性质的常规评估或建模,以确定什么类型的结形成和TBC沉积最适合给定情况。
通常重要的是,如下文讨论的,在形成穿过结的通路孔之前,结的上表面(图4中的表面66)基本上没有任何涂层材料。因此,在一个实施例中,在任何涂覆步骤之前,掩模(未示出)定位在表面66上。通常,掩模可包括任何类型的材料,该材料基本上或完全覆盖结的表面,并且其能够经受任何后续涂覆工艺的条件。
可采用许多种常规掩模和掩模技术,一些在美国专利7,422,771(Pietraszkiewicz等人)中有所描述(一些掩模被称为“荫罩”)。作为非限制性示例,掩模可包括金属片,例如,铝片、铝带、铝箔、镍合金片,或包括上述(材料中的)至少一种的组合。由于其低成本、回弹性和有效性,铝箔有时是理想的。
掩模可直接施加在结的表面上,或者可定位(如悬浮)在表面上方,即阻断涂层材料的源和结表面之间的“通道”。此外,虽然一些类型的掩模可在涂层沉积完成之后被移除,但其它掩模在通路孔形成期间可保留在结表面上。在某些情况下,在通路孔完成之后,将从结表面上移除掩模的残余物。在图5中应当清楚的是,如果使用了掩模,沉积在结顶部上的涂层部分70将不会存在。
在其它实施例中,不需要掩模。因此,参照图5,涂层部分70(通常包括下面的金属涂层和上面的陶瓷层)沉积在结表面66上以及基底表面62的剩余部分上。在这种情况下,在孔形成之前,通过多种技术移除涂层部分70-至少其陶瓷部分-(图6)。示例包括研磨、抛光、蚀刻、喷砂、磨料水射流处理、激光烧蚀,以及这些技术的组合。本领域的技术人员将能够选择最适合的技术(一种或多种),该技术将移除基本上全部涂层部分70,并且不损坏周围涂层系统68的任何其它部分。如图6中所示,在顶部上没有任何涂层系统的结60在其它位置上被涂层68包围。如下文讨论的,该结将充当通路孔的入口区域。
在一些实施例中,结的侧表面(侧面)是倾斜的或斜的。如图7中所描绘的,结80包括相对于基底表面84和结表面83倾斜的侧边82。倾斜度被显示为约45°,但可以有很大的变化。倾斜度将部分地依赖于所采用的具体激光熔凝系统。在一些情况下,斜边缘可能是有利的。例如,当在涂层沉积之前使用掩模工艺时,斜面的反转形状(即在从基底向上的方向上)可与在掩模边缘处形成的涂层图案互补。
参照图8,始于结/入口区域60处,通路孔100穿过基底64而形成。如该剖面构造中所示,尺寸“X”必须足够宽,以容纳穿过结的通路孔100的长度。如本领域的技术人员理解的,通路孔相对于基底表面62的角度可有很大的变化。在涡轮发动机翼型件的情况下,具体角度将很大程度上依赖于通路孔在翼型件上的具体位置、翼型件的预计热环境、以及翼型件内的冷却构造。所引用的美国专利7,328,580(Lee等人)提供了一些关于专用通路孔(即人字形薄膜冷却孔)的一般信息和细节。这些薄膜冷却孔通常包括延伸(向下)至该部件的内部区域102的圆柱形入口钻孔101。如上所述,孔的相对端(即最靠近表面62)有时终止于一对翼槽(在这些图中未专门示出)处,这一对翼槽在它们之间具有共同的脊。
通路孔可通过多种技术形成。非限制性示例包括磨料液体射流切削、激光机加工、放电机械加工(EDM)、电子束钻孔、浸渍电化学加工(plunge electrochemicalmachining)、CNC机加工、以及它们的组合。本领域的技术人员熟悉关于各种技术的细节。在一些实施例中,EDM技术受到很大的关注,因为该技术可为通路孔的区段提供精确的构造,如上所述。关于EDM工艺的各种细节在上文提及的Lee的参考文献中提供,例如,专门设计为用以形成复杂的人字形孔形状的EDM电极的一种非限制性示例。
如此前提到的,结的使用在形成通路孔时提供了若干重要优点。例如,在用于通路孔的入口区域内对热障涂层(TBC)的需要已经大体消除(在高温翼型件的情况下,该入口区域看起来由周围冷却空气流以及由通路孔内部的对流冷却充分保护)。此外,金属结的存在提供了优异的处理灵活性。例如,以上列举的标准技术,如激光机加工和液体射流切削,可形成穿过金属结的孔,同时如EDM的专门技术可备选地用于一些高精度通路孔。
如上所述,高温基底(在该高温基底上,结设置在通路孔上)表示本发明的另一个实施例。由保护涂层系统保护的基底典型地为涡轮发动机部件,例如用于燃气涡轮的翼型件。通路孔通常为薄膜冷却孔,从而在极热环境所需的冷却系统中充当导管。
在此前的描述中,已经描述了要求保护的主题的各个方面。为了进行说明,阐述了具体数目、系统和/或构造以提供对要求保护的主题的全面理解。然而,对于受益于本公开的本领域技术人员来说,显而易见的是,可以在没有具体细节的情况下实施要求保护的主题。在其它实例中,有时省略和/或简化了众所周知的特征,以免模糊要求保护的主题。虽然本文已经示出和/或描述了某些特征,但本领域的技术人员现在将会想到许多修改、替换、改变和/或等效物。因此,将理解,所附权利要求意图涵盖落在要求保护的主题的真正精神之内的所有这样的修改和/或改变。所有被引用的文章、公开和专利都以引用方式并入本文中。

Claims (10)

1.一种用于在基底(64)中形成至少一个通路孔(100)的方法,包括下列步骤:
a)对于各个通路孔或对于一组通路孔,通过激光熔凝工艺在所述基底(64)的外表面上形成结;其中所述结包括上表面,并且被定位为用于所述各个通路孔或用于所述一组通路孔的预选入口区域;
b)在所述基底的所述外表面上施加保护涂层系统(68);其中所述保护涂层系统包括至少一个下面的金属层和一个上面的陶瓷层;以及
c)形成穿过各个结且进入所述基底(64)的所述各个通路孔或一组通路孔;同时所述结的所述上表面基本上没有所述保护涂层系统(68)。
2.根据权利要求1所述的方法,其特征在于,所述基底包括超合金材料,并且所述结包括金属材料。
3.根据权利要求1所述的方法,其特征在于,用于形成所述结的所述激光熔凝工艺包括:用激光束(18)熔融金属材料,和沉积熔融的金属材料以形成呈所需图案的第一层(42);以及然后熔融另外的金属材料以形成紧靠所述第一层(42)的后续层,使得所述第一层和后续层的总和足以构成所述结的所需形状。
4.根据权利要求3所述的方法,其特征在于,所述结的所述金属材料呈粉末的形式。
5.根据权利要求3所述的方法,其特征在于,在熔融所述金属材料和紧靠此前沉积的材料层沉积所述熔融的金属材料的各个步骤期间,所述此前沉积的材料层的一部分被熔融,以便形成焊接结合。
6.根据权利要求1所述的方法,其特征在于,在步骤(b)之前,将至少一个掩模定位在各个结的所述上表面上或上方,使得所述结保持基本上没有所述保护涂层系统材料。
7.根据权利要求1所述的方法,其特征在于,所述保护涂层系统(68)被施加在所述基底的外表面上和所述结的所述上表面上,并且在步骤(c)之前,将所述保护涂层系统(68)从所述结的上表面移除。
8.根据权利要求1所述的方法,其特征在于,通过选自由磨料液体射流切削、激光机加工、放电机械加工、电子束钻孔、浸渍电化学加工、CNC机加工以及它们的组合组成的组的技术来形成步骤(c)中的各个通路孔。
9.根据权利要求1所述的方法,其特征在于,所述基底是涡轮发动机部件的一部分。
10.一种通过权利要求1-9中任一项所述的方法形成的基底(64),具有可暴露于高温的外表面和可暴露于较低温度的与所述外表面大体相对的内表面,其中,至少一个通路孔(100)从所述外表面向所述内表面延伸穿过所述基底(64),并且其中,至少一个结设置在所述基底(64)的所述外表面上,且被定位为用于至少一个通路孔的入口区域。
CN201110461800.XA 2010-12-23 2011-12-23 修改基底以在其中形成通路孔的方法和相关制品 Active CN102528413B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/977554 2010-12-23
US12/977,554 US20120164376A1 (en) 2010-12-23 2010-12-23 Method of modifying a substrate for passage hole formation therein, and related articles

Publications (2)

Publication Number Publication Date
CN102528413A CN102528413A (zh) 2012-07-04
CN102528413B true CN102528413B (zh) 2016-09-14

Family

ID=46210515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110461800.XA Active CN102528413B (zh) 2010-12-23 2011-12-23 修改基底以在其中形成通路孔的方法和相关制品

Country Status (5)

Country Link
US (1) US20120164376A1 (zh)
JP (1) JP6110590B2 (zh)
CN (1) CN102528413B (zh)
DE (1) DE102011056623B4 (zh)
FR (1) FR2969521B1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2604377B1 (de) * 2011-12-15 2015-07-15 Siemens Aktiengesellschaft Verfahren zur Laserbearbeitung eines Schichtsystems mit keramischer Schicht
GB201205011D0 (en) * 2012-03-22 2012-05-09 Rolls Royce Plc A thermal barrier coated article and a method of manufacturing a thermal barrier coated article
US9260788B2 (en) * 2012-10-30 2016-02-16 General Electric Company Reinforced articles and methods of making the same
US20140126995A1 (en) * 2012-11-06 2014-05-08 General Electric Company Microchannel cooled turbine component and method of forming a microchannel cooled turbine component
US9181809B2 (en) * 2012-12-04 2015-11-10 General Electric Company Coated article
EP2772567A1 (de) * 2013-02-28 2014-09-03 Siemens Aktiengesellschaft Verfahren zum Herstellen einer Wärmedämmschicht für Bauteile und Wärmedämmschicht
EP2969370A1 (en) 2013-03-13 2016-01-20 Rolls-Royce Corporation Laser deposition using a protrusion technique
US9394796B2 (en) * 2013-07-12 2016-07-19 General Electric Company Turbine component and methods of assembling the same
DE102014204806A1 (de) * 2014-03-14 2015-09-17 Siemens Aktiengesellschaft Verfahren zur Neuherstellung von Durchgangslöchern in einem Schichtsystem
US9586289B2 (en) 2014-04-30 2017-03-07 Alabama Specialty Products, Inc. Cladding apparatus and method
US20150360322A1 (en) * 2014-06-12 2015-12-17 Siemens Energy, Inc. Laser deposition of iron-based austenitic alloy with flux
CN106637185A (zh) * 2015-11-03 2017-05-10 天津工业大学 一种CoCrAlY包覆YSZ粉末材料及涂层的制备方法
US10487664B2 (en) 2015-11-09 2019-11-26 General Electric Company Additive manufacturing method for making holes bounded by thin walls in turbine components
US10100668B2 (en) * 2016-02-24 2018-10-16 General Electric Company System and method of fabricating and repairing a gas turbine component
US11065715B2 (en) 2016-05-03 2021-07-20 General Electric Company Combined liquid guided laser and electrical discharge machining
US10563294B2 (en) * 2017-03-07 2020-02-18 General Electric Company Component having active cooling and method of fabricating
US11440139B2 (en) * 2018-05-03 2022-09-13 Raytheon Technologies Corporation Liquid enhanced laser stripping

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621968A (en) * 1994-02-18 1997-04-22 Mitsubishi Jukogyo Kabushiki Kaisha Process for manufacturing a gas turbine blade
US6269540B1 (en) * 1998-10-05 2001-08-07 National Research Council Of Canada Process for manufacturing or repairing turbine engine or compressor components
EP1288438A1 (fr) * 2001-08-28 2003-03-05 Snecma Moteurs Circuits de refroidissement pour aube de turbine à gaz
CN1461872A (zh) * 2002-05-31 2003-12-17 通用电气公司 用于降低涡轮叶片尖顶区域的温度的方法和装置
CN1469792A (zh) * 2000-10-18 2004-01-21 �ֹ��� 在具有隔热涂层的金属工件上钻孔的方法
CN1536200A (zh) * 2003-04-08 2004-10-13 ���չ�˾ 涡轮元件
CN101550843A (zh) * 2008-03-31 2009-10-07 阿尔斯通技术有限公司 燃气轮机翼型
US20100229388A1 (en) * 2005-07-26 2010-09-16 Snecma Cooling channel formed in a wall

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323756A (en) 1979-10-29 1982-04-06 United Technologies Corporation Method for fabricating articles by sequential layer deposition
US4730093A (en) 1984-10-01 1988-03-08 General Electric Company Method and apparatus for repairing metal in an article
JPS61152702U (zh) * 1985-03-13 1986-09-20
US4724299A (en) 1987-04-15 1988-02-09 Quantum Laser Corporation Laser spray nozzle and method
US5039562A (en) * 1988-10-20 1991-08-13 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for cooling high temperature ceramic turbine blade portions
US5043548A (en) 1989-02-08 1991-08-27 General Electric Company Axial flow laser plasma spraying
US5038014A (en) 1989-02-08 1991-08-06 General Electric Company Fabrication of components by layered deposition
JPH0732172A (ja) * 1992-04-28 1995-02-03 Ishikawajima Harima Heavy Ind Co Ltd 炭素鋼等のレーザクラッド法
US5626462A (en) 1995-01-03 1997-05-06 General Electric Company Double-wall airfoil
JPH09136260A (ja) * 1995-11-15 1997-05-27 Mitsubishi Heavy Ind Ltd ガスタービン翼の冷却孔加工方法
JPH1047008A (ja) * 1996-07-31 1998-02-17 Toshiba Corp ガスタービン用の静翼およびその製造方法
US6383602B1 (en) * 1996-12-23 2002-05-07 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream which flows through a substrate, and related articles of manufacture
US6429402B1 (en) 1997-01-24 2002-08-06 The Regents Of The University Of California Controlled laser production of elongated articles from particulates
US6154959A (en) * 1999-08-16 2000-12-05 Chromalloy Gas Turbine Corporation Laser cladding a turbine engine vane platform
US6234755B1 (en) 1999-10-04 2001-05-22 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream, and related articles of manufacture
JP3788901B2 (ja) * 2000-09-27 2006-06-21 株式会社日立製作所 発電設備の損傷診断装置
US6511762B1 (en) 2000-11-06 2003-01-28 General Electric Company Multi-layer thermal barrier coating with transpiration cooling
US7351290B2 (en) 2003-07-17 2008-04-01 General Electric Company Robotic pen
ATE375841T1 (de) 2003-08-27 2007-11-15 Alstom Technology Ltd Adaptive automatisierte bearbeitung von überfüllten kanälen
US6905302B2 (en) * 2003-09-17 2005-06-14 General Electric Company Network cooled coated wall
US7328580B2 (en) 2004-06-23 2008-02-12 General Electric Company Chevron film cooled wall
US7413808B2 (en) * 2004-10-18 2008-08-19 United Technologies Corporation Thermal barrier coating
EP1712739A1 (de) * 2005-04-12 2006-10-18 Siemens Aktiengesellschaft Bauteil mit Filmkühlloch
US20060275553A1 (en) * 2005-06-03 2006-12-07 Siemens Westinghouse Power Corporation Electrically conductive thermal barrier coatings capable for use in electrode discharge machining
US20070003416A1 (en) 2005-06-30 2007-01-04 General Electric Company Niobium silicide-based turbine components, and related methods for laser deposition
CN101213373B (zh) 2005-07-04 2012-05-09 贝洱两合公司 叶轮
US7422771B2 (en) 2005-09-01 2008-09-09 United Technologies Corporation Methods for applying a hybrid thermal barrier coating
EP1844892A1 (de) * 2006-04-13 2007-10-17 ALSTOM Technology Ltd Verfahren zur Laserentfernung von Beschichtenmaterialen in Kühlenlöchern eines Turbinenbauteiles
US7879203B2 (en) 2006-12-11 2011-02-01 General Electric Company Method and apparatus for cathodic arc ion plasma deposition
US8884182B2 (en) 2006-12-11 2014-11-11 General Electric Company Method of modifying the end wall contour in a turbine using laser consolidation and the turbines derived therefrom
DE112008001106A5 (de) 2007-05-02 2010-03-25 Werth Messtechnik Gmbh Verfahren für Koordinatenmessgeräte mit Bildverarbeitungssensor
US9181819B2 (en) * 2010-06-11 2015-11-10 Siemens Energy, Inc. Component wall having diffusion sections for cooling in a turbine engine
US9260788B2 (en) 2012-10-30 2016-02-16 General Electric Company Reinforced articles and methods of making the same
DE102014204806A1 (de) 2014-03-14 2015-09-17 Siemens Aktiengesellschaft Verfahren zur Neuherstellung von Durchgangslöchern in einem Schichtsystem
US10487664B2 (en) 2015-11-09 2019-11-26 General Electric Company Additive manufacturing method for making holes bounded by thin walls in turbine components

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621968A (en) * 1994-02-18 1997-04-22 Mitsubishi Jukogyo Kabushiki Kaisha Process for manufacturing a gas turbine blade
US6269540B1 (en) * 1998-10-05 2001-08-07 National Research Council Of Canada Process for manufacturing or repairing turbine engine or compressor components
CN1469792A (zh) * 2000-10-18 2004-01-21 �ֹ��� 在具有隔热涂层的金属工件上钻孔的方法
EP1288438A1 (fr) * 2001-08-28 2003-03-05 Snecma Moteurs Circuits de refroidissement pour aube de turbine à gaz
CN1461872A (zh) * 2002-05-31 2003-12-17 通用电气公司 用于降低涡轮叶片尖顶区域的温度的方法和装置
CN1536200A (zh) * 2003-04-08 2004-10-13 ���չ�˾ 涡轮元件
US20100229388A1 (en) * 2005-07-26 2010-09-16 Snecma Cooling channel formed in a wall
CN101550843A (zh) * 2008-03-31 2009-10-07 阿尔斯通技术有限公司 燃气轮机翼型

Also Published As

Publication number Publication date
FR2969521B1 (fr) 2016-01-01
JP6110590B2 (ja) 2017-04-05
DE102011056623A8 (de) 2012-12-20
CN102528413A (zh) 2012-07-04
JP2012132451A (ja) 2012-07-12
FR2969521A1 (fr) 2012-06-29
DE102011056623B4 (de) 2022-11-10
US20120164376A1 (en) 2012-06-28
DE102011056623A1 (de) 2012-07-05

Similar Documents

Publication Publication Date Title
CN102528413B (zh) 修改基底以在其中形成通路孔的方法和相关制品
JP2012132451A5 (zh)
CN102261281B (zh) 包括人字形薄膜冷却孔的物品与相关工艺
CN102953828B (zh) 带有冷却通道的构件和制造方法
US9003657B2 (en) Components with porous metal cooling and methods of manufacture
JP5197929B2 (ja) ニオブシリサイド基タービン構成部品および関連するレーザ付着方法
US20160032766A1 (en) Components with micro cooled laser deposited material layer and methods of manufacture
US9476306B2 (en) Components with multi-layered cooling features and methods of manufacture
US20100034647A1 (en) Processes for the formation of positive features on shroud components, and related articles
CN102839992A (zh) 带有冷却通道的构件及制造方法
JP2009502503A (ja) 方向性ミクロ組織の母材を有する部品の修復方法とその部品
US20140075755A1 (en) System and method for manufacturing an airfoil
US20150147479A1 (en) Methods for the formation of cooling channels, and related articles of manufacture
CN103009024A (zh) 带有冷却通道的构件和制造方法
CN105814280B (zh) 涡轮机动叶或静叶的热障涂层
JP6209058B2 (ja) リエントラント形状の冷却チャネルを備えた構成部品および製造方法
US11377722B2 (en) Process for coating substrates with aperture(s)
US20240082938A1 (en) Additively depositing multiple braze materials
EP4335569A1 (en) Additively depositing braze material
EP4335570A1 (en) Additively manufacturing using ct scan data
EP4335573A1 (en) Adaptive manufacturing using structured light data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240110

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York, United States

Patentee before: General Electric Co.

TR01 Transfer of patent right