CN102514701B - 一种舰船供氧保障系统和方法 - Google Patents
一种舰船供氧保障系统和方法 Download PDFInfo
- Publication number
- CN102514701B CN102514701B CN201110402591.1A CN201110402591A CN102514701B CN 102514701 B CN102514701 B CN 102514701B CN 201110402591 A CN201110402591 A CN 201110402591A CN 102514701 B CN102514701 B CN 102514701B
- Authority
- CN
- China
- Prior art keywords
- oxygen
- pressure
- air supply
- supply source
- cylinder group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明涉及一种舰船供氧保障系统和方法,采用离子传输膜为分离元件直接自含氧空气中分离氧气,并结合水面舰船的燃烧热能用于ITM制氧,并给各种压力段的用氧点输出氧气;由此系统可高效集成,并可将现有燃气轮机的发电效率提高到55%-65%(常规采用空气为氧化剂的燃气轮机其效率约为35%),降低燃油消耗的同时提高了舰船的动力输出、机动能力,还降低了碳氢排放达到环保目的,同时,无论任何战况条件下,包括核生化战况从ITM制氧部分输出的氧气都是纯氧,可确保其技术指标满足现有国标、国军标的要求,适用舰船上医疗用氧、机载设备用氧的等氧气保障的氧气源,完善的解决了水面舰船各个方面各种压力段的氧气保障需求。
Description
技术领域
本发明属于空气分离领域,具体涉及一种舰船供氧保障系统和方法。
背景技术
当前,水面舰船大都采用传统的供氧保障方法,典型的,如主要依靠在港口、基地采用深冷空分技术制取氧气再以增压机将氧气压缩充瓶后以氧气瓶进行补给的保障方法,但显然,采用这种方法受制于氧气钢瓶运输补给条件,给远航舰船的供氧保障带来了沉重的后勤负担。
近年来,也有医疗船直接安装变压吸附制氧设备在船上直接制取纯度约93%的氧气进行保障的方法,但是,采用这种制氧设备制取的氧气纯度低,仅能达到93%左右,不能满足我国最新国标《GB8982-2009医用及航空呼吸用氧》的规定(航空呼吸用氧以及舰上医疗保障呼吸用氧的氧气纯度均要求≥99.5%),采用该方法的保障体系无法为舰船提供合格的航空呼吸用氧以及医疗呼吸用氧。
即便如此,上述所列出的几种保障方法中均因严重依赖空气为原料,当补给基地、水面舰船本身遭遇诸如核生化等极端战况条件时,因空气被污染,采用传统的深冷法、吸附分离法、膜分离法都无法持续获得可供人员呼吸用途的氧气,而有限的核生化防护能力仅能针对防护舱提供给舰员一定量的新鲜空气,即使采用核生化处理系统为传统制氧装置提供新鲜空气,也将面临资源条件、系统设计、安装使用维护的复杂性所带来的挑战,其结果不言而喻,将直接导致水面舰船的医疗用氧、机载设备用氧保障能力的丧失,而采用水电解、化学法制氧因其能源消耗、设备本身的安全以及后勤保障等诸多问题而得不偿失,更无法为舰船动力系统提供更为大量的助燃用途的氧气。
发明内容
本发明要解决的技术问题是,针对现有舰船供氧保障模式的缺陷,提供一种舰船供氧保障系统和方法,可有效克服传统保障模式缺陷、节约整体资源消耗,为水面舰船提供充足的、可持续的、并能适应各种压力应用的氧气供应保障。
为解决上述技术问题,本发明所采用的技术方案是:
舰船供氧保障系统,其特征在于包含:
含氧原料气输入管线,以及与原料气输入管线相连接的至少一台原料气升压设备;
至少一个热源提供模块,用以将原料气升温到预定的分离温度;热源提供模块与原料气升压设备相连通;
离子传输膜分离器,用以将氧气从原料气中分离出来;离子传输膜分离器与热源提供模块相连通;
至少一个升压设备,用以持续将分离器分离出来的氧气移除出分离器,维持分离过程的持续进行;离子传输膜分离器经管线连接升压设备并最后与输出管线连通;
输出管线的第一分支与舰船动力设备燃烧室相连通,第二分支通过中低压增压设备与舰船上的低中压用氧点或储氧点相连通;
在低中压用氧点接口之后,第二分支经高压增压机后分别并列与主供气源储存气瓶组和辅助供气源储存气瓶组连通;所述的主供气源储存气瓶组与高压用氧直接使用点或者减压使用点相连通;所述的辅助供气源储存气瓶组与高压用氧直接使用点相连通。
按上述技术方案,在辅助供气源储存气瓶组与高压增压机入口之间还设置一个当辅助供气源储存气瓶组压力不足时将气源经增压机增压灌充到主供气源储存气瓶组的转注回路,由减压阀、控制阀通过连接管线组成。
按上述技术方案,主供气源储存气瓶组的输出回路上还设置一条往低、中压用氧点输送的保障回路,所述的回路由减压阀、控制阀通过连接管线组成。
按上述技术方案,该热源提供模块包含一个主换热器、加热器、第三换热器、第四换热器;第四换热器一端与原料气升压设备连通,另一端与第三换热器连通;主换热器与舰船动力设备燃烧室相连通,并同时通过加热器与离子传输膜分离器连通;离子传输膜分离器的氧气输出热能回收端与第四换热器连通,其废气排放热能回收端与第三换热器相连通,第三换热器与废气排放管线相连通。
按上述技术方案,所述的离子传输膜分离器包含的离子传输膜,是一种由氧离子-电子混合导体陶瓷材料制成的致密膜.
所述离子传输膜为由La0.6Sr0.4Co0.2Fe0.8O3-δ体系材料通过相转化烧结法制备的中空纤维陶瓷膜。
采用上述系统的供氧方法,其特征在于基于离子传输膜分离器并结合舰上热能资源制备氧气,并按照实际使用压力需求对所制备的氧气进行转送、增压、存储、转注等流体再分配;具体流程为:
含氧气体自输入管线及过滤措施后引入原料气升压设备,建立起供流体输送所需克服的系统阻力后送入后级热源提供模块再引入分离系统;经过热源提供模块将原料空气加热到所需的分离温度后进入膜分离器,从膜分离器渗透的氧气经管线连接升压设备并经输出管线送出,废气则送热能回收设备或排空;
从输出管线输出的第一分支氧气与舰船动力设备燃烧室相连通,对舰船燃烧设备供给氧化剂进行富氧或纯氧助燃;第二分支通过中低压增压设备增压并通过管线向舰船上低中压用氧点直接供气或者到储氧点进行储存;
在低中压用氧点接口之后,第二分支经高压增压机后分别通过管线向舰船上的主供气源储存气瓶组和辅助供气源储存气瓶组进行增压储存;主供气源储存气瓶组和辅助供气源储存气瓶组再分别通过管线向舰船上高压用氧点进行供氧。
按上述技术方案,所述的主供气源储存气瓶组和辅助供气源储存气瓶组中,按照用氧点压力高低之分,首先以辅助供气源储存气瓶组进行最高压力用氧点的供气保障,当压力不足以维持用氧保障时通过操作相应的阀门切换至主供气源储存气瓶组供气;当主供气源也满足不了最高压力用氧保障时选择继续制氧增压充满气瓶组来满足保障要求;或者在前工段不能制气时利用所设置的转注回路,通过高压增压机并通过操作相应的阀门自辅助供气源储存气瓶组吸气对主供气源储存气瓶组进行增压充气到工作压力以满足高压用氧点的用氧保障。
按上述技术方案,当低、中压用氧点气源不足时,通过在主供气源储存气瓶组的输出回路上设置的保障回路从主供气源储存气瓶组往低、中压用氧点输送氧气。
按上述技术方案,热源提供模块中的主换热器结合舰船动力系统燃烧过程产生的热将原料气加热;加热器在主换热器热源引入存在问题时将原料气加热到预定的分离温度;第三换热器回收分离后的废气热能并与自原料气升压设备送入的含氧原料气体进行热交换,膜分离器送出的纯氧同样送入第四换热器进行热交换以回收热能;如果排出氧气的温度较高,需要冷却加以应用,可设置冷却器将输出氧气的温度降低至需要的水平;完整的热能回收交换顺序为:先回收产品氧气带有的热能,再回收分离后废气带有的热能,再接收燃烧过程产生的热能,再通过电加热器或者燃烧器产生热能;根据加热装置的不同,上述顺序能够根据需要取舍。
按上述技术方案,升压设备的升压能力取决于燃烧设备需要的用氧压力以及维持膜分离器连续移除氧气的压力需要;膜分离器渗透侧的压力为5~95KPa;所述的高压用氧点压力为15MPa~35MPa。
本发明提出的是一种针对水面舰船供氧保障的新方法,其显著的特点是:
(1)采用离子传输膜(Ionic Transport Membrane,简称ITM)分离技术直接自任何含氧气体中分离出纯度达100%的纯氧,减少了对空气质量的依赖,即使是在核生化战况条件下也能现场制氧以连续的获得符合现行国标、国军标要求的氧气进行供氧保障;
按照本发明描述的离子传输膜,它是一种由氧离子-电子混合导体陶瓷材料制成的致密膜,不限于下述描述的某一种体系的离子传输膜,典型的,如一种由La0.6Sr0.4Co0.2Fe0.8O3-δ(按重量百分比为:wt%La≈37.5%;wt%Sr≈15.7%;wt%Co≈5.30%;wt%Fe≈20.0%;wt%O≈21.5%)体系材料通过相转化烧结法制备的中空纤维陶瓷膜,具有很好透氧稳定性和机械强度,当膜两边的氧分压不同时,将膜材料或待分离的含氧原料气加热到一定温度时,氧气将以氧离子的形式从高分压侧透过膜到达低分压侧,氧离子再结合成氧分子,从而达到分离出纯氧的目的,由于ITM只允许氧离子透过,任何气体、微粒物质都无法通过,因而可以直接从含氧气体中分离出纯氧(100%的透氧选择性),也因此,采用离子传输膜为分离元件直接自含氧空气中分离氧气的方法可应用于任何战况条件下直接自空气(无论染毒与否,无论是含有21%的氧气的空气体系,还是含有低于该分压水平氧气的其它介质气体)、烟气(含有未燃尽的氧气)或其它含氧气体中分离氧气,而且,由于其透氧速率快(可达有机膜的200倍),工艺及操作简单,可大大缩小制氧系统的体积,降低制氧的能源消耗(理论上比传统的深冷精馏或变压吸附法的能源消耗低30~50%),尤其是结合水面舰船的燃气轮机、蒸汽轮机,燃烧生成的热能用于ITM制氧,ITM产生的氧气返回进行富氧、纯氧燃烧,并给其它用氧点输出氧气,系统可高效集成,并可将现有燃气轮机的发电效率提高到55%-65%(常规采用空气为氧化剂的燃气轮机其效率约为35%),降低燃油消耗的同时提高了舰船的动力输出、机动能力,还降低了碳氢排放达到环保目的,同时,无论任何战况条件下(包括核生化战况)从ITM制氧部分输出的氧气都是纯氧,可确保其技术指标满足现有国标、国军标的要求,适用舰船上医疗用氧、机载设备用氧的等氧气保障的氧气源,完善的解决了水面舰船各个方面的氧气保障需求。
(2)ITM分离元件所需的热能来自舰船动力系统燃烧产生的热能,此热能可以是燃烧室直接交换出来或者自高温排放的烟气交换出来的热能,ITM分离元件的工作温度是550℃~1100℃,如低于该分离温度条件,还可优选的设置一个电加热器或者燃烧器以进行补充热能输入,并且,优选针对经分离后的贫氧气体与产品氧气的输出进行一次热能回收的措施;
(3)本发明提出的供氧保障方法,可向任何用氧点提供符合我国最新国标《GB8982-2009医用及航空呼吸用氧》的规定的氧气,如医疗用氧、航空呼吸用氧等,还能向舰船动力系统的燃烧设备提供富氧、纯氧进行富氧或者纯氧燃烧;
(4)本发明提出的供氧保障方法,按照实际使用压力需求优选分别经转送、增压、存储、转注等流体再分配手段组成一个氧气供应保障体系以确保舰船各用氧单位的氧气供应保障,并且,优选由低到高的压力获取制度以分别向舰船各用氧单位先后提供低压氧气、低中压氧气、高压氧气;
(5)本发明提出的供氧保障方法,最低限度设置2组以上储存气瓶(组),以一组作为主供气源,另外一组作为辅助供气源,按照用氧点压力高低之分,首先以辅助供气源进行最高压力用氧点的供气保障,当压力不足以维持用氧保障时切换至主供气源,主供气源满足不了最高用氧保障时可选择继续制氧增压充满气瓶满足保障要求,但是,也可以通过设置的增压机在前工段不能制气时先自辅助供气源吸气对主供气源进行充气到工作压力以满足高压用氧点的保障,通过这样一个转注措施,可以减少储存气瓶的缓冲容积,提高气瓶利用率,并可在一定程度上减少对前段工序中的制氧能力、增压设备的增压能力的选型依赖,进一步减少制氧、增压设备的体积、尺寸以及装机容量。
附图说明
附图1是本发明采用离子传输膜(ITM)分离元件自含氧空气中分离氧气的系统原理图;
附图2是本发明构建的氧气供应保障体系的原理图;
附图3是一个现有舰船氧气保障体系的原理图,用以作为本发明的比较例;
附图4是另一个现有舰船氧气保障体系的原理图,用以作为本发明的比较例。
具体实施方式
以下结合附图1-4的实施例对本发明作进一步说明,但不限定本发明。
如附图1,含氧气体自管线1经公知技术所描述的初级过滤(典型的,如过滤至<15μm的颗粒物精度)措施后引入鼓风机2,建立起供流体输送所需克服的系统阻力后送入后级分离系统引入管线3。典型的,如建立5~500KPa的压力(表压),因离子传输(ITM)膜分离器6的分离条件是在一定的温度下(550℃~1100℃)进行,因此,经鼓风机增压后的气体首先经过热源提供模块4(附图1中点划线内所包含部分)加热到所需的分离温度,热源提供模块4优选采用主换热器TC01自各种燃烧过程产生的温度来加热原料气,高温烟气自管线4-1引入,自管线4-2返回;当然,也可采用各种形式的加热方法,如电加热器TC02来将原料气加热到预定的分离温度再进入膜分离器6,高温原料气自连接热源模块与膜分离器6的管线5引入膜分离器6后,渗透的氧气经管线7引入优选的换热器TC04与经鼓风机2出口的空气进行换热后,再连接升压设备如负压风机、压缩机或者真空泵9离开系统并经管线10送出。典型的,为了实现连续分离的目的,自负压风机、压缩或真空等动力设备9连续引出该部分氧气,如采用这些升压设备在膜分离器的渗透侧建立5~95KPa的压力(绝对压力),可连续移除系统产生的氧气并维持系统连续稳定的分离过程,采用该升压设备优选还能建立起后续用氧气需求的压力(如建立起0~1MPa直至任意所需压力,表压),未经分离的废气则经管线8排除出系统。
优选的,因自管线8排出的废气还带有一定的热能,可设置一个第三换热器TC03与自鼓风机2送入的含氧气体进行热交换以回收热能,自管线7送出的纯氧也同样的可以先送入第四换热器TC04进行热交换以回收热能,上述热源提供模块4中,优先以将原料气加热到预定分离温度为目的,优选结合舰船动力系统燃烧过程产生的热源经主换热器TC01达成目标,还优选但非必要设置一个加热器TC02在主换热器TC01热源引入存在问题时以加热器达成分离目标温度,如果排出氧气的温度较高,需要冷却加以应用,可替代以各种形式的冷却器将输出氧气的温度降低至合适的水平。
如附图2,继续如附图1的描述,自负压风机、压缩或真空等类型的升压设备9连续自ITM膜分离器6引出的氧气自管线10输出,该升压设备的升压能力优选取决于燃烧设备需要的用氧压力以及维持膜分离器连续移除氧气的需要。此时,维持膜分离器渗透侧的压力为5~95KPa(绝压)的压力,并保持输出管线送入燃烧器的压力。典型的,如达到5KPa(表压)的输送压力要求;随后,如附图2,自管线10输出的氧气分两路,一路送入管线11经阀JV101A以满足燃烧过程所需富氧燃烧用氧的保障需求;另一路,经阀JV101B自管线12送入中低压增压机13增压后,送入管线15输出供给低、中压(0.1~3.0MPa)用氧点直接使用或者储存。
为满足船上更高压力的用氧点氧气的需求,经中低压增压机13增压后的氧气可经管线14、阀JV102B等送入高压增压机16。高压增压机可采用隔膜式压缩机,可按船上用氧点最高使用压力选型,如15MPa~35MPa;并采取两组气瓶进行储存,其中,一组作为主要储存供气瓶组PV01,另一组作为辅助供气瓶组PV02,中低压增压机13经管线14、阀JV102B、DXF102B自前级引入氧气后可分别经管线17、19以及开启相应的阀门增压送入储存供气瓶组PV01、辅助供气瓶组PV02,并可选择打开相应的阀门JV105B/A分别自管线18、20输出高压气源,以满足船上高压氧气气源的保障需求。
为了有效减少储存气瓶的容积,最大限度的满足最高工作压力下的用氧量,本发明设置2组储存气瓶,以一组作为主供气源PV01,另外一组作为辅助供气源PV02,按照用氧点压力高低之分,首先以辅助供气源PV02进行最高压力用氧点的供气保障,当压力不足以维持用氧保障时通过操作相应的阀门切换至主供气源PV01供气,当主供气源也满足不了最高压力用氧保障时可选择继续制氧增压充满气瓶组来满足保障要求,但也可以通过设置的高压增压机16在前工段不能制气时通过操作相应的阀门先自辅助供气源PV02吸气对主供气源PV01进行增压充气到工作压力以满足高压用氧点的用氧保障,通过这样一个转注回路措施,可以减少储存气瓶的缓冲容积,提高气瓶利用率,并可在一定程度上减少对前段工序中的制氧能力、增压设备的增压能力的选型依赖,进一步减少制氧、增压设备的体积、尺寸以及装机容量;所述的转注回路经管线21、减压阀JY104、截止阀JV104经增压机16将辅助气瓶组PV02的存储的压力不高的气体继续增压灌充到主供气源PV01气瓶组中,经阀门JV105B自管线18输出到高压用氧点进行供氧保障。
附图3为常规的一种氧气保障体系,用以对比本发明的氧气保障体系,原有舰船的氧气保障体系一种是采用深冷法在陆地上制取好氧气并采用增压机充入高压气瓶,并运输到船上直接向供氧点进行氧气保障,或者经减压阀减压供气,以分别满足高压与中低压用氧点的需求。此外,附图4还有一种常规体系和方法是采用变压吸附工艺,以空气为原料制取氧气后直接供给中低压用氧点,或者继续采用增压装置储存到气瓶中再进行供氧保障,关于变压吸附工艺,是公知技术,再此不在叙述,受制于该工艺仅能提供93%左右的氧气而无法成为一个合格的氧气源,仅能作为一般性保健用氧的需求,而显然,针对舰船尤其是作战舰船所需的高压、高品质氧气需求,这种方法无疑不能满足需求,而以陆地制取氧气瓶再运输到船上进行供氧保障的方法,则受制于运输与储存气量,显然无法满足远洋海军的作战要求。
按照本发明描述的离子传输膜,它是一种由氧离子-电子混合导体陶瓷材料制成的致密膜,不限于下述描述的某一种体系的离子传输膜,典型的,如一种由La0.6Sr0.4Co0.2Fe0.8O3-δ(按重量百分比为:wt%La≈37.5%;wt%Sr≈15.7%;wt%Co≈5.30%;wt%Fe≈20.0%;wt%O≈21.5%)体系材料通过相转化烧结法制备的中空纤维陶瓷膜,具有很好透氧稳定性和机械强度,当膜两边的氧分压不同时,将膜材料或待分离的含氧原料气加热到一定温度时,氧气将以氧离子的形式从高分压侧透过膜到达低分压侧,氧离子再结合成氧分子,从而达到分离出纯氧的目的
相对于以上常规的氧气保障体系,本发明高效的集成了舰船系统资源,以ITM离子传输膜获取氧气,并提供了一种包括各种压力制度的从低压到高压的供氧保障体系,彻底改变了现有舰船单一依靠瓶氧或变压吸附工艺设备的供氧保障模式,全面的解决了现有舰船保障体系的缺陷,具体有如下优点:
(1)氧气指标符合现行国家标准规范,彻底改变了对原料气的依赖,可在恶劣战况条件下实施供氧;
(2)功能齐全,可为各种压力制度的用氧单位提供有效的供氧保障,自中低压的富氧燃烧、医疗保障用氧,到中高压的舰载机、鱼雷等舰载武器高压用氧均具备保障能力;
(3)系统高效集成,主要分离能源来自舰船动力设备燃烧过程产生的热能或者烟气废气热能,并采取的有效的能源回收,因此,最大限度的减少了能源消耗,是现有制氧方法能源消耗的2/3以下;
(4)合理的安排了舰船各压力制度的用氧要求的升压过程,最大限度的节约因升压带来的能源消耗;
(5)合理的安排了舰船高压用气保障的储存环节,分主供气源与辅助供气源,最大限度的减少了高压气瓶储存环节的容积,同时,也在一定程度上减少对前段工序中的依赖,尤其是减少了对前工序的制氧能力、增压设备的增压能力的选型依赖,进一步减少制氧、增压设备的体积、尺寸以及装机容量。
以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等效变化,如对工艺参数或装置做出的变动和改良仍属本发明的保护范围。
Claims (9)
1.舰船供氧保障系统,其特征在于包含:
含氧原料气输入管线,以及与原料气输入管线相连接的至少一台原料气升压设备;
至少一个热源提供模块,用以将原料气升温到预定的分离温度;热源提供模块与原料气升压设备相连通;
离子传输膜分离器,用以将氧气从原料气中分离出来;离子传输膜分离器与热源提供模块相连通;
至少一个升压设备,用以持续将分离器分离出来的氧气移除出分离器,维持分离过程的持续进行;离子传输膜分离器经管线连接升压设备并最后与输出管线连通;
输出管线的第一分支与舰船动力设备燃烧室相连通,第二分支通过中低压增压设备与舰船上的低中压用氧点或储氧点相连通;
在低中压用氧点接口之后,第二分支经高压增压机后分别并列与主供气源储存气瓶组和辅助供气源储存气瓶组连通;所述的主供气源储存气瓶组与高压用氧直接使用点或者减压使用点相连通;所述的辅助供气源储存气瓶组与高压用氧直接使用点相连通;在辅助供气源储存气瓶组与高压增压机入口之间还设置一个当辅助供气源储存气瓶组压力不足时将气源经增压机增压灌充到主供气源储存气瓶组的转注回路,由减压阀、控制阀通过连接管线组成。
2.根据权利要求1所述的系统,其特征在于:主供气源储存气瓶组的输出回路上还设置一条往低、中压用氧点输送的保障回路,所述保障回路由减压阀、控制阀通过连接管线组成。
3.根据权利要求1或2所述的系统,其特征在于:该热源提供模块包含一个主换热器、加热器、第三换热器、第四换热器;第四换热器一端与原料气升压设备连通,另一端与第三换热器连通;主换热器与舰船动力设备燃烧室相连通,并同时通过加热器与离子传输膜分离器连通;离子传输膜分离器的氧气输出热能回收端与第四换热器连通,其废气排放热能回收端与第三换热器相连通,第三换热器与废气排放管线相连通。
4.根据权利要求3所述的系统,其特征在于:所述的离子传输膜分离器包含的离子传输膜,是一种由氧离子-电子混合导体陶瓷材料制成的致密膜。
5.根据权利要求3所述的系统,其特征在于:所述的离子传输膜分离器包含的离子传输膜,是一种由La0.6Sr0.4Co0.2Fe0.8O3-δ体系材料通过相转化烧结法制备的中空纤维陶瓷膜。
6.采用权利要求1-5之一所述系统的供氧保障方法,其特征在于基于离子传输膜分离器并结合舰上热能资源制备氧气,并按照实际使用压力需求对所制备的氧气进行转送、增压、存储、转注等流体再分配;具体流程为:
含氧气体自输入管线及过滤措施后引入原料气升压设备,建立起供流体输送所需克服的系统阻力后送入后级分离系统引入热源提供模块;经过热源提供模块加热到所需的分离温度后,再进入膜分离器,从膜分离器渗透的氧气经管线连接升压设备并经输出管线送出;
从输出管线输出的第一分支氧气与舰船动力设备燃烧室相连通,对舰船燃烧设备供给氧化剂进行富氧或纯氧助燃;第二分支通过中低压增压设备增压并通过管线向舰船上低中压用氧点直接供气或者到储氧点进行储存;
在低中压用氧点接口之后,第二分支经高压增压机后分别通过管线向舰船上的主供气源储存气瓶组和辅助供气源储存气瓶组进行增压储存;主供气源储存气瓶组和辅助供气源储存气瓶组再分别通过管线向舰船上高压用氧点进行供氧;所述的主供气源储存气瓶组和辅助供气源储存气瓶组中,按照用氧点压力高低之分,首先以辅助供气源储存气瓶组进行最高压力用氧点的供气保障,当压力不足以维持用氧保障时通过操作相应的阀门切换至主供气源储存气瓶组供气;当主供气源也满足不了最高压力用氧保障时选择继续制氧增压充满气瓶组来满足保障要求;或者在前工段不能制气时利用所设置的转注回路,通过高压增压机并通过操作相应的阀门自辅助供气源储存气瓶组吸气对主供气源储存气瓶组进行增压充气到工作压力以满足高压用氧点的用氧保障。
7.根据权利要求6所述的方法,其特征在于:当低、中压用氧点气源不足时,通过在主供气源储存气瓶组的输出回路上设置的保障回路从主供气源储存气瓶组往低、中压用氧点输送氧气。
8.根据权利要求6或7所述的方法,其特征在于:热源提供模块中的主换热器结合舰船动力系统燃烧过程产生的热将原料气加热;加热器在主换热器热源引入存在问题时将原料气加热到预定的分离温度;第三换热器回收分离后的废气热能并与自原料气升压设备送入的含氧原料气体进行热交换,膜分离器送出的纯氧同样送入第四换热器进行热交换以回收热能;如果排出氧气的温度较高,需要冷却加以应用,可设置冷却器将输出氧气的温度降低至需要的水平;完整的热能回收交换顺序为:先回收产品氧气带有的热能,再回收分离后废气带有的热能,再接收燃烧过程产生的热能,再通过电加热器或者燃烧器产生热能;根据加热装置的不同,上述顺序能够根据需要取舍。
9.根据权利要求8所述的方法,其特征在于:升压设备的升压能力取决于燃烧设备需要的用氧压力以及维持膜分离器连续移除氧气的压力需要;膜分离器渗透侧的压力为5~95KPa;所述的高压用氧点压力为15MPa~35MPa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110402591.1A CN102514701B (zh) | 2011-12-07 | 2011-12-07 | 一种舰船供氧保障系统和方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110402591.1A CN102514701B (zh) | 2011-12-07 | 2011-12-07 | 一种舰船供氧保障系统和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102514701A CN102514701A (zh) | 2012-06-27 |
CN102514701B true CN102514701B (zh) | 2014-02-19 |
Family
ID=46285869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110402591.1A Active CN102514701B (zh) | 2011-12-07 | 2011-12-07 | 一种舰船供氧保障系统和方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102514701B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106076072A (zh) * | 2016-07-19 | 2016-11-09 | 江苏优拿大环保科技有限公司 | 一种船用陶瓷膜净气装置及其应用 |
CN110655037B (zh) * | 2019-10-31 | 2020-11-24 | 南京航空航天大学 | 一种航空发动机高温余热离子膜制氧系统及方法 |
CN114320493B (zh) * | 2022-01-14 | 2023-11-03 | 中国能源建设集团浙江省电力设计院有限公司 | 一种9h级联合循环机组增压机组间的无扰切换方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0948989A1 (fr) * | 1998-04-07 | 1999-10-13 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et unité de production d'oxygene par adsorption avec cycle court |
CN1286133A (zh) * | 1999-08-27 | 2001-03-07 | 普拉塞尔技术有限公司 | 流体分离方法及其分离系统 |
FR2849172A1 (fr) * | 2002-12-19 | 2004-06-25 | Air Liquide | Procede de distillation d'air ameliore, et installation de mise en oeuvre de ce procede |
CN1564708A (zh) * | 2001-08-10 | 2005-01-12 | 普莱克斯技术有限公司 | 离子传输膜装置和方法 |
US7122073B1 (en) * | 2000-09-18 | 2006-10-17 | Praxair Technology, Inc. | Low void adsorption systems and uses thereof |
CN101757832A (zh) * | 2010-01-14 | 2010-06-30 | 上海穗杉实业有限公司 | 从多组分混合流体中分离至少一种组分的方法及其装置 |
-
2011
- 2011-12-07 CN CN201110402591.1A patent/CN102514701B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0948989A1 (fr) * | 1998-04-07 | 1999-10-13 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et unité de production d'oxygene par adsorption avec cycle court |
CN1286133A (zh) * | 1999-08-27 | 2001-03-07 | 普拉塞尔技术有限公司 | 流体分离方法及其分离系统 |
US7122073B1 (en) * | 2000-09-18 | 2006-10-17 | Praxair Technology, Inc. | Low void adsorption systems and uses thereof |
CN1564708A (zh) * | 2001-08-10 | 2005-01-12 | 普莱克斯技术有限公司 | 离子传输膜装置和方法 |
FR2849172A1 (fr) * | 2002-12-19 | 2004-06-25 | Air Liquide | Procede de distillation d'air ameliore, et installation de mise en oeuvre de ce procede |
CN101757832A (zh) * | 2010-01-14 | 2010-06-30 | 上海穗杉实业有限公司 | 从多组分混合流体中分离至少一种组分的方法及其装置 |
Non-Patent Citations (6)
Title |
---|
付嫚等.特种气体的分离技术.《舰船防化》.2003,(第3期),第15-21页. |
常温空分氧氮一体化联合分离系统;薛敏等;《中国舰船研究》;20110430;第6卷(第2期);第88-92页 * |
杨顺成.膜法空分制氮与富氧技术在舰船上的应用与前景.《舰船科学技术》.2004,第26卷(第3期),第63-65页. |
特种气体的分离技术;付嫚等;《舰船防化》;20030630(第3期);第15-21页 * |
膜法空分制氮与富氧技术在舰船上的应用与前景;杨顺成;《舰船科学技术》;20040630;第26卷(第3期);第63-65页 * |
薛敏等.常温空分氧氮一体化联合分离系统.《中国舰船研究》.2011,第6卷(第2期),第88-92页. |
Also Published As
Publication number | Publication date |
---|---|
CN102514701A (zh) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tashie-Lewis et al. | Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review | |
US11505328B2 (en) | Electrical power generation on a vehicle | |
EP3405717B1 (en) | Apparatus and method for compressing evaporated gas | |
CN101258634B (zh) | 用于供应饮用水和氧气的燃料电池系统 | |
US8623566B2 (en) | Aircraft fuel cell system | |
KR20080074142A (ko) | 전기분해 | |
CN102514701B (zh) | 一种舰船供氧保障系统和方法 | |
CN107779906A (zh) | 一种液态氢气的制取系统 | |
CN104852067A (zh) | 基于燃料电池的飞机发电系统 | |
CN105486028B (zh) | 一种舰队供氧、供氮保障方法与系统 | |
CN216280615U (zh) | 一种用于海上制氢及储氢的系统 | |
WO2015120782A1 (zh) | 一种气体液化方法及系统 | |
US11434021B2 (en) | Electrical power generation on a vehicle | |
WO2021110900A1 (en) | Offshore production facility arrangement | |
CN114142061B (zh) | 船上氢燃料制备系统及其制氢方法 | |
CN209782244U (zh) | 一种气电氢综合能源供应系统 | |
CN115217565A (zh) | 一种采用氨燃料的联合发电装置系统及方法 | |
CN215907932U (zh) | 一种利用液化天然气进行带碳捕集发电的集成系统 | |
CN202432241U (zh) | 天然气加气系统 | |
KR101788743B1 (ko) | 선박용 연료전지 시스템 | |
CN114104242A (zh) | 液氨制氢船舶混合动力系统 | |
CN221319327U (zh) | 临近空间无人飞行器机载制氧系统 | |
CN117105242A (zh) | 一种浮式风电平台离网制绿氨系统及其制备流程 | |
Maciorowski et al. | Hydrogen, the future of aviation | |
EP3379630A1 (en) | Electrical power generation on a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 430064 Hubei Province, Wuhan city Wuchang District Ziyang Road No. 268 Co-patentee after: Shanghai Sui Hua Industrial Limited by Share Ltd Patentee after: China Ship Research and Design Center Address before: 430064 Hubei Province, Wuhan city Wuchang District Ziyang Road No. 268 Co-patentee before: Shanghai Huishan Industrial Co., Ltd. Patentee before: China Ship Research and Design Center |