CN102509838B - Broadband Operating Waveguide Traveling Wave Power Combining Amplifier - Google Patents
Broadband Operating Waveguide Traveling Wave Power Combining Amplifier Download PDFInfo
- Publication number
- CN102509838B CN102509838B CN201110355484.8A CN201110355484A CN102509838B CN 102509838 B CN102509838 B CN 102509838B CN 201110355484 A CN201110355484 A CN 201110355484A CN 102509838 B CN102509838 B CN 102509838B
- Authority
- CN
- China
- Prior art keywords
- waveguide
- power
- output
- coupled structure
- traveling wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000008878 coupling Effects 0.000 claims abstract description 83
- 238000010168 coupling process Methods 0.000 claims abstract description 83
- 238000005859 coupling reaction Methods 0.000 claims abstract description 83
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 34
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 33
- 230000007704 transition Effects 0.000 claims abstract description 20
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 6
- 239000000523 sample Substances 0.000 claims description 54
- 230000005540 biological transmission Effects 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 2
- 230000001902 propagating effect Effects 0.000 claims 1
- 230000011514 reflex Effects 0.000 claims 1
- 230000011664 signaling Effects 0.000 claims 1
- 230000003321 amplification Effects 0.000 abstract description 4
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 4
- 230000002194 synthesizing effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Microwave Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明涉及用于微波和毫米波频段的功率合成技术,尤其涉及一种可宽带工作的波导行波功率合成放大器。The invention relates to a power synthesis technology for microwave and millimeter wave frequency bands, in particular to a waveguide traveling wave power synthesis amplifier capable of broadband operation.
背景技术Background technique
在微波毫米波频段,人们普遍采用功率合成网络将多个固态器件的输出功率合成,从而实现大功率固态器件。功率合成技术有振荡型合成和放大型合成两类,其中功率合成放大器应用非常广泛。无论哪一类,均是通过一个功率合成网络合成多个固态器件的输出功率,实现大功率合成放大器。功率合成网络的性质直接决定了合成放大器的性能,因此,功率合成技术研究的重点主要是功率合成网络的性质,探索哪种合成网络拓扑结构可以实现最大效率的宽带大数目的功率合成。In the microwave and millimeter wave frequency bands, people generally use a power combining network to combine the output power of multiple solid-state devices to realize high-power solid-state devices. There are two types of power synthesis technology: oscillation synthesis and amplification synthesis, among which power synthesis amplifiers are widely used. Regardless of the type, the output power of multiple solid-state devices is synthesized through a power synthesis network to realize a high-power synthesis amplifier. The nature of the power combining network directly determines the performance of the synthesizing amplifier. Therefore, the focus of power combining technology research is mainly on the properties of the power combining network, and to explore which combining network topology can achieve the maximum efficiency of wideband and large number of power combining.
近几年,相继报道了一些波导行波功率合成放大器结构。这种结构沿着输入波导的电磁场传播方向垂直插入多路耦合结构,电磁波从输入波导进入后,在传播的过程中依次地把功率馈入多路耦合结构。同时利用匹配膜片,使得波导中电磁场传播时在每个耦合结构处都无反射,实现行波传输。耦合结构与放大器电路相连接,经过放大后的功率又依次通过耦合结构馈入输出波导,在波导输出端口等幅同相输出,实现功率合成。这种结构有望实现Ka波段甚至更高波段多路放大器合成,实现大功率输出。由于是沿着行波方向放置放大器阵列,从理论上讲,这种结构没有芯片路数的限制,同时又具有波导低损耗的特性,因此,利用该结构有望在微波高端和毫米波波段获得高效率、大功率、结构紧凑和易于散热的合成放大器。In recent years, some waveguide traveling wave power combining amplifier structures have been reported successively. This structure is vertically inserted into the multi-channel coupling structure along the propagation direction of the electromagnetic field of the input waveguide. After the electromagnetic wave enters from the input waveguide, power is sequentially fed into the multi-channel coupling structure during the propagation process. At the same time, the matching diaphragm is used, so that there is no reflection at each coupling structure when the electromagnetic field in the waveguide propagates, and traveling wave transmission is realized. The coupling structure is connected with the amplifier circuit, and the amplified power is sequentially fed into the output waveguide through the coupling structure, and output at the output port of the waveguide with equal amplitude and same phase to realize power combination. This structure is expected to realize Ka-band and even higher-band multi-channel amplifier synthesis to achieve high power output. Because the amplifier array is placed along the direction of the traveling wave, theoretically, this structure has no limitation on the number of chips, and at the same time has the characteristics of low loss of the waveguide. Therefore, using this structure is expected to obtain high Efficient, high-power, compact and heat-dissipating synthesis amplifier.
基于微带结构的行波功率分配/合成器可以实现宽带功率分配,并且输出端口隔离。不过随着频率的升高,微带线的损耗变大。随着合成路数的增加,传输线的长度增加,损耗会随着合成路数的增加而增加,这将降低合成放大器的合成效率,过大的损耗甚至会使合成放大器失去应用的意义。因此,在微波高端和毫米波波段,基于微带结构的行波功率分配/合成放大器并不适合于多路数的功率合成。基于波导行波功率合成结构,以其低损耗,高功率容量和良好的散热等特性而在微波毫米波波段得到广泛的应用。对于波导行波功率合成结构,所见报道的结构均没有解决一个问题,就是由于微波信号从输入端口到各耦合结构输出所传输的路径长度不一致,导致功率分配器的输出端口相位不一致。当功率分配器的输出端口相位不一致时,连接功率分配器输出端口的放大器单元的输入反射信号会进入到其余放大器单元处,从而相互影响,使得各个放大器单元的输入信号不一致,这样会导致放大器单元工作状态不一致,这将严重影响功率合成放大器的稳定性和线性。由此而知,以前提出的行波功率合成放大器结构一般工作在功率分配器同相(或反相)输出的频率点附近,只适合窄带工作。因此非常有必要开发一款可以实现宽带同相或反相输出的行波功率分配/合成器结构用于实现宽带功率合成放大器。The traveling wave power divider/combiner based on the microstrip structure can realize wideband power distribution and output port isolation. However, as the frequency increases, the loss of the microstrip line becomes larger. As the number of synthesis paths increases, the length of the transmission line increases, and the loss will increase with the increase of the number of synthesis paths, which will reduce the synthesis efficiency of the synthesis amplifier, and excessive loss will even make the synthesis amplifier useless. Therefore, in the microwave high-end and millimeter wave bands, the traveling wave power distribution/combination amplifier based on the microstrip structure is not suitable for multi-channel power synthesis. Based on the waveguide traveling wave power combining structure, it has been widely used in the microwave and millimeter wave bands due to its low loss, high power capacity and good heat dissipation. For the waveguide traveling wave power combining structure, none of the reported structures can solve a problem, that is, the phases of the output ports of the power divider are inconsistent due to the inconsistency of the transmission path length of the microwave signal from the input port to the output of each coupling structure. When the phases of the output ports of the power divider are inconsistent, the input reflection signal of the amplifier unit connected to the output port of the power divider will enter the other amplifier units, thereby affecting each other, making the input signals of each amplifier unit inconsistent, which will cause the amplifier unit Inconsistent working status will seriously affect the stability and linearity of the power synthesis amplifier. It can be seen from this that the previously proposed traveling-wave power combining amplifier structure generally works near the frequency point of the in-phase (or inverting) output of the power divider, and is only suitable for narrow-band work. Therefore, it is very necessary to develop a traveling-wave power divider/combiner structure that can realize broadband in-phase or inverting output to realize a broadband power combining amplifier.
发明内容Contents of the invention
本发明的目的在于克服现有技术中的缺点与不足,提供一种宽带工作波导行波功率合成放大器,该放大器利用宽带同相或反相输出波导行波功率分配/合成器,实现功率等幅同相输出,保证合成放大器的放大器单元的输入功率在宽频带内处于等幅同相状态。该宽带工作波导行波功率合成放大器能够实现在微波高端和毫米波波段的多路、宽带和高效率(低损耗)的功率合成。The purpose of the present invention is to overcome the shortcomings and deficiencies in the prior art, and provide a broadband working waveguide traveling wave power combining amplifier, which uses a broadband in-phase or anti-phase output waveguide traveling-wave power distributor/combiner to realize power equal amplitude and in-phase Output, to ensure that the input power of the amplifier unit of the synthetic amplifier is in a state of equal amplitude and phase in a wide frequency band. The broadband working waveguide traveling wave power combining amplifier can realize multi-channel, broadband and high-efficiency (low loss) power combining in microwave high-end and millimeter wave bands.
为了达到上述目的,本发明是通过下述技术方案予以实现:一种宽带工作波导行波功率合成放大器,其特征在于:包括两个宽带同相或反相输出波导行波功率分配/合成器和至少一个功率放大器模块,其中一个宽带同相或反相输出波导行波功率分配/合成器作为功率分配器,另一个宽带同相或反相输出波导行波功率分配/合成器作为功率合成器;所述宽带同相或反相输出波导行波功率分配/合成器包括输入波导、至少一级耦合结构、一个以上的输出波导,以及连接耦合结构与输出波导的匹配过渡结构;所述匹配过渡结构用以实现耦合结构和输出波导间的阻抗匹配,达到最大带宽的匹配输出;所述每级耦合结构垂直于输入波导的行波方向设置,除最末一级耦合结构之外,每级耦合结构处设有用于防止波导中电磁场传播时在每级耦合结构形成反射现象的匹配膜片,所述匹配膜片是指感性膜片,所述匹配膜片位于每级耦合结构和下一个耦合结构之间;所述输出波导垂直于输入波导的方向设置,所述每级耦合结构相连的输出波导的长度各不相同,第一级耦合结构对应的输出波导的长度最长,依次缩短;每一级输出波导的长度符合如下条件:任意一级输出波导的长度等于从该级开始到最末级耦合结构之间的输入波导长度与最末一级输出波导的长度之和,最终实现输出端口的输出信号幅度和相位一致,使得合成放大器中的放大器单元的输入信号在宽频带内处于等幅同相状态,从而实现宽带的波导行波功率合成。In order to achieve the above object, the present invention is achieved through the following technical solutions: a broadband working waveguide traveling wave power combining amplifier, characterized in that: it includes two broadband in-phase or anti-phase output waveguide traveling wave power splitter/combiner and at least A power amplifier module, wherein a broadband in-phase or anti-phase output waveguide traveling-wave power divider/combiner is used as a power divider, and another wide-band in-phase or anti-phase output waveguide traveling-wave power divider/combiner is used as a power combiner; the broadband The same-phase or anti-phase output waveguide traveling wave power splitter/combiner includes an input waveguide, at least one coupling structure, more than one output waveguide, and a matching transition structure connecting the coupling structure and the output waveguide; the matching transition structure is used to realize coupling The impedance matching between the structure and the output waveguide achieves the matching output of the maximum bandwidth; the coupling structure of each level is arranged perpendicular to the traveling wave direction of the input waveguide, except for the last level of coupling structure, each level of coupling structure is provided with a A matching diaphragm that prevents the formation of reflection phenomenon in each coupling structure when the electromagnetic field propagates in the waveguide, the matching diaphragm refers to an inductive diaphragm, and the matching diaphragm is located between each coupling structure and the next coupling structure; The output waveguide is arranged perpendicular to the direction of the input waveguide, and the lengths of the output waveguides connected to each stage of the coupling structure are different, and the length of the output waveguide corresponding to the first stage coupling structure is the longest, which is shortened successively; the length of each stage of the output waveguide The following conditions are met: the length of the output waveguide of any stage is equal to the sum of the length of the input waveguide from the beginning of the stage to the coupling structure of the last stage and the length of the output waveguide of the last stage, and finally realizes the output signal amplitude and phase of the output port Consistent, so that the input signal of the amplifier unit in the synthesizing amplifier is in the same amplitude and in phase state in the wide frequency band, so as to realize the wide band waveguide traveling wave power synthesizing.
所述功率放大器模块位于所述功率分配器和所述功率合成器之间,每个功率放大器的输入口分别连接功率分配器的一个输出波导,输出口连接功率合成器的一个输入波导;所述功率合成器与功率分配器呈旋转对接放置形式,将所述功率分配器的第一级耦合结构对应的输出波导对应功率合成器的最末级耦合结构对应的输入波导;The power amplifier module is located between the power divider and the power combiner, the input port of each power amplifier is respectively connected to an output waveguide of the power divider, and the output port is connected to an input waveguide of the power combiner; The power combiner and the power divider are placed in a rotational docking form, and the output waveguide corresponding to the first-stage coupling structure of the power divider corresponds to the input waveguide corresponding to the last-stage coupling structure of the power combiner;
所述功率分配器包括底层、中间层和顶层。The power divider includes a bottom layer, a middle layer and a top layer.
更具体地说,所述每级耦合结构设有至少一路的耦合单元,所述每级耦合结构的每路耦合单元处于输入波导的一侧或两侧宽边上距离该侧宽边中心线对称的位置。More specifically, each stage of the coupling structure is provided with at least one coupling unit, and each coupling unit of each stage of the coupling structure is located on one side or both sides of the input waveguide and is symmetrical to the center line of the side broadside. s position.
所述的耦合结构用于实现宽频带内信号等幅度输出,耦合结构是指下列类型的其中一种:微带探针型耦合结构、共面波导探针型耦合结构、同轴探针型耦合结构和脊波导探针型耦合结构。The coupling structure is used to realize equal-amplitude output of signals within a wide frequency band, and the coupling structure refers to one of the following types: microstrip probe-type coupling structure, coplanar waveguide probe-type coupling structure, coaxial probe-type coupling structure and a ridge waveguide probe type coupling structure.
所述的脊波导探针型耦合结构包括作为主体的脊波导和由脊波导上凸起的导体脊延长而形成的、用于插入到输入波导的探针结构,所述的脊波导探针为全波导结构,没有引入介质损耗,损耗低且易于加工。The ridge waveguide probe type coupling structure includes a ridge waveguide as the main body and a probe structure formed by extending the raised conductor ridge on the ridge waveguide for insertion into the input waveguide. The ridge waveguide probe is Full waveguide structure, no dielectric loss, low loss and easy processing.
所述的匹配过渡结构是指下列类型中的一种:单节四分之一阻抗变换器、多节四分之一阻抗变换器、切比雪夫阻抗变换器和渐变传输线。The matching transition structure refers to one of the following types: a single quarter impedance converter, a multi-section quarter impedance converter, a Chebyshev impedance converter and a tapered transmission line.
所述宽带工作波导行波功率合成放大器关于输入输出波导传播方向中心线的水平截面对称。The broadband working waveguide traveling wave power synthesizing amplifier is symmetrical with respect to the horizontal section of the centerline of the input and output waveguide propagation directions.
本发明提出的宽带工作波导行波功率合成放大器中的宽带同相或反相功率分配/合成器原理如下:当微波信号从输入波导进入后,在传播的过程中将一部分功率同时馈入第一级M路耦合单元,剩余功率继续沿波导传输,再馈入下一级M路耦合单元。当总共存在N级耦合结构,每级M路耦合单元时,则可引出M×N路信号。进入耦合单元的微波信号通过一个宽带匹配过渡结构传输到输出波导中,最后在输出端口输出。由于输出波导长度不一,微波信号在每级输出波导中传输所引起的相位滞后各不一样,越靠近输入的耦合结构对应的输出波导所引起的相位滞后越大,最终实现输出端口的输出信号相位一致,使得合成放大器中的放大器单元的输入信号在宽频带内处于等幅同相状态,从而实现宽带的波导行波功率合成。在该结构中,同时利用匹配膜片,使得波导中电磁场传播时在每级M路耦合单元处都无反射,从而实现行波传输。The principle of the broadband in-phase or anti-phase power distribution/combiner in the broadband working waveguide traveling wave power combining amplifier proposed by the present invention is as follows: when the microwave signal enters from the input waveguide, a part of the power is simultaneously fed into the first stage during the propagation process M-way coupling unit, the remaining power continues to be transmitted along the waveguide, and then fed into the next-stage M-way coupling unit. When there are N levels of coupling structures in total, and each level of M coupling units, M×N signals can be derived. The microwave signal entering the coupling unit is transmitted to the output waveguide through a broadband matching transition structure, and finally output at the output port. Due to the different lengths of the output waveguides, the phase lag caused by the microwave signal transmission in each output waveguide is different. The closer to the input coupling structure, the greater the phase lag caused by the output waveguide, and finally realize the output signal of the output port. The phase is consistent, so that the input signal of the amplifier unit in the synthesizing amplifier is in the state of equal amplitude and same phase in the wide frequency band, so as to realize the wide band waveguide traveling wave power combining. In this structure, the matching diaphragm is used at the same time, so that when the electromagnetic field in the waveguide propagates, there is no reflection at each level of M-way coupling units, thereby realizing traveling wave transmission.
本发明的宽带工作波导行波功率合成放大器是利用上述宽带同相或反相波导行波功率分配/合成器构成的宽带功率合成放大器。这种功率合成放大器包括一个功率分配器,至少一个功率放大器模块,一个功率合成器。所述功率分配器和功率合成器的结构形式都是宽带同相或反相输出波导行波功率分配器,功率合成器只是将功率分配器反过来应用而已。该功率合成器与功率分配器呈现一种旋转对接放置形式。也就是说功率分配器的第一级输出口将对应功率合成器的最末级输入口。功率放大器模块位于功率分配器和功率合成器之间,其输入口连接功率分配器的输出口,输出口连接功率合成器的输入口。功率放大器模块的形式并不固定,只需满足上述端口要求。功率放大器模块为波导端口,可以结合其它高性能的功率合成结构,例如可以在功率放大器模块中结合耦合器结构或者魔T结构等。The broadband working waveguide traveling wave power synthesizing amplifier of the present invention is a broadband power synthesizing amplifier composed of the broadband in-phase or anti-phase waveguide traveling wave power distributor/combiner. The power combining amplifier includes a power divider, at least one power amplifier module, and a power combiner. The structures of the power divider and the power combiner are broadband in-phase or reverse-phase output waveguide traveling-wave power dividers, and the power combiner is just the reverse application of the power divider. The power combiner and the power divider are placed in a rotating docking form. That is to say, the output port of the first stage of the power divider will correspond to the input port of the final stage of the power combiner. The power amplifier module is located between the power divider and the power combiner, its input port is connected to the output port of the power divider, and the output port is connected to the input port of the power combiner. The form of the power amplifier module is not fixed, it only needs to meet the above port requirements. The power amplifier module is a waveguide port, and can be combined with other high-performance power combining structures, for example, a coupler structure or a magic T structure can be combined in the power amplifier module.
与现有的技术相比,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明提供一种宽带工作波导行波功率合成放大器,通过合理设计耦合结构和输出波导的长度,可以保证功率分配/合成器输出功率在宽频带内等幅同相输出。当该功率分配/合成器应用于功率合成放大器技术中时,保证了功率合成放大器的放大器单元的输入信号在宽频带内处于等幅同相状态,从而实现宽带的波导行波功率合成。1. The present invention provides a broadband working waveguide traveling wave power synthesizing amplifier. By rationally designing the coupling structure and the length of the output waveguide, it can ensure that the output power of the power distribution/combiner is output in the same amplitude and in phase within a wide frequency band. When the power splitter/combiner is applied to the power synthesis amplifier technology, it ensures that the input signal of the amplifier unit of the power synthesis amplifier is in the state of equal amplitude and same phase in a wide frequency band, thereby realizing broadband waveguide traveling wave power synthesis.
2、本发明提供的宽带工作波导行波功率合成放大器,其功率分配/合成器通过适当延长输出波导的长度,可以保证功率分配/合成器输出功率在宽频带内同相位输出。2. In the broadband working waveguide traveling wave power combining amplifier provided by the present invention, the power distribution/combiner of the power distribution/combiner can ensure that the output power of the power distribution/combiner is output in the same phase within a wide frequency band by properly extending the length of the output waveguide.
3、本发明提供的宽带工作波导行波功率合成放大器,其功率分配/合成器通过合理设计耦合结构和耦合结构间的距离,实现功率分配器在宽频带内的等幅度输出。3. In the broadband working waveguide traveling wave power synthesizing amplifier provided by the present invention, the power splitter/combiner of the power splitter realizes equal-amplitude output of the power splitter in a wide frequency band by rationally designing the coupling structure and the distance between the coupling structures.
4、本发明提供的宽带工作波导行波功率合成放大器,利用空间功率合成技术,在输入波导的一侧或两侧宽边上距离该侧宽边中心线对称的位置耦合探针,在提高合成路数的同时保证损耗基本保持不变,能够实现高效率的功率合成。4. The broadband working waveguide traveling wave power synthesis amplifier provided by the present invention utilizes the space power synthesis technology to couple the probe at a position symmetrical to the centerline of the broadside on one side or both sides of the input waveguide to improve the synthesis efficiency. While ensuring the number of circuits, the loss remains basically unchanged, which can realize high-efficiency power combining.
5、本发明提供的宽带工作波导行波功率合成放大器,其功率分配/合成器和放大器模块的输入/输出端口形式为波导端口,这种结构形式非常容易结合其他高性能功率合成结构,如耦合器结构、魔T结构等。功率放大器模块可以单独制作,便于加工调试。5. In the broadband working waveguide traveling wave power combining amplifier provided by the present invention, the input/output ports of the power distribution/combining device and the amplifier module are in the form of waveguide ports. This structure is very easy to combine with other high-performance power combining structures, such as coupling device structure, magic T structure, etc. The power amplifier module can be made separately, which is convenient for processing and debugging.
6、本发明所提供的脊波导探针型耦合波导行波功率分配器是一种全波导结构,没有引入任何介质,因此没有介质损耗,只有很低的导体损耗。这种功率分配器可以实现非常高效率的功率合成。6. The ridge waveguide probe type coupling waveguide traveling wave power divider provided by the present invention is a full waveguide structure without introducing any medium, so there is no dielectric loss and only very low conductor loss. This power divider allows very efficient power combining.
7、本发明所提供的脊波导探针型耦合波导行波功率分配器是一种波导结构,各个部分都是在同一块金属中挖出各种腔体构成,这种结构易于机械加工和安装。7. The ridge waveguide probe type coupling waveguide traveling wave power divider provided by the present invention is a waveguide structure, and each part is formed by digging out various cavities in the same piece of metal. This structure is easy to machine and install .
附图说明Description of drawings
图1是脊波导探针型耦合的宽带工作波导行波功率分配器构成的合成放大器的透视图;Fig. 1 is the perspective view of the synthesizing amplifier formed by the broadband working waveguide traveling wave power divider of ridge waveguide probe type coupling;
图2是图1中A部分局部图;Fig. 2 is a partial diagram of part A in Fig. 1;
图3是图1中脊波导探针型耦合的宽带工作波导行波功率分配器11的底部;Fig. 3 is the bottom of the broadband working waveguide traveling wave power divider 11 of ridge waveguide probe type coupling in Fig. 1;
图4是图1中脊波导探针型耦合的宽带工作波导行波功率分配器11的底层111的加工结构图;Fig. 4 is the processing structure diagram of the bottom layer 111 of the broadband working waveguide traveling wave power divider 11 coupled by the ridge waveguide probe type coupling in Fig. 1;
图5是图1中脊波导探针型耦合的宽带工作波导行波功率分配器11的中间层112的加工结构图;Fig. 5 is the processing structure diagram of the intermediate layer 112 of the broadband working waveguide traveling wave power divider 11 coupled by the ridge waveguide probe type coupling in Fig. 1;
图6是图1中功率放大器模块12的结构图;Fig. 6 is a structural diagram of the power amplifier module 12 in Fig. 1;
图7是微带探针型耦合的宽带工作波导行波功率分配器结构图;Fig. 7 is a structural diagram of a broadband working waveguide traveling wave power splitter coupled with a microstrip probe type;
图8是同轴探针型耦合的宽带工作波导行波功率分配器结构图;Fig. 8 is a structural diagram of a broadband working waveguide traveling wave power splitter coupled with coaxial probe type;
图9是同轴探针型耦合同轴输出的宽带工作波导行波功率分配器结构图。Fig. 9 is a structural diagram of a coaxial probe type coupled coaxial output broadband working waveguide traveling wave power divider.
具体实施方式Detailed ways
下面结合附图及实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to the accompanying drawings and examples, but the embodiments of the present invention are not limited thereto.
实施例一Embodiment one
该实施例运用脊波导探针型耦合结构来说明本发明的基本思想。如图1脊波导探针型耦合的宽带同相或反相波导行波功率分配器构成的合成放大器的透视图所示,整体结构由功率分配器11,放大器模块12和功率合成器13构成。功率合成器13在结构形式上与功率分配器11是一致的,只是沿着垂直方向与功率分配器呈旋转对接形式放置。功率分配器11包括输入标准波导21,脊波导探针型耦合结构31-34,匹配膜片41-43,脊波导探针型耦合结构到输出波导的匹配过渡结构231-234,以及输出波导241-244等部分。功率从功率分配器11的输入波导21中输入,传播时按等比例依次馈入各级耦合结构34-31,通过输出波导244-241传输到功率放大器模块放大后,再通过功率合成器13的输入波导271-274输入到耦合结构101-104,依次馈入功率合成器13的输出波导28,这些微波功率在功率合成器13的输出口等幅同相输出,实现功率合成。该实施例中功率分配器和功率合成器的每一级耦合结构在标准输入波导21的一侧宽边上关于中心线对称的插入两路耦合单元,有四级耦合结构,一共8路波导输出。可以构造更多级数,每级更多耦合单元的结构。This embodiment uses a ridge waveguide probe type coupling structure to illustrate the basic idea of the present invention. As shown in the perspective view of the synthesizing amplifier composed of the ridge waveguide probe-type coupled broadband in-phase or anti-phase waveguide traveling-wave power divider in Figure 1, the overall structure is composed of a power divider 11, an amplifier module 12 and a power combiner 13. The power combiner 13 is consistent with the power divider 11 in terms of structure, except that it is placed in the form of rotating butt joint with the power divider along the vertical direction. The power splitter 11 includes an input standard waveguide 21, a ridge waveguide probe type coupling structure 31-34, a matching diaphragm 41-43, a matching transition structure 231-234 from the ridge waveguide probe type coupling structure to an output waveguide, and an output waveguide 241 -244 and other parts. The power is input from the input waveguide 21 of the power divider 11, and is fed into the coupling structures 34-31 at all levels sequentially in equal proportions during propagation, transmitted to the power amplifier module through the output waveguides 244-241 for amplification, and then passed through the power combiner 13. The input waveguides 271-274 are input to the coupling structures 101-104, and are sequentially fed into the output waveguide 28 of the power combiner 13. These microwave powers are output at the output port of the power combiner 13 with equal amplitude and same phase to realize power combination. In this embodiment, each stage of the coupling structure of the power divider and the power combiner inserts two-way coupling units symmetrically about the center line on one wide side of the standard input waveguide 21. There are four-stage coupling structures, and a total of 8 waveguide outputs . More stages and more coupling units per stage can be constructed.
整个结构关于通过输入输出波导传播方向中心线的水平截面对称。The entire structure is symmetrical about a horizontal section through the centerline of the input and output waveguide propagation directions.
图2是图1中A部分局部图,该图具体显示了脊波导探针型耦合结构34和脊波导探针型耦合结构到输出波导的匹配过渡结构234。这两个部分的性能对波导行波功率分配器的特性影响很大。图2中显示的是脊波导探针型耦合结构34,包括插入波导探针部分341,高阻抗段342和脊波导传输部分343。每一级耦合结构的插入波导探针部分长度不一,这与每级耦合结构所需要的耦合度有关,最末级31的探针部分最长。高阻抗段342为一小段阻抗较高的脊波导,通过切除其部分导体脊的方式实现,也可以考虑改变脊波导腔体尺寸实现。调节该高阻抗线的长度以及其阻抗,可以很大程度上改变探针引入的电抗。高阻抗线的引入有利于实现脊波导与输入波导的匹配,从而在宽频带内实现信号等幅度输出。FIG. 2 is a partial view of part A in FIG. 1 , which specifically shows the ridge waveguide probe type coupling structure 34 and the matching transition structure 234 from the ridge waveguide probe type coupling structure to the output waveguide. The performance of these two parts has a great influence on the characteristics of the waveguide traveling wave power divider. What is shown in FIG. 2 is a ridge waveguide probe type coupling structure 34 , including an insertion waveguide probe part 341 , a high impedance section 342 and a ridge waveguide transmission part 343 . The length of the waveguide probe part inserted into each coupling structure is different, which is related to the coupling degree required by each coupling structure, and the probe part of the last stage 31 is the longest. The high-impedance segment 342 is a small section of ridge waveguide with high impedance, which is realized by cutting off part of the conductor ridge, and can also be realized by changing the cavity size of the ridge waveguide. Adjusting the length of this high-impedance line, as well as its impedance, can greatly vary the reactance introduced by the probe. The introduction of the high-impedance line is beneficial to realize the matching between the ridge waveguide and the input waveguide, so as to realize the equal-amplitude output of the signal in a wide frequency band.
图3为脊波导探针型耦合的宽带同相或反相波导行波功率分配器11的底部,包括底层111和中间层112的一半。功率分配器的输出波导241-244的长度不一致,从241到244依次增长。任意级输出波导的长度等于从该级开始到最末级耦合结构之间的输入波导长度与最末一级输出波导的长度之和。例如,244的的长度等于从该级耦合结构34的中心位置开始到最末级耦合结构31的中心位置之间的输入波导长度加上最末级输出波导241的长度。通过适当延长输入波导的长度,可以保证输出波导等相位输出,使得功率合成放大器的放大器单元的输入信号在宽频带内处于等幅同相状态,从而实现宽带的波导行波功率合成。FIG. 3 shows the bottom of the broadband in-phase or anti-phase waveguide traveling-wave power divider 11 coupled with ridge waveguide probe type, including the bottom layer 111 and half of the middle layer 112 . The lengths of the output waveguides 241-244 of the power divider are inconsistent, and increase sequentially from 241 to 244. The length of the output waveguide of any stage is equal to the sum of the length of the input waveguide from the beginning of the stage to the coupling structure of the last stage and the length of the output waveguide of the last stage. For example, the length of 244 is equal to the length of the input waveguide from the center position of the coupling structure 34 of this stage to the center position of the coupling structure 31 of the last stage plus the length of the output waveguide 241 of the last stage. By properly extending the length of the input waveguide, the equal-phase output of the output waveguide can be guaranteed, so that the input signal of the amplifier unit of the power combining amplifier is in the same-amplitude and in-phase state in a wide frequency band, thereby realizing broadband waveguide traveling-wave power combining.
除最末级外,每一级脊波导探针的旁边有匹配膜片41-43,它们起到匹配作用,即在波导输入端看去是匹配的,膜片同时对功率分配起到作用。匹配膜片41-43的位置及高度根据探针引入的电纳和电导值来进行设计。一般情况下,越后级高度膜片高度越大,倒数第二级最大。最末级处不存在匹配膜片41-43,此时利用一个短路面来抵消探针引入的电纳值,实现匹配。Except for the final stage, there are matching diaphragms 41-43 next to the ridge waveguide probes of each stage, which play a matching role, that is, they are matched when viewed at the waveguide input end, and the diaphragms also play a role in power distribution. The positions and heights of the matching diaphragms 41-43 are designed according to the susceptance and conductance values introduced by the probes. In general, the diaphragm height of the rear stage is greater, and the penultimate stage is the largest. There is no matching diaphragm 41-43 at the final stage, and a short circuit surface is used to offset the susceptance introduced by the probe to achieve matching.
脊波导探针型耦合结构到输出波导的匹配过渡结构存在多种形式,该实施例中的匹配过渡结构234包括两个部分,即较高阻抗脊波导51和窄边减小的矩形波导52。其中52的中心导体脊部分比脊波导探针部分略大,其腔体尺寸宽边与标准波导一致,窄边略窄一些。窄边减小的矩形波导52是一个窄边尺寸减小的减高波导。There are many forms of matching transition structures from the ridge waveguide probe type coupling structure to the output waveguide. The matching transition structure 234 in this embodiment includes two parts, namely, a higher impedance ridge waveguide 51 and a rectangular waveguide 52 with reduced narrow sides. Among them, the ridge part of the central conductor of 52 is slightly larger than the probe part of the ridge waveguide, and the cavity size is consistent with the standard waveguide on the wide side, and slightly narrower on the narrow side. The rectangular waveguide 52 with reduced narrow sides is a reduced-height waveguide with reduced narrow sides.
图1中的功率分配器结构11可分为三部分进行加工,即底层111、中间层112以及顶层113。底层和顶层是一个镜像关系。图4显示了底层111的结构模型。图5显示了中间层112的结构模型。它们都是在一整块金属上挖出各种腔体而形成。The power divider structure 11 in FIG. 1 can be divided into three parts for processing, namely the bottom layer 111 , the middle layer 112 and the top layer 113 . The bottom layer and the top layer are a mirror image relationship. FIG. 4 shows a structural model of the bottom layer 111 . FIG. 5 shows a structural model of the middle layer 112 . They are all formed by digging various cavities out of a solid piece of metal.
功率放大器模块12可以采取多种形式,只需要满足所需的端口关系即可。本实施例中引入一种两路空间功率合成结构。图6给出了功率放大器模块12的具体结构图。放大模块的基本工作过程是通过一个波导51输入信号功率,然后通过平面探针61耦合到微带中,再连接放大器71,最后放大器输出的功率通过微带探针耦合到输出波导中。放大模块中的微带探针61和放大器单元71均是底层和顶层同时存在的,这实际上是一种两路空间功率合成结构。图6中输入波导及输出波导有一个90度的拐弯,图中利用了切角结构52来实现匹配。图6中所有的放大器芯片均是焊接到底层或底层金属腔体上,这可以实现很好的散热。顶层和底层表面可设计为片状散热结构,进行发黑处理,进一步改善散热,还可进一步使用风扇进行强制散热。The power amplifier module 12 can take various forms, as long as the required port relationship is satisfied. In this embodiment, a two-way spatial power combining structure is introduced. FIG. 6 shows a specific structural diagram of the power amplifier module 12 . The basic working process of the amplification module is to input signal power through a waveguide 51, then couple it into the microstrip through the planar probe 61, and then connect the amplifier 71, and finally the output power of the amplifier is coupled into the output waveguide through the microstrip probe. The microstrip probe 61 and the amplifier unit 71 in the amplifying module both exist on the bottom layer and the top layer, which is actually a two-way spatial power combining structure. In FIG. 6, the input waveguide and the output waveguide have a 90-degree bend, and the angle-cutting structure 52 is used in the figure to realize matching. All the amplifier chips in Figure 6 are welded to the bottom layer or the bottom metal cavity, which can achieve good heat dissipation. The top and bottom surfaces can be designed as sheet-like heat dissipation structures, which can be blackened to further improve heat dissipation, and fans can also be used for forced heat dissipation.
实施例二Embodiment two
如图7所示,该图示意了一个微带探针型耦合同相输出功率分配器结构。本实施例与实施例一不同之处仅在于,该实施例运用微带探针型耦合结构来说明本发明的基本思想。该结构与脊波导探针型耦合波导行波功率分配器的主要差别是耦合结构的形式换为了微带探针,相对应的,引入了微带到输出波导的匹配过渡结构。该结构仍然通过延长输出波导来调节功率分配器的输出相位一致。微带探针的设计原理与脊波导探针结构的设计基本一致。微带到输出波导的匹配过渡结构采用的是探针过渡形式,通过在波导252宽边上插入微带探针251,在离探针一定距离处设置短路面实现微带到波导252的过渡,波导252通过90度拐弯形成输出波导,拐弯处存在匹配切角253。其它结构同实施例一一致。As shown in Figure 7, the figure schematically shows a microstrip probe-type coupled in-phase output power divider structure. The only difference between this embodiment and the first embodiment is that this embodiment uses a microstrip probe type coupling structure to illustrate the basic idea of the present invention. The main difference between this structure and the ridge waveguide probe type coupling waveguide traveling wave power divider is that the form of the coupling structure is changed to a microstrip probe, correspondingly, a matching transition structure from the microstrip to the output waveguide is introduced. This structure still adjusts the output phase of the power splitter to be consistent by extending the output waveguide. The design principle of the microstrip probe is basically the same as that of the ridge waveguide probe structure. The matching transition structure from the microstrip to the output waveguide adopts the probe transition form. By inserting the microstrip probe 251 on the wide side of the waveguide 252, a short-circuit surface is set at a certain distance from the probe to realize the transition from the microstrip to the waveguide 252. The waveguide 252 forms an output waveguide through a 90-degree turn, and there is a matching chamfer 253 at the turn. Other structures are consistent with Embodiment 1.
实施例三Embodiment three
如图8所示,该图示意了一个同轴探针型耦合同相输出功率分配器结构。本实施例与实施例一不同之处仅在于,该功分器的耦合结构形式换为了同轴探针,相对应的,引入了同轴到输出波导的匹配过渡结构。该结构仍然通过延长输出波导来调节功率分配器的输出相位一致。同轴探针的设计原理与脊波导探针结构的设计基本一致。同轴到输出波导的匹配过渡结构采用的是探针过渡形式,通过在波导262宽边上插入同轴探针261,在离探针一定距离处设置短路面实现同轴到波导262的过渡,波导262通过90度拐弯形成输出波导,拐弯处存在匹配切角263。其它结构同实施例一一致。As shown in Fig. 8, the figure schematically shows a structure of a coaxial probe type coupled in-phase output power divider. The only difference between this embodiment and the first embodiment is that the coupling structure of the power divider is changed to a coaxial probe, and correspondingly, a matching transition structure from the coaxial to the output waveguide is introduced. This structure still adjusts the output phase of the power splitter to be consistent by extending the output waveguide. The design principle of the coaxial probe is basically the same as that of the ridge waveguide probe structure. The matching transition structure from the coaxial to the output waveguide adopts the probe transition form. By inserting the coaxial probe 261 on the wide side of the waveguide 262, a short-circuit surface is set at a certain distance from the probe to realize the transition from the coaxial to the waveguide 262. The waveguide 262 forms an output waveguide through a 90-degree turn, and there is a matching chamfer 263 at the turn. Other structures are consistent with Embodiment 1.
实施例四Embodiment four
如图9所示,该图示意了一个同轴探针型耦合同轴输出功率分配器结构。本实施例与实施例一不同之处仅在于,该功率分配器的耦合结构形式换为同轴探针,同时输出端口也为同轴形式。该结构通过延长输出同轴线来调节功率分配器的输出相位一致。其它结构同实施例一一致。As shown in FIG. 9 , the figure schematically shows the structure of a coaxial probe type coupled coaxial output power divider. The only difference between this embodiment and the first embodiment is that the coupling structure of the power divider is changed to a coaxial probe, and the output port is also in a coaxial form. This structure adjusts the output phase of the power divider to be consistent by extending the output coaxial line. Other structures are consistent with Embodiment 1.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110355484.8A CN102509838B (en) | 2011-11-10 | 2011-11-10 | Broadband Operating Waveguide Traveling Wave Power Combining Amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110355484.8A CN102509838B (en) | 2011-11-10 | 2011-11-10 | Broadband Operating Waveguide Traveling Wave Power Combining Amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102509838A CN102509838A (en) | 2012-06-20 |
CN102509838B true CN102509838B (en) | 2014-10-08 |
Family
ID=46221903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110355484.8A Expired - Fee Related CN102509838B (en) | 2011-11-10 | 2011-11-10 | Broadband Operating Waveguide Traveling Wave Power Combining Amplifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102509838B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102760930B (en) * | 2012-07-18 | 2015-01-07 | 深圳市通创通信有限公司 | Millimeter wave power synthesis amplifier |
CN103779634B (en) * | 2013-11-27 | 2016-06-29 | 中国电子科技集团公司第四十一研究所 | A kind of gradual change ridge is utilized to regulate the method for electromagnetic wave phase place in waveguide |
JP6835262B2 (en) * | 2018-01-22 | 2021-02-24 | 三菱電機株式会社 | amplifier |
CN110247190B (en) * | 2019-06-12 | 2020-09-18 | 电子科技大学 | A Ku-band waveguide filter antenna |
CN111129683A (en) * | 2019-11-25 | 2020-05-08 | 北京遥测技术研究所 | Millimeter wave high-isolation chain type power synthesis network and synthesis method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1388651A (en) * | 2001-05-30 | 2003-01-01 | 华为技术有限公司 | Radio power synthesizer |
US6919776B1 (en) * | 2002-04-23 | 2005-07-19 | Calabazas Creek Research, Inc. | Traveling wave device for combining or splitting symmetric and asymmetric waves |
CN101667675A (en) * | 2008-09-03 | 2010-03-10 | 中国科学院微电子研究所 | Waveguide structure suitable for millimeter wave power synthesis and distribution |
CN201556693U (en) * | 2009-10-28 | 2010-08-18 | 华南理工大学 | Symmetrical coupling waveguide traveling wave power synthesis amplifier |
CN202363569U (en) * | 2011-11-10 | 2012-08-01 | 华南理工大学 | Broadband waveguide traveling wave power synthesis amplifier |
-
2011
- 2011-11-10 CN CN201110355484.8A patent/CN102509838B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1388651A (en) * | 2001-05-30 | 2003-01-01 | 华为技术有限公司 | Radio power synthesizer |
US6919776B1 (en) * | 2002-04-23 | 2005-07-19 | Calabazas Creek Research, Inc. | Traveling wave device for combining or splitting symmetric and asymmetric waves |
CN101667675A (en) * | 2008-09-03 | 2010-03-10 | 中国科学院微电子研究所 | Waveguide structure suitable for millimeter wave power synthesis and distribution |
CN201556693U (en) * | 2009-10-28 | 2010-08-18 | 华南理工大学 | Symmetrical coupling waveguide traveling wave power synthesis amplifier |
CN202363569U (en) * | 2011-11-10 | 2012-08-01 | 华南理工大学 | Broadband waveguide traveling wave power synthesis amplifier |
Also Published As
Publication number | Publication date |
---|---|
CN102509838A (en) | 2012-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104393384B (en) | High-isolation miniaturized radial power divider/synthesizer | |
CN202363569U (en) | Broadband waveguide traveling wave power synthesis amplifier | |
CN107732400B (en) | A Millimeter Wave Broadband Ridge Probe Radial Waveguide Power Splitter/Combiner | |
CN106992348B (en) | A Broadband Radial Waveguide Power Distribution/Combiner with Cycloid-like Transition Structure | |
CN102623781B (en) | Waveguide-micro-strip integrated power distributor-synthesizer | |
CN107134626B (en) | A mmWave spatial power distribution/combiner | |
CN102509840B (en) | Broadband air microstrip high-isolation radial power synthesis amplifier | |
CN102509838B (en) | Broadband Operating Waveguide Traveling Wave Power Combining Amplifier | |
CN114335957B (en) | Power combining/distributing device | |
CN101699652B (en) | Symmetrically Coupled Waveguide Traveling Wave Power Combining Amplifier | |
CN101728620B (en) | Asymmetric coplanar waveguide directional coupler | |
CN204375898U (en) | A Miniaturized Radial Power Divider/Combiner with High Isolation | |
CN218770033U (en) | Radial power combiner, distributor and complete machine based on E surface | |
CN103956552A (en) | Microwave power distributor | |
CN102386471A (en) | Double-layer multi-channel power synthesis amplifier based on rectangular waveguide | |
CN206602171U (en) | A kind of Wideband bilayer zone line 3dB electric bridges | |
CN116014402A (en) | Radial power synthesizer based on E face | |
CN107394330B (en) | A solid-state circuit-waveguide power combining device | |
CN201556693U (en) | Symmetrical coupling waveguide traveling wave power synthesis amplifier | |
CN114256580A (en) | A Power Distribution/Combiner Based on Novel T-waveguide | |
CN117613532A (en) | Broadband ridge waveguide balun for room distribution systems | |
CN202275911U (en) | Ka-band power combiner based on substrate integrated waveguide (SIW) | |
CN216850278U (en) | Three-path power synthesis device | |
CN206834314U (en) | A Ka-band coaxial waveguide inner space power distribution/combiner | |
CN115548615A (en) | Balun-based artificial surface plasmon on-chip dual-mode transmission line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141008 Termination date: 20151110 |
|
EXPY | Termination of patent right or utility model |