CN102522037B - 一种基于真实形状和电阻率分布的颅骨物理模型实验装置 - Google Patents

一种基于真实形状和电阻率分布的颅骨物理模型实验装置 Download PDF

Info

Publication number
CN102522037B
CN102522037B CN201110339423.2A CN201110339423A CN102522037B CN 102522037 B CN102522037 B CN 102522037B CN 201110339423 A CN201110339423 A CN 201110339423A CN 102522037 B CN102522037 B CN 102522037B
Authority
CN
China
Prior art keywords
skull
model
electrode
container
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110339423.2A
Other languages
English (en)
Other versions
CN102522037A (zh
Inventor
董秀珍
李建波
汤池
漆家学
尤富生
付峰
史学涛
刘锐岗
季振宇
徐灿华
杨滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fourth Military Medical University FMMU
Original Assignee
Fourth Military Medical University FMMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fourth Military Medical University FMMU filed Critical Fourth Military Medical University FMMU
Priority to CN201110339423.2A priority Critical patent/CN102522037B/zh
Publication of CN102522037A publication Critical patent/CN102522037A/zh
Application granted granted Critical
Publication of CN102522037B publication Critical patent/CN102522037B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种基于真实形状和电阻率分布的颅骨物理模型实验装置,包括上下左右移动和360°旋转的支架,支架上放置有一个容器,容器内装有颅骨石膏模型,该颅骨石膏模型的每个部位及骨缝的电阻率值都接近真实在体颅骨数值,容器的内表面贴放有两层平行且等间距分布的电极,电极穿过容器内侧壁上的钻孔与容器外侧的屏蔽线相连。与人体真实颅骨相比,该模型具有极高的形状精度和真实电阻率分布。可重复使用,性能稳定,提供了一种更精确、更易用、抗干扰能力更强的颅骨模型和实验装置,有利于开展颅脑电阻抗断层成像的深入研究。

Description

一种基于真实形状和电阻率分布的颅骨物理模型实验装置
技术领域
本发明属于电阻抗断层成像领域,具体涉及一种基于真实形状和电阻率分布的颅骨物理模型实验装置。
背景技术
目前,关于颅脑EIT的研究表明:颅骨不规则形状和非均匀电阻率分布对颅脑EIT的分辨率和定位精度有显著影响。建立近似真实形状和非均匀电阻率分布的头部物理模型并进行相关研究能够为颅脑EIT的研究提供重要的实验平台,便于评估应用于颅脑EIT的数据采集系统和成像算法,有利于头部生物电源定位的研究等,具有重要的科学意义。
如何准确反映颅骨的结构和电特性是建立真实颅骨物理模型的关键。国内外的课题组对此进行了众多有意义的探索,制作出了诸如圆桶形均质或者半球形均质的颅骨模型。这些颅骨模型对于人们认识颅骨特性对EIT成像的影响起到了重要作用,推动了EIT技术的发展进步。但这些颅骨模型过于理想化,省略了很多重要特点。随着研究的深入,学者们已经认识到目前对于颅骨模型的研究存在两方面不足:
一是研究计算机仿真模型较多,研究物理模型较少。很多课题组的模型研究集中于基于有限元方法(Finite Element Method,FEM)的计算机仿真模型。因为实际测量是一个多种因素相互作用的复杂过程,所以计算机仿真与实际情况存在差别,在颅脑EIT研究中存在局限性。计算机仿真实验可以为实际检测提供指导,但忽略了很多因素,参数和条件设置过于理想化,其结果必须要用物理模型来验证,因此不能代替物理实验。另外,动物实验影响因素较多,很多条件不可人为控制,不利于研究某单一因素的影响。相对于计算机仿真实验和动物实验,建立近似真实形状和非均匀电阻率分布的颅骨物理模型可以更好地模拟实际情况,有利于更加深入准确地研究颅骨特性对EIT成像性能的影响。
二是目前颅脑EIT研究中应用的颅骨模型不够精确,或者是假设颅骨的电阻率是均匀分布的,或者是假设颅骨的形状是规则圆形的。事实上,颅骨的形状厚度和电阻率分布都是极不均匀的。这些重要的物理特性对颅脑EIT的成像影响不可忽略。
另外,当前的仿真实验装置也存在过于沉重、易受电磁干扰等缺点,所以,需要一种精确、便捷、易用、抗干扰能力强的实验装置。
发明内容
本发明的目的在于提供一种基于真实形状和电阻率分布的颅骨物理模型实验装置,该装置便于携带,测量结果准确,抗干扰能力强。
为了实现上述任务,本发明采用如下的技术解决方案:
一种基于真实形状和电阻率分布的颅骨物理模型实验装置,其特征在于,包括上下左右移动和360°旋转的支架,支架上放置有一个容器,容器内装有颅骨石膏模型,该颅骨石膏模型的每个部位及骨缝的电阻率值都接近真实在体颅骨数值,容器的内表面贴放有两层平行且等间距分布的电极,电极穿过容器内侧壁上的钻孔与容器外侧的屏蔽线相连。
所述的颅骨石膏模型由硬石膏翻制而成,并按照人体真实解剖结构分为8个部位(其中额骨1块,蝶骨大翼2块,颞骨2块,顶骨2块,枕骨1块),按照与骨缝电阻率值近似的石膏将各部位连接成整体,具有较高的形状精度。
所述的容器由PSB树脂经激光快速成型机一次性烧制而成,其内表面与颅骨石膏模型的形状相吻合。
所述的容器内表面贴放有两层平行的银质电极。第二层电极的位置比第一层低20.00mm。电极为银质,厚度0.30mm,直径10.00mm,纯度为99.99%。每层电极16个,等间距分布在同一水平面上。电极的一侧用纯度为99.99%、直径为3.00mm的银丝焊接。银丝穿过容器内侧壁上的钻孔与容器外侧的屏蔽线相连。在电极焊接银丝的一侧,涂上耐水、耐酸碱的粘接剂,施加压力使电极与树脂容器内侧壁贴紧粘牢。
所述的树脂容器外侧引出的每一根导线都带有屏蔽层,长度为1000.00mm。16根导线交叉缠绕,外面套有屏蔽网,进一步减少外界干扰。
所述的支架主体材料由有机玻璃制作,支架上带有高强度的不锈钢滑动游标和刻度尺,最小刻度为0.02mm,能够进行上下左右移动和360°旋转,便于精确定位。
本发明的基于真实形状和电阻率分布的颅骨物理模型实验装置,与现有技术相比,优点在于:采用极高形状精度和真实电阻率分布的颅骨石膏模型,并配有真实颅骨形状的树脂容器,更加接近人体测量的实际情况,极大地减小了测量误差;通过使用高纯度银质电极,减小了极化电位;采用带有屏蔽层的导线,并将各路导线交叉缠绕并套有屏蔽网,有效降低了电磁干扰;采用有机玻璃制作支架主体减轻了整体重量。因而本发明不仅更加符合颅脑EIT临床监护的实际情形,具有很强的抗干扰能力,保证测量结果的准确性,而且更加便携易用。
附图说明
图1是颅骨物理模型制作流程图;
图2是人体颅骨CT数据的三维重建图,其中(a)是全颅骨重建图,(b)是分离颅骨重建图;
图3是激光快速成型加工的8块树脂模型图片;
图4是用石膏翻制分离颅骨模型图片,包括藻酸盐印模、石膏模型和树脂模型;
图5是颅骨石膏模型图片,其中(a)是分离颅骨模型图片,(b)是拼接颅骨石膏模型图片,(c)是颅骨石膏模型放大图片;
图6是树脂容器制作流程图;
图7是外壳的三维重建和树脂模型图片,其中(a)是三维重建,(b)是树脂模型图片,(c)是树脂模型放大图片;
图8是电极位置示意图;
图9是装置机械结构示意图,其中(a)是正视图,(b)是侧视图,(c)是俯视图。图中的标记分别表示:1、支架,2、容器(内有颅骨石膏模型),3、杠杆,4、游标,5、刻度尺,6、螺丝。
以下结合附图和具体制作方式对本发明作进一步的详细说明、
具体实施方式
参见附图9,本实施例给出一种基于真实形状和电阻率分布的颅骨物理模型实验装置的制作实例,包括上下左右移动和360°旋转的支架1,支架1上放置有一个容器2,容器2内装有颅骨石膏模型,该颅骨石膏模型的每个部位及骨缝的电阻率值都接近真实在体颅骨数值,容器2的内表面贴放有两层平行且等间距分布的电极,电极穿过容器内侧壁上的钻孔与容器外侧的电极导线相连。
1、颅骨石膏模型的制作流程见图1。
1.1人体颅骨薄层CT数据采集
采用螺旋CT(GE LightSpeed VCT)对无颅骨病变的成年男性患者进行薄层颅脑扫描。扫描范围包括全部脑颅骨。扫描参数为:层厚0.625mm,电压120kV,电流240mA。扫描层数为578层。图像数据不压缩,采用标准DICOM(Digital Imaging and Communications inMedicine,数字影像和通信标准)文件格式保存。
1.2三维重建颅骨模型
使用Geomagic Studio4.0及MIMICS10.0软件将DICOM图像文件读入,首先对骨组织区域识别,然后进行骨组织提取和三维叠加,完成颅骨几何模型的三维重建,并对其进行查错修补(如图2(a)所示)。然后对重建的三维图形沿着骨缝进行分割,制作成分离的颅骨几何模型(共分割为8块。其中额骨1块,蝶骨大翼2块,颞骨2块,顶骨2块,枕骨1块,如图2(b)所示)。
1.3快速成型机加工制造
将重建后的三维可视模型进行三角形网格划分,输出STL格式的模型文件。采用选择性激光烧结(selected laser sintering,SLS)快速成型机,以由聚-N-邻羟苄叉乙烯基苄胺(poly-N-salicylidenevinylbenzylamine,PSB)树脂为原料,通过激光照射逐层烧结分离颅骨模型(如图3所示)。
1.4分离颅骨模型的翻制和电阻率设置
为建立近似真实颅骨电阻率分布的颅骨物理模型,结合颅骨各部分生理结构和课题前期关于不同结构活性颅骨电阻率变化的研究结果,分别设置各分离颅骨和各部位骨缝的电阻率。依据课题组获得的不同水粉配比的石膏与其电阻率的回归方程,分别计算各分离模型和骨缝部位的石膏材料水粉配比。
石膏材料水粉配比与其电阻率的关系以及在体人脑颅骨的电阻率值由课题组前期研究成果获得。(参见文献(1):Tang C,You F,Cheng G,et al.Correlation between structure andresistivity variations of the live human skull[J].IEEE Trans Biomed Eng,2008,55(9):2286-2292。文献(2):李建波,近似真实形状和非均匀电阻率分布的头部物理模型的建立及其实验研究[D],中国人民解放军第四军医大学硕士论文,2011)。
对激光快速成型的颅骨树脂模型进行表面打磨,消除由于工艺生产过程中造成的毛刺、边缘凹凸等。用齿科藻酸盐印模材分别制取每块树脂模型的印模,待印模固化形成后,取出树脂模型,立即以相应水粉比的石膏灌注模型,待石膏凝固后即可脱模(如图4所示,左边的为藻酸盐印模,右边上方为树脂模型,右边上方的为翻制的石膏模型)。
1.5拼接颅骨物理模型
首先修正、打磨脱模后的各块颅骨(8块)的石膏模型(如图5(a)所示),然后用相当于骨缝电阻率的石膏将各块石膏模型拼接在一起,最终形成近似真实形状和非均匀电阻率分布的颅骨石膏模型(如图5(b)、(c)所示)。
2.树脂容器的制作流程。
参见图6所示,加工外壳容器的过程与加工分离颅骨树脂模型的过程类似,仍然采用PSB树脂为原料,用激光快速成型技术实现。
首先使用Geomagic Studio4.0及MIMICS10.0软件将DICOM图像文件读入,然后对骨组织区域识别、提取和三维叠加,完成颅骨几何模型的三维重建,并对其进行查错修补,最后提取重建后的三维图形外表面区域,使其向外生长5.00mm厚度作为实验外壳的内表面,实验外壳厚度设置为5.00mm(如图7(a)所示)。重建完成后,输出STL格式的模型文件,采用选择性激光烧结快速成型机,以PSB树脂为原料,通过激光照射逐层烧结,最终形成树脂容器(如图7(b)、(C)所示)。
3.电极及导线的制作
树脂容器制作完毕后,需在内表面贴放电极以检测信号。为了研究颅骨内不同位置的阻抗变化情况,本实施例在树脂容器内贴放两层电极(树脂容器高度130.00mm,外径205.00mm,厚度5.00mm)。每层电极为16个。电极的位置确定是沿外壳表面,经眉弓上缘、两侧颞骨和枕骨组成一个平面,在此平面边缘等间距确定16个点,作为贴放第一层16个电极的位置。第二层的16个电极的位置比第一层低20.00mm。电极的材质为银片,厚度0.30mm,直径10.00mm,纯度为99.99%(如图8所示)。
使用电钻在树脂容器的电极位置打孔。电极的一侧用纯度为99.99%、直径为3.00mm的银丝焊接。银丝穿过钻孔经铜质导线连接颅脑EIT主机。在电极焊接银丝的一侧,涂上耐水、耐酸碱的粘接剂,施加压力使电极与树脂容器内侧壁贴紧粘牢,做成包埋式的固定电极,有助于克服实际监测中电极位移引起的干扰和噪声。每一根电极导线都带有屏蔽层,长度为1000.00mm。16根导线交叉缠绕,外面套有屏蔽网,以进一步减少外界干扰。电极导线经接口插件与颅脑EIT图像监护主机相连接。
4.支架的制作
支架1的主体材料采用有机玻璃,本实施例的支架1整体高度560.00mm,长度280.00mm,宽度260.00mm。其重量轻,便于携带,降低了使用金属材质引入的电磁干扰,且更适于磁感应电阻抗断层成像的实验。此外,在支架1上有一个可升降和旋转的杠杆3,支架1上配有可调节的8个有机玻璃螺丝6,能适应不同大小的容器2。支架1上还带有高强度、不易变形的不锈钢滑动游标4和刻度尺5,最小刻度为0.02mm。因此,支架1在杠杆3的作用下能够进行上下左右移动和360°旋转,具有较高的空间定位精度(如图9所示)。
经测试表明,本发明的基于真实形状和电阻率分布的颅骨物理模型实验装置,可重复使用,性能稳定,是一种更精确、易用、抗干扰能力更强的颅骨模型实验装置,有利于开展颅脑电阻抗断层成像(Electrical Impedance tomography,EIT)的深入研究。
需要说明的是,以上给出的实施例是实现本发明较优的例子,本发明不限于上述实施例。本领域的技术人员根据本发明技术方案的技术特征所做出的任何非本质的添加、替换,例如在容器、颅骨模型、电极、导线、支架的尺寸、材料进行的任何改动,均属于本发明的保护范围。

Claims (2)

1.一种基于真实形状和电阻率分布的颅骨物理模型实验装置,包括上下左右移动和360°旋转的支架,支架上放置有一个容器,容器内装有颅骨石膏模型,所述的颅骨物理模型由硬石膏翻制而成,并按照人体真实解剖结构分为形状精度较高的8个部位,即,额骨1块,蝶骨大翼2块,颞骨2块,顶骨2块,枕骨1块,按照与骨缝电阻率值近似的石膏将各部位连接成整体;该颅骨石膏模型的每个部位及骨缝的电阻率值都接近真实在体颅骨数值,其特征在于,容器的内表面贴放有两层平行且等间距分布的电极,每层电极为16个;电极的位置确定是沿外壳表面,经眉弓上缘、两侧颞骨和枕骨组成一个平面,在此平面边缘等间距确定16个点,作为贴放第一层16个电极的位置;第二层的16个电极的位置比第一层低20.00mm;电极的材质为银片,厚度0.30mm,直径10.00mm,纯度为99.99%;电极穿过容器内侧壁上的钻孔与容器外侧的电极导线相连;电极的一侧用纯度为99.99%、直径为3.00mm的银丝焊接,在电极焊接银丝的一侧,涂有耐水、耐酸碱的粘接剂,使电极与容器内侧壁紧贴,做成包埋式的固定电极;
容器外侧引出电极导线带有屏蔽层,长度为1000.00mm,16根导线交叉缠绕,外面套有屏蔽网;
所述的颅骨石膏模型的制作流程是:
1)人体颅骨薄层CT数据采集
采用螺旋CT对无颅骨病变的成年男性患者进行薄层颅脑扫描,扫描范围包括全部脑颅骨;扫描参数为:层厚0.625mm,电压120kV,电流240mA;扫描层数为578层;图像数据不压缩,采用标准DICOM文件格式保存;
2)三维重建颅骨模型
使用Geomagic Studio4.0及MIMICS10.0软件将DICOM图像文件读入,首先对骨组织区域识别,然后进行骨组织提取和三维叠加,完成颅骨几何模型的三维重建,并对其进行查错修补,然后对重建的三维图形沿着骨缝进行分割,制作成分离的额骨1块,蝶骨大翼2块,颞骨2块,顶骨2块,枕骨1块;
3)快速成型机加工制造
将重建后的三维可视模型进行三角形网格划分,输出STL格式的模型文件,采用选择性激光烧结快速成型机,以由聚-N-邻羟苄叉乙烯基苄胺树脂为原料,通过激光照射逐层烧结分离颅骨模型;
4)分离颅骨模型的翻制和电阻率设置
为建立近似真实颅骨电阻率分布的颅骨物理模型,结合颅骨各部分生理结构和课题前期关于不同结构活性颅骨电阻率变化的研究结果,分别设置各分离颅骨和各部位骨缝的电阻率;
对激光快速成型的颅骨树脂模型进行表面打磨,消除由于工艺生产过程中造成的毛刺、边缘凹凸,用齿科藻酸盐印模材分别制取每块树脂模型的印模,待印模固化形成后,取出树脂模型,立即以相应水粉比的石膏灌注模型,待石膏凝固后即可脱模;
所述的容器由PSB树脂经激光快速成型机一次性烧制而成,其内表面形状与颅骨石膏模型的形状相吻合;其加工过程是:
首先使用Geomagic Studio4.0及MIMICS10.0软件将DICOM图像文件读入,然后对骨组织区域识别、提取和三维叠加,完成颅骨几何模型的三维重建,并对其进行查错修补,最后提取重建后的三维图形外表面区域,使其向外生长5.00mm厚度作为实验外壳的内表面,实验外壳厚度设置为5.00mm,重建完成后,输出STL格式的模型文件,采用选择性激光烧结快速成型机,以PSB树脂为原料,通过激光照射逐层烧结,最终形成树脂容器。
2.如权利要求1所述的基于真实形状和电阻率分布的颅骨物理模型实验装置,其特征在于,所述的支架的主体材料由有机玻璃构成,支架上带有不锈钢滑动游标和刻度尺,最小刻度为0.02mm。
CN201110339423.2A 2011-11-01 2011-11-01 一种基于真实形状和电阻率分布的颅骨物理模型实验装置 Expired - Fee Related CN102522037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110339423.2A CN102522037B (zh) 2011-11-01 2011-11-01 一种基于真实形状和电阻率分布的颅骨物理模型实验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110339423.2A CN102522037B (zh) 2011-11-01 2011-11-01 一种基于真实形状和电阻率分布的颅骨物理模型实验装置

Publications (2)

Publication Number Publication Date
CN102522037A CN102522037A (zh) 2012-06-27
CN102522037B true CN102522037B (zh) 2014-05-14

Family

ID=46292936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110339423.2A Expired - Fee Related CN102522037B (zh) 2011-11-01 2011-11-01 一种基于真实形状和电阻率分布的颅骨物理模型实验装置

Country Status (1)

Country Link
CN (1) CN102522037B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545056B (zh) * 2018-12-08 2021-02-02 张春阳 一种模拟小儿颅骨受伤缺损后修补机理的实验方法
CN110411692B (zh) * 2019-08-02 2021-11-30 湖南科技大学 一种枪弹冲击或冲击波作用下的颅脑创伤模型系统
CN114447725B (zh) * 2021-12-24 2024-04-19 上海脑虎科技有限公司 一种脑机接口固定互连装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201529113U (zh) * 2009-03-12 2010-07-21 复旦大学 吸附式玻璃微电极负压抽吸和放大器连接适配器
CN101804765A (zh) * 2009-02-16 2010-08-18 王旭 手工雕塑可拆分,可闭合大比例头骨模型

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804765A (zh) * 2009-02-16 2010-08-18 王旭 手工雕塑可拆分,可闭合大比例头骨模型
CN201529113U (zh) * 2009-03-12 2010-07-21 复旦大学 吸附式玻璃微电极负压抽吸和放大器连接适配器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
李建波.用于电阻抗断层成像的真实颅骨物理模型研究.《医疗卫生设备》.2011,第32卷(第1期),第1页第2栏第4段,第2页第1栏第2段,第2页第1栏倒数第1段,第3页第1栏倒数第3段及图3(b),表2. *
杨润楠.电阻抗断层成像头模型系列及其实验研究.《万方数据知识服务平台》.2008,论文的第3页第2段,第24页第2段,第24页最后1段,第25页最后1段及图2-1,图2-3,表2-1.
王聪.基于电阻抗成像的均质头型研究.《航天医学与医学工程》.2007,第20卷(第1期),第20页第1栏第2段,第2栏第3段. *
电阻抗断层成像头模型系列及其实验研究;杨润楠;《万方数据知识服务平台》;20080728;论文的第3页第2段,第24页第2段,第24页最后1段,第25页最后1段及图2-1,图2-3,表2-1 *

Also Published As

Publication number Publication date
CN102522037A (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
CN103099680B (zh) 一种导向模板的制备方法
CN103280144B (zh) 一种模拟手术训练系统
JP2016527942A5 (zh)
CN103153589A (zh) 三维造型模具的制做方法以及医疗、医学培训、科研和教育用支持工具
CN102522037B (zh) 一种基于真实形状和电阻率分布的颅骨物理模型实验装置
CN104091347A (zh) 一种基于3d打印技术的颅内肿瘤手术规划模拟方法
RU2007101297A (ru) Способ разработки лечебной программы ортогнатической хирургии и соответствующие устройства
CN104739418A (zh) 一种基于立体视觉的呼吸门控系统及控制方法
CN103978789A (zh) 基于3d打印的头部医学模型快速成型方法
CN103099669B (zh) 单侧椎弓根螺钉进钉辅助装置及其制备方法
CN103976756A (zh) 一种脊柱后路手术术中实时三维重构方法
CN103099679A (zh) 一种个性化腰椎内固定辅助装置及其制备方法
CN109893223A (zh) 一种3d打印脑出血穿刺引流路径定位装置及其制备方法
CN102335033A (zh) 一种个体化颅面部骨块辅助定位导板系统及其制备方法
Marinova et al. Electromagnetic field modeling in human tissue
CN106923828A (zh) 用于输出关于扫描磁共振图像的参数信息的方法和装置
CN108305549A (zh) 用于模拟深部脑刺激电极植入操作的模型装置及其制备方法
CN201516047U (zh) 一种虚拟肝脏超声成像装置
CN111915725B (zh) 一种基于运动重建的人体测量方法
US20180150992A1 (en) Medical image modeling system and medical image modeling method
CN104537708A (zh) 一种基于测地线的躺卧三维颅面模型的直立矫正方法
CN104732540B (zh) Pet/ct几何配准方法和系统
CN101176683A (zh) 人体立体解剖图象的制作方法与应用
CN102609981B (zh) 构建三维脑模型的方法
He et al. Rapid and high-quality 3D fusion of heterogeneous CT and MRI data for the human brain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140514

Termination date: 20201101

CF01 Termination of patent right due to non-payment of annual fee