CN102522540A - Mn掺杂Ni(OH)2纳米结构及其制备方法 - Google Patents

Mn掺杂Ni(OH)2纳米结构及其制备方法 Download PDF

Info

Publication number
CN102522540A
CN102522540A CN2011104320607A CN201110432060A CN102522540A CN 102522540 A CN102522540 A CN 102522540A CN 2011104320607 A CN2011104320607 A CN 2011104320607A CN 201110432060 A CN201110432060 A CN 201110432060A CN 102522540 A CN102522540 A CN 102522540A
Authority
CN
China
Prior art keywords
doped
nanostructure
preparation
nano
nicl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104320607A
Other languages
English (en)
Other versions
CN102522540B (zh
Inventor
梁长浩
张和民
刘俊
田振飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201110432060.7A priority Critical patent/CN102522540B/zh
Publication of CN102522540A publication Critical patent/CN102522540A/zh
Application granted granted Critical
Publication of CN102522540B publication Critical patent/CN102522540B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种Mn掺杂Ni(OH)2纳米结构及其制备方法,包括将锰单质靶材浸没在NiCl2溶液中,采用Nd:YAG脉冲激光,波长为1064nm,能量为95-105mJ,烧蚀锰单质靶材4-6分钟,得到Mn掺杂Ni(OH)2纳米结构。本发明Mn掺杂Ni(OH)2纳米结构的成功制备为纳米材料的掺杂提供了新的途径,同时,也是液相激光烧蚀技术新的应用拓展。

Description

Mn掺杂Ni(OH)2纳米结构及其制备方法
技术领域
本发明涉及一种Ni(OH)2纳米的制备方法,具体涉及一种Mn掺杂Ni(OH)2纳米结构及其制备方法。
背景技术
Ni(OH)2纳米材料是一种新型的碱性镍系列电池的正极材料,具有优越的高倍率性能和电化学性能,当它作为电容器的阳极材料时具有较高能量的存储能力,而作为电容器的阴极材料时,又具有增强的比电容,其在超大容量电容器方面有着广阔的应用前景。掺杂改性是提高Ni(OH)2电化学性能和高倍率性能的有效手段之一。目前,对Ni(OH)2进行掺杂改性的方法主要有:化学共沉淀法、溶剂热法、以及电化学沉积法,其中化学共沉淀法在Ni(OH)2掺杂改性中起主导作用。一般来讲,化学共沉淀法需要精确滴加离子溶液于缓冲液中,调节其pH值,并加入分散剂进行分散,共沉淀的过程很容易把其他杂质离子吸附或包括其中,很难除去,影响Ni(OH)2性能的提高。
发明内容
本发明的目的在于提供一种Mn掺杂Ni(OH)2纳米结构及其制备方法。本发明Mn掺杂Ni(OH)2纳米结构的成功制备为纳米材料的掺杂提供了新的途径,同时,也是液相激光烧蚀技术新的应用拓展。
为了实现上述目的本发明采用如下技术方案:
Mn掺杂Ni(OH)2纳米结构,其特征在于:所述的Mn掺杂Ni(OH)2纳米结构包括纳米片晶格结构、纳米薄片和纳米薄片组装球体三种结构。
Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于包括以下步骤:
把锰单质靶材浸没在NiCl2溶液中,使得锰单质靶材表面至液面的高度为1-2mm,采用Nd:YAG脉冲激光,波长为1064nm,能量为95-105mJ,烧蚀锰单质靶材4-6分钟,得到Mn掺杂Ni(OH)2纳米结构。
所述的Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于:所述的Nd:YAG脉冲激光波长为1064nm,能量为100mJ。
所述的Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于:在烧蚀的过程中靶材连同底部支座不停的旋转。
所述的Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于:可以通过调制NiCl2溶液的浓度和Nd:YAG脉冲激光能量进行调控产物的形貌和掺杂比例。
所述的Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于:所述的锰单质靶材表面至液面的高度优选为1.2mm。
在常温常压下本发明聚集的高能量激光照射到液相中的金属锰靶材表面时,在其表面产生高温、高压和高密度的等离子体羽,该等离子羽体包含金属锰的分子、原子、离子、团簇及电子,并在淬灭过程中快速膨胀,与束缚它的NiCl2溶液发生复杂反应,在这个过程中产生的锰原子和离子就会进入所形成的Ni(OH)2纳米片的晶格中,而由锰分子或团簇等基团所形成的超小Mn3O4纳米颗粒(<3.2nm)也会进入α-Ni(OH)2的插层中间,还有一部分更大的Mn3O4纳米颗粒在冷却过程中被所形成的Ni(OH)2纳米片所包裹。
本发明的有益效果:
本发明Mn掺杂Ni(OH)2纳米结构的成功制备为纳米材料的掺杂提供了新的途径,同时,也是液相激光烧蚀技术新的应用拓展。
附图说明
图1Mn掺杂Ni(OH)2纳米结构合成示意图。
图2为本发明所制备样品的物相分析。
图3所合成样品的SEM图的形貌特征:a,b)NiCl2浓度为0.01M;c,d)NiCl2浓度为0.05M;e,f)NiCl2浓度为0.1M。
图4NiCl2浓度为0.01M样品的透射电镜照片(TEM)和相对应的SAED图。
图5NiCl2浓度为0.05M样品TEM、SAED、EDS图和相应的元素分布(Mapping)图。
图6NiCl2浓度为0.1M所得样品的TEM图和SAED图。
图7Mn3O4颗粒被Ni(OH)2片所包覆的TEM图片(a),(b)和(c)图的EDS谱图分别对应(a)图中b和c位置。
图8光电子能谱(XPS)的表征分析:a)NiCl2浓度为0.01M,b)NiCl2浓度为0.05M,c)NiCl2浓度为0.1M。
具体实施方式
实施例1:Mn掺杂Ni(OH)2纳米结构的制备方法,包括以下步骤:
把锰单质靶材浸没在NiCl2溶液中,使得锰单质靶材表面至液面的高度为1.2mm,采用Nd:YAG脉冲激光,波长为1064nm,能量为100mJ,烧蚀锰单质靶材4-6分钟,得到Mn掺杂Ni(OH)2纳米结构。
如图2结果表明:比较强和比较宽的XRD衍射峰归结于α相的Ni(OH)2(JCPDS NO.38-0715),比较弱和比较小的XRD衍射峰为Mn3O4(JCPDSNO.75-1560)。随着NiCl2溶液浓度的增加,XRD衍射峰强度变弱,表明结晶性变差,这一点被随后的透射电镜(TEM)图和选取电子衍射(SAED)图所证实,所制备的Ni(OH)2的(006)、(003)和(110)晶面所对应的XRD三强衍射峰都不同程度地发生了偏移,是由于锰原子、分子或者团簇掺杂于Ni(OH)2而引起晶格畸变所造成的,如表1所示。图3a,b是浓度为0.01M NiCl2的样品,形貌为发育较好的薄片(有较规则的形状)和由薄片组装成球体(图4a),两种形貌结构。通过透射电镜(TEM)照片,发现这种很薄的纳米片(卷曲后)仅有3nm(图4c),相应的选区电子衍射(SAED)照片如图4d所示,呈现出比较宽化的衍射环,为Ni(OH)2和NiO的叠加,因为带有结晶水的α相的Ni(OH)2不稳定,受电子束辐照影响很容易变成NiO,高分辨透射电镜照片(HRTEM)就显示了由完整Ni(OH)2纳米片变成了孔状的NiO(图4c,b),且其晶格间距正好符合NiO的(200)晶面。图3c,d是浓度为0.05M NiCl2样品,所制备的Ni(OH)2纳米片发生卷曲,发育不完整(没有规则的形状),部分相互结合成一个较大的块,比较典型的如图5a所示,通过对其进行元素分布的面扫,发现O、Mn和Ni元素分布非常均匀(图5c,d和e),相对应的能谱图(EDS),如图5h所示。图5g所显示的晶格间距和NiO的(111)晶面一致,图3e,f是浓度为0.1M NiCl2,合成的Ni(OH)2纳米片相互团聚在一起,形成类似球状的结合体。对比三个样品的SAED照片发现,此样品的结晶性最弱(图6a的插图),在高分辨透射电镜下,并没有晶格间距的条纹出现(图6b,c),也说明其结晶性很弱,不过这种较长的Ni(OH)2纳米片形貌较单一。三种不同浓度的NiCl2溶液,在其他条件(激光参数、液面高度等)一致情况下,对应三种不同形貌结构的Ni(OH)2纳米片。
表1不同NiCl2浓度所得样品的d
Figure BDA0000122903360000041
和2θ(°)变化情况。
Figure BDA0000122903360000042
在较低浓度的NiCl2中烧蚀锰靶,所得样品的XRD衍射峰(图2)中也存在较少的Mn3O4相。然而,在样品的透射电镜照片中,Ni(OH)2片的表面很干净,并没有发现Mn3O4纳米颗粒,或者Mn3O4纳米颗粒非常小(1~2nm)。利用透射电镜经过仔细寻找,发现颜色较深位置(图7a中的b位置)的EDS谱图反映出有较高的Mn含量和相对较低的Ni含量,如图7b所示,在颜色较浅的位置(图7a中的c位置),EDS谱图所反映出来的Mn含量较低,而Ni含量较高。这表明Mn3O4纳米颗粒被Ni(OH)2片所包覆。为了进一步表征Ni(OH)2纳米片被Mn所掺杂,我们对制备的样品进行了光电子能谱分析,如图8所示,根据Mn2p的结合能查XPS能谱手册可以确定是四价的Mn,而Mn3O4种只有二价和三价,可归因于Mn进入Ni(OH)2的晶格中而贡献了多余的电子。根据Mn2p的结合能的强度可以推断Mn元素的掺杂比例。由于光电子能谱仅能探测表面(<5nm)的信息,而样品中少量的Mn3O4纳米颗粒又被大量的Ni(OH)2片所包裹,所以XPS并不能显示Mn3O4的信息,又由于Mn3O4纳米颗粒结晶性很好,能够被X射线所探测,XRD结果中就能够显示其物相。

Claims (6)

1.Mn掺杂Ni(OH)2纳米结构,其特征在于:所述的Mn掺杂Ni(OH)2纳米结构包括纳米片晶格结构、纳米薄片和纳米薄片组装球体三种结构。
2.一种如权利要求1所述的Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于包括以下步骤:
把锰单质靶材浸没在NiCl2溶液中,使得锰单质靶材表面至液面的高度为1 -2mm,采用Nd:YAG脉冲激光,波长为1064 nm,能量为95-105 mJ,烧蚀锰单质靶材4-6分钟,得到Mn掺杂Ni(OH)2纳米结构。
3.根据权利要求2所述的Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于:所述的Nd:YAG脉冲激光波长为1064 nm,能量为100 mJ。
4.根据权利要求2所述的Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于:在烧蚀的过程中靶材连同底部支座不停的旋转。
5.根据权利要求2所述的Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于:可以通过调制NiCl2溶液的浓度和Nd:YAG脉冲激光能量进行调控产物的形貌和掺杂比例。
6.根据权利要求2所述的Mn掺杂Ni(OH)2纳米结构的制备方法,其特征在于:所述的锰单质靶材表面至液面的高度优选为1.2mm。
CN201110432060.7A 2011-12-21 2011-12-21 Mn掺杂Ni(OH)2纳米结构及其制备方法 Active CN102522540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110432060.7A CN102522540B (zh) 2011-12-21 2011-12-21 Mn掺杂Ni(OH)2纳米结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110432060.7A CN102522540B (zh) 2011-12-21 2011-12-21 Mn掺杂Ni(OH)2纳米结构及其制备方法

Publications (2)

Publication Number Publication Date
CN102522540A true CN102522540A (zh) 2012-06-27
CN102522540B CN102522540B (zh) 2014-02-26

Family

ID=46293380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110432060.7A Active CN102522540B (zh) 2011-12-21 2011-12-21 Mn掺杂Ni(OH)2纳米结构及其制备方法

Country Status (1)

Country Link
CN (1) CN102522540B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106466759A (zh) * 2015-08-11 2017-03-01 上海交通大学 利用激光堆焊对孔内壁表面改性的表面改性的方法及装置
CN106783219A (zh) * 2017-03-13 2017-05-31 黄冈师范学院 一种薄片状镍掺杂氢氧化镍电极材料及其制法和在制备超级电容器中的应用
CN107086312A (zh) * 2017-05-09 2017-08-22 天津大学 合成氧化亚钴与钴铁层状双金属氢氧化物复合物的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239391A (zh) * 2008-02-27 2008-08-13 天津大学 激光合成碳包覆金属纳米颗粒的方法
US20110193025A1 (en) * 2010-02-10 2011-08-11 Yuki Ichikawa Production of fine particles of functional ceramic by using pulsed laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239391A (zh) * 2008-02-27 2008-08-13 天津大学 激光合成碳包覆金属纳米颗粒的方法
US20110193025A1 (en) * 2010-02-10 2011-08-11 Yuki Ichikawa Production of fine particles of functional ceramic by using pulsed laser

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《化工新型材料》 20110228 常艳琴等 锰掺杂alpha-Ni(OH)2的合成及其电化学性能 1 第39卷, 第2期 *
常艳琴等: "锰掺杂α-Ni(OH)2的合成及其电化学性能", 《化工新型材料》 *
朱令之等: "掺锰氢氧化镍的合成及性能研究", 《广东化工》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106466759A (zh) * 2015-08-11 2017-03-01 上海交通大学 利用激光堆焊对孔内壁表面改性的表面改性的方法及装置
CN106783219A (zh) * 2017-03-13 2017-05-31 黄冈师范学院 一种薄片状镍掺杂氢氧化镍电极材料及其制法和在制备超级电容器中的应用
CN107086312A (zh) * 2017-05-09 2017-08-22 天津大学 合成氧化亚钴与钴铁层状双金属氢氧化物复合物的方法
CN107086312B (zh) * 2017-05-09 2019-08-27 天津大学 合成氧化亚钴与钴铁层状双金属氢氧化物复合物的方法

Also Published As

Publication number Publication date
CN102522540B (zh) 2014-02-26

Similar Documents

Publication Publication Date Title
Zeng et al. Rational design of few-layer MoSe 2 confined within ZnSe–C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries
Zhao et al. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond
Li et al. Conductive holey MoO2–Mo3N2 heterojunctions as job-synergistic cathode host with low surface area for high-loading Li–S batteries
Bhattarai et al. Activated carbon derived from cherry flower biowaste with a self-doped heteroatom and large specific surface area for supercapacitor and sodium-ion battery applications
Xiang et al. Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries
Yao et al. CoS2-decorated cobalt/nitrogen Co-doped carbon nanofiber networks as dual functional electrocatalysts for enhancing electrochemical redox kinetics in lithium–sulfur batteries
Zhang et al. Morphology‐tuned synthesis of NiCo2O4‐coated 3D graphene architectures used as binder‐free electrodes for lithium‐ion batteries
Seo et al. Fast growth of the precursor particles of Li (Ni0. 8Co0. 16Al0. 04) O2 via a carbonate co-precipitation route and its electrochemical performance
Zhou et al. Electrochemical performance of Al 2 O 3 pre-coated spinel LiMn 2 O 4
Wang et al. Sponge-like 3D flower-like core-shell heterostructure CuCo2O4@ CuCo2S4 as advanced electrodes for high-performance supercapacitor
CN112382747B (zh) 碳层包覆纳米四氧化三锰壳核结构材料及其制备方法
Zhao et al. Structure evolution from layered to spinel during synthetic control and cycling process of fe-containing li-rich cathode materials for lithium-ion batteries
Chen et al. Controllable growth of NiCo 2 O 4 nanoarrays on carbon fiber cloth and its anodic performance for lithium-ion batteries
Park et al. Structural and electrochemical properties of nanosize layered Li [Li1/5Ni1/10Co1/5Mn1/2] O 2
Dong et al. Active sulfur-host material VS4 with surface defect engineering: intercalation-conversion hybrid cathode boosting electrochemical performance of Li–S batteries
Prabhu et al. Performances of Co2+-substituted NiMoO4 nanorods in a solid-state hybrid supercapacitor
CN102522540B (zh) Mn掺杂Ni(OH)2纳米结构及其制备方法
Fu et al. Regulable electron transfer on ZnS/CoS2/CC prepared by an MOF-on-MOF strategy for robust LIB performance
Han et al. Spatial isolation of zeolitic imidazole frameworks-derived cobalt catalysts: from nanoparticle, atomic cluster to single atom
Ma et al. Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0. 6Co0. 2Mn0. 2O2 cathode materials for the high-performance lithium-ion batteries
Xu et al. Recent progress of self-supported air electrodes for flexible Zn-air batteries
Chen et al. Rational synthesis of fern leaf-like FeS2@ sulfur-doped carbon as an anode for superior lithium-ion batteries
Quan et al. Facile hybrid strategy of SrCo0. 5Fe0. 3Mo0. 2O3-δ/Co3O4 heterostructure for efficient oxygen evolution reaction
Kumari et al. Sequential processing of nitrogen-rich, biowaste-derived carbon quantum dots combined with strontium cobaltite for enhanced supercapacitive performance
Abaas et al. Characterisation of Fe doped layered cathode material as nano-rechargeable batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant