CN102505084B - 添加TaC的高强度铝合金及其制备方法 - Google Patents

添加TaC的高强度铝合金及其制备方法 Download PDF

Info

Publication number
CN102505084B
CN102505084B CN 201110438962 CN201110438962A CN102505084B CN 102505084 B CN102505084 B CN 102505084B CN 201110438962 CN201110438962 CN 201110438962 CN 201110438962 A CN201110438962 A CN 201110438962A CN 102505084 B CN102505084 B CN 102505084B
Authority
CN
China
Prior art keywords
less
equal
alloy melt
aluminium alloy
tac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110438962
Other languages
English (en)
Other versions
CN102505084A (zh
Inventor
车云
门三泉
张中可
陈凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Aluminum Materials Engineering Technology Research Center Co., Ltd.
Original Assignee
Guizhou Huake Aluminium Material Engineering Technology Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Huake Aluminium Material Engineering Technology Research Co Ltd filed Critical Guizhou Huake Aluminium Material Engineering Technology Research Co Ltd
Priority to CN 201110438962 priority Critical patent/CN102505084B/zh
Publication of CN102505084A publication Critical patent/CN102505084A/zh
Application granted granted Critical
Publication of CN102505084B publication Critical patent/CN102505084B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种添加TaC的高强度铝合金及其制备方法,在变形铝合金中以粉末状加入0.8~1.8%的Ta,0.8~1.8%的C元素,以流态化形式随保护性气体加入铝合金熔体过程中,具有比一般块状物质大得多的比表面积,能够实现快速的分散并与熔体充分接触,显著缩短了分散和均匀的时间。同时采用本发明的高强度铝合金在铸造过程中,可以在合金凝固过程中有效增加异质形核核心,从而达到晶粒细化的效果,增强合金强度;并且加入的元素可以促进形成间隙原子和间隙相,高温时在α(Al)固溶体中溶解度大,而在室温时很小,从而使合金具有较高的可热处理性质,热处理后,其强度和硬度都有很大程度的提高。

Description

添加TaC的高强度铝合金及其制备方法
技术领域
本发明涉及一种高强度铝合金,还涉及其制备方法。
背景技术
熔铸性能是铝合金深加工性能的基础。大型锭坯是大型高效深加工的代表性基材,而能否预制成大型锭坯,也是考验铝合金材料本身是否适合进行深加工的第一道技术关口。
由于合金成分或化合物中密度大的成分会沉淀于铸件下部,密度小的成分上浮于上部。例如为了细化晶粒而添加Ti这种难熔金属与Al形成高熔点的片状化合物Al3Ti会较早的从合金液中结晶出来,当长成较大时就容易下沉产生局部规程的密度偏析,偏析较严重时可在铸件断口上看到表面平整的白亮灰的化合物,过共晶的Al-Si铝合金中粗大的初生硅由于密度较小也容易形成偏析。
合金液在浇注前由于搅拌不均匀而引起共晶偏析,在共晶硅集中处,硬度高脆性大,加工刀具磨损大;共晶硅少的部位形成α(Al)固溶体软点,强度低,加工时不仅粘刀,恶化加工性能,在切削力的作用下会使α(Al)固溶体变形导致加工面出现白斑。当ZL108(ZAlSi12Cu2Mg1)铝合金中含镁量小于0.6%(质量分数)时,加工表面也容易出现白斑。
再有Al-Si-Cu铝合金中Cu元素的偏析引起局部区域出现粗大的Al2Cu相并沿晶呈网状分布,就算采用热处理不能将其完全溶解于α(Al)固溶体而保留于晶间,从而使得该种合金脆性增加。
同时,在采用这种铝合金进行铸造时,铸造完成的铸件中常出现各种夹杂,主要有氧化物夹杂、造型材料和熔剂夹渣等。其中,以铝氧化物夹杂最为普遍。尤其在含Mg的铝合金中,多数夹杂为氧化铝和氧化镁的混合物,所以在铝合金熔炼过程中,氧化物夹杂的含量是反映铝液冶金质量的重要标质之一。
由此可见:目前的铝合金材料除了熔铸大型锭坯时的成形性能较差外,大型锭坯在热处理过程的淬透性不高、耐回火性较差和不能满足更高的力学性能要求或某些特殊性能(如耐热、耐蚀)等,也是重大缺陷。这些缺陷使其在工程技术领域替代钢制品等重强材料和结构的进程中形成了难以跨越的技术断点。
发明内容
为了克服现有技术的不足,本发明提供一种添加TaC的高强度铝合金,能够克服现有铝合金性能的不足,提高其强韧性、成形性和淬透性,为高效深加工提供高端基材。
一种添加TaC的高强度铝合金,其特征在于以质量百分比计,包括0.2~0.6%的Si,小于等于0.35%的Fe,小于等于0.1%的Cu,小于等于0.1%的Mn,小于等于0.1%的Cr,0.45~0.9%的Mg,小于等于0.1%的Zn,小于等于0.1%的Ti,0.8~1.8%的Ta,0.8~1.8%的C,余量为Al和不可避免的杂质;所述单一杂质的含量不超过总质量百分比的0.05%;杂质总含量不超过总质量百分比的0.15%。
一种制备权利要求1所述添加TaC的高强度铝合金的方法,其特征在于步骤如下:
步骤1:将铝锭加入熔炼炉中加热使之完全熔化,然后按配方加入总产品质量百分比0.2~0.6%的Si,小于等于0.35%的Fe,小于等于0.1%的Cu,小于等于0.1%的Mn,小于等于0.1%的Cr,0.45~0.9%的Mg,小于等于0.1%的Zn和小于等于0.1%的Ti,完全溶解和熔化;所述熔化过程在封闭环境内完成;
步骤2:在700~1000℃下保温,得到合金熔体;
步骤3:采用混合气体对铝合金熔体进行除气净化作业,并将占总产品质量百分比0.85~1.92%的TaC粉末以流态化方式随上述气体加入到铝合金熔体中进行混合,使TaC在铝合金熔体中分布均匀,并持续通气直至反应完毕;所述混合气体为:氮气或惰性气体或氮气与惰性气体按照任意比例混合得到;
步骤4:反应结束后调温至680~730℃,得到熔炼完成的铝合金熔体。
步骤1中的铝锭以熔融铝液替换。
一种将所述的添加TaC的高强度铝合金进行铸造的方法,其特征在于:将权利要求2所熔炼的铝合金熔体沿流槽倾倒出炉,至立式水冷铸造机系统,铸造加工用锭坯,特别是铸造厚度500mm以上的大型扁锭和直径500mm以上的圆棒。
一种将所述的添加TaC的高强度铝合金进行铸造的方法,其特征在于:将权利要求2所熔炼的铝合金熔体转注入铸件的铸模中,使用金属型、砂型或混合型铸方式,采用重力铸造、压力铸造或差压铸造工艺,铸造铝合金铸件,特别是铸造大型、薄壁或复杂结构的铝合金铸件。
本发明提供的添加TaC的高强度铝合金,在变形铝合金中以粉末状加入0.85~1.92%的TaC,以流态化形式随保护性气体加入铝合金熔体过程中,具有比一般块状物质大得多的比表面积,能够实现快速的分散并与熔体充分接触,显著缩短了分散和均匀的时间。同时采用本发明的高强度铝合金在铸造过程中,可以在合金凝固过程中有效增加异质形核核心,从而达到晶粒细化的效果,增强合金强度;并且加入的元素可以促进形成间隙原子和间隙相,高温时在α(Al)固溶体中溶解度大,而在室温时很小,从而使合金具有较高的可热处理性质,热处理后,其强度和硬度都有很大程度的提高。
具体分析如下:
在本合金未经加入上述元素之前,熔体中除形成各种元素的共溶体之外,还含有下列一些金属间形成的化合物相:
Mg2Si相、N相(Al7Cu2Fe)、α相(Al12Fe3Si)、S相(Al2CuMg);
这些金属化合物在熔体冷却时,由于体系最低自由能原理,在形成的晶粒中不能稳定存在,将在晶格畸变能差的驱动下向晶界移动和集中,同时,由于合金元素在铝基体中的饱和溶解度随着温度下降而显著降低,所以随着熔体的冷却,过饱和的熔体不断地析出富含合金元素的金属间化合物,这些化合物在晶间富集,彼此间不易融合,在微观结构中成为粗大的晶间化合物群,对合金产生脆硬化影响,恶化合金铸造成形性能,降低其均匀性、韧性、耐蚀性和淬透性能。所以,当合金凝固成为过饱和固溶体基体+晶间金属化合物的基本结构时,通常称为纯铸态组织,具有这种组织的合金必须经过“固溶+时效”的热处理之后才能具有满足需要的力学性能和其它技术指标。
虽然,经过配方优化处理和提高合金性能的热处理能够得到改善,但是合金本身仍然还是存在很多缺陷:强度不够高,不能铸造大规格型锭等。
本发明通过比较选择,开发了过渡族元素的碳化物处理熔体的方式,通过加入0.8~1.8%的Ta,0.8~1.8%的C元素,分解后的碳化物产生的原子态M金属,没有了单质状态下金属原子间以d/f/s电子紧密结合产生的强大金属键能和同类原子间紧密堆积产生的晶格能形成的势垒,以“裸态”与周围大量的基体原子融合,形成共溶体和金属化合物,并成为结晶时的领先相和细晶化相,同时也是高温强化相。因此,碳化物以流态化加入熔体中产生高温下的分解和形成的弥散状态,解决了高熔点金属在铝液中溶解难、均匀分布难的问题,实现了晶格畸变能的微观均匀化分布和晶粒的细化。
由于C与Al反应生成的Al4C3是一种复杂结构的离子晶体,熔点达2100℃;在实际结构中金属原子可以是4、5、6配位,Al-C键长在
Figure BDA0000123838190000041
之间,最短的C-C键为
Figure BDA0000123838190000042
;X射线研究则显示结构中有单个碳原子以离散的碳负离子C4-形式存在;碳化铝颗粒能降低材料蠕变的趋势,提高基体材料硬度;具有强烈吸H作用,可以有效除去熔体中的存在的原子H。
另外加入到熔体中的碳化物分解的程度,随着碳化物本身的稳定性和熔体温度的不同而变化,即反应具有一定的可逆性,是一种动态的平衡。大多数过渡元素在铝熔体中的饱和溶解度较小,而且,除铬、钛、钒、锆的最大固溶度发生在包晶温度外,其他元素的最大固溶度均发生在共晶温度;在室温下的溶解度,均小于0.1%wt。
同时在熔炼过程中充入的氮气,有利于铝在800~1000℃的氮气氛中合成AlN。由于N与Al反应生成的AlN是原子晶体,属类金刚石氮化物,最高可稳定到2200℃;室温强度高,且强度随温度的升高下降较慢,能够有效提高合金的高温强度和抗腐蚀能力;导热性好,热膨胀系数小,可提高基体材料耐热冲击性能。因此,当N2充入高温铝合金熔体时,本身就具有了与多种金属金发生反应的活性。所以适当调节熔体净化作业时的温度和保护性氮气的浓度,可调节熔体中AlN的含量,这进一步为调节熔体中过渡金属元素的含量提供了方法。
可见:由于在本发明中使用流态化碳化物处理的手段,把强化基体和细化晶粒的多种效果集成在一起,取代中间合金,使铝合金制造企业不再受制于中间合金生产商,有利于创建“近成型、短流程、集约化”的绿色生产线,节能降耗,降低综合成本;同时,在热处理过程中,由于形成了优异的材料微观结构,锭坯的残余应力较小,因此可以显著提高热处理效能,提高锭坯的淬透性,在与同类合金比较时,能够以“铸造+热处理方式”生产更厚的坯料(厚度500mm以上的板材和直径500mm以上的棒材),在系列规格(厚度15~200mm)的中厚板制造技术上实现“以铸代轧”。
总而言之,本发明的有益效果是:
在铝熔体中造成了多种晶粒细化元素、质点,对防止基体和强化相的粗大化有良好效果。在冷却后的铝基体中造成了稳定性极高的间隙原子和间隙相,成为新的高效强化相,使材料的强度和硬度得到提高。
下面结合实施例对本发明进一步说明。
具体实施方式
实施例1:
一种添加TaC的高强度铝合金,以质量百分比计,包括0.2%的Si,0.35%的Fe,0.1%的Cu,0.1%的Mn,0.1%的Cr,0.45%的Mg,0.1%的Zn,0.1%的Ti,0.8%的Ta,0.8%的C,余量为Al和不可避免的杂质,每种杂质的含量不超过总质量百分比的0.05%,所有杂质的含量不超过总质量百分比的0.15%。
本发明还提供所述高强度铝合金的制备方法,以复合处理方式加入TaC,包括以下步骤:
步骤一:按照所述高强度铝合金的组分备料,包括占总产品质量百分比0.2~0.6%的Si,小于等于0.35%的Fe,小于等于0.1%的Cu,小于等于0.1%的Mn,小于等于0.1%的Cr,0.45~0.9%的Mg,小于等于0.1%的Zn,小于等于0.1%的Ti;
步骤二:先往熔炼炉中加入铝锭或熔融铝液,加热使之完全熔化,按配方比例先加入步骤一的备料,使之完全溶解和熔化,精炼后在700~1000℃下保温,得到合金熔体;熔化过程在封闭环境内完成;
步骤三:使用氮气或惰性气体或氮气与惰性气体任意比例的混合气体对合金熔体进行除气净化作业,并持续通气直至反应完毕;同时将占总产品质量百分比0.8%的TaC粉末以流态化方式随上述气体加入到合金熔体中;进行搅拌,使TaC在合金熔体中分布均匀,并与合金熔体充分反应;静置、调温至680~730℃,得到熔炼完成的铝合金熔体。
实施例2:
一种添加TaC的高强度铝合金,以质量百分比计,包括0.4%的Si,0.3%的Fe,0.08%的Cu,0.08%的Mn,0.06%的Cr,0.7%的Mg,0.07%的Zn,0.05%的Ti,1.3%的Ta,1.3%的C,余量为Al和不可避免的杂质,每种杂质的含量不超过总质量百分比的0.05%,所有杂质的含量不超过总质量百分比的0.15%。
本发明还提供所述高强度铝合金的制备方法,以复合处理方式加入TaC,包括以下步骤:
步骤一:按照所述高强度铝合金的组分备料,包括占总产品质量百分比0.4%的Si,0.3%的Fe,0.08%的Cu,0.08%的Mn,0.06%的Cr,0.7%的Mg,0.07%的Zn,0.05%的Ti;
步骤二:先往熔炼炉中加入铝锭或熔融铝液,加热使之完全熔化,按配方比例先加入步骤一的备料,使之完全溶解和熔化,精炼后在700~1000℃下保温,得到合金熔体;熔化过程在封闭环境内完成;
步骤三:使用氮气或惰性气体或氮气与惰性气体任意比例的混合气体对合金熔体进行除气净化作业,并持续通气直至反应完毕;同时将占总产品质量百分比1.3%的TaC粉末以流态化方式随上述气体加入到合金熔体中;进行搅拌,使TaC在合金熔体中分布均匀,并与合金熔体充分反应;静置、调温至680~730℃,得到熔炼完成的铝合金熔体。
实施例3:
一种添加TaC的高强度铝合金,以质量百分比计,包括0.6%的Si,0.25%的Fe,0.06%的Cu,0.09%的Mn,0.03%的Cr,0.9%的Mg,0.09%的Zn,0.05%的Ti,1.8%的Ta,1.8%的C,余量为Al和不可避免的杂质,每种杂质的含量不超过总质量百分比的0.05%,所有杂质的含量不超过总质量百分比的0.15%。
本发明还提供所述高强度铝合金的制备方法,以复合处理方式加入TaC,包括以下步骤:
步骤一:按照所述高强度铝合金的组分备料,包括占总产品质量百分比0.6%的Si,0.25%的Fe,0.06%的Cu,0.09%的Mn,0.03%的Cr,0.9%的Mg,0.09%的Zn,0.05%的Ti;
步骤二:先往熔炼炉中加入铝锭或熔融铝液,加热使之完全熔化,按配方比例先加入步骤一的备料,使之完全溶解和熔化,精炼后在700~1000℃下保温,得到合金熔体;熔化过程在封闭环境内完成;
步骤三:使用氮气或惰性气体或氮气与惰性气体任意比例的混合气体对合金熔体进行除气净化作业,并持续通气直至反应完毕;同时将占总产品质量百分比1.8%的TaC粉末以流态化方式随上述气体加入到合金熔体中;进行搅拌,使TaC在合金熔体中分布均匀,并与合金熔体充分反应;静置、调温至680~730℃,得到熔炼完成的铝合金熔体。
采用本发明方法熔炼的高强度铝合金液出炉后,沿以下两种流程分别进行不同制品的铸造生产。
流程一:沿流槽倾倒出炉,至立式水冷铸造机系统,铸造加工用锭坯,特别是铸造厚度500mm以上的大型扁锭和直径500mm以上的圆棒。
流程二:转注入铸件的铸模中,使用金属型、砂型或混合型铸方式,采用重力铸造、压力铸造或差压铸造工艺,铸造铝合金铸件,特别是铸造大型、薄壁或复杂结构的铝合金铸件。

Claims (5)

1.一种添加TaC的高强度铝合金,其特征在于以质量百分比计,包括0.2~0.6%的Si,小于等于0.35%的Fe,小于等于0.1%的Cu,小于等于0.1%的Mn,小于等于0.1%的Cr,0.45~0.9%的Mg,小于等于0.1%的Zn,小于等于0.1%的Ti,0.8~1.8%的Ta,0.8~1.8%的C,余量为Al和不可避免的杂质;单一杂质的含量不超过总质量百分比的0.05%;杂质总含量不超过总质量百分比的0.15%;所述添加TaC的高强度铝合金的制备方法为,步骤如下: 
步骤1:将铝锭加入熔炼炉中加热使之完全熔化,然后按配方加入总产品质量百分比0.2~0.6%的Si,小于等于0.35%的Fe,小于等于0.1%的Cu,小于等于0.1%的Mn,小于等于0.1%的Cr,0.45~0.9%的Mg,小于等于0.1%的Zn和小于等于0.1%的Ti,完全熔解和熔化;所述熔化过程在封闭环境内完成; 
步骤2:在700~1000℃下保温,得到合金熔体; 
步骤3:采用混合气体对铝合金熔体进行除气净化作业,并将占总产品质量百分比0.85~1.92%的TaC粉末以流态化方式随上述气体加入到铝合金熔体中进行混合,使TaC在铝合金熔体中分布均匀,并持续通气直至反应完毕;所述混合气体为:氮气与惰性气体按照任意比例混合得到; 
步骤4:反应结束后调温至680~730℃,得到熔炼完成的铝合金熔体。 
2.一种制备权利要求1所述添加TaC的高强度铝合金的方法,其特征在于步骤如下: 
步骤1:将铝锭加入熔炼炉中加热使之完全熔化,然后按配方加入总产品质量百分比0.2~0.6%的Si,小于等于0.35%的Fe,小于等于0.1%的Cu,小于等于0.1%的Mn,小于等于0.1%的Cr,0.45~0.9%的Mg,小于等于0.1%的Zn和小于等于0.1%的Ti,完全熔解和熔化;所述熔化过程在封闭环境内完成; 
步骤2:在700~1000℃下保温,得到合金熔体; 
步骤3:采用混合气体对铝合金熔体进行除气净化作业,并将占总产品质量百分比0.85~1.92%的TaC粉末以流态化方式随上述气体加入到铝合金熔体中进行混合,使TaC在铝合金熔体中分布均匀,并持续通气直至反应完毕;所述混合气体为:氮气与惰性气体按照任意比例混合得到; 
步骤4:反应结束后调温至680~730℃,得到熔炼完成的铝合金熔体。 
3.根据权利要求2所述的方法,其特征在于:步骤1中的铝锭以熔融铝液替换。 
4.一种将权利要求2所述的熔炼完成的铝合金熔体进行铸造的方法,其特征在于:将权利要求2所熔炼的铝合金熔体沿流槽倾倒出炉,至立式水冷铸造机系统,铸造加工用锭坯。 
5.一种将权利要求2所述的熔炼完成的铝合金熔体进行铸造的方法,其特征在于:将权利要求2所熔炼的铝合金熔体转注入铸件的铸模中,使用金属型、砂型或混合型铸方式,采用重力铸造、压力铸造或差压铸造工艺,铸造铝合金铸件。 
CN 201110438962 2011-12-15 2011-12-22 添加TaC的高强度铝合金及其制备方法 Expired - Fee Related CN102505084B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110438962 CN102505084B (zh) 2011-12-15 2011-12-22 添加TaC的高强度铝合金及其制备方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110421146 2011-12-15
CN201110421146.X 2011-12-15
CN 201110438962 CN102505084B (zh) 2011-12-15 2011-12-22 添加TaC的高强度铝合金及其制备方法

Publications (2)

Publication Number Publication Date
CN102505084A CN102505084A (zh) 2012-06-20
CN102505084B true CN102505084B (zh) 2013-06-26

Family

ID=46217213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110438962 Expired - Fee Related CN102505084B (zh) 2011-12-15 2011-12-22 添加TaC的高强度铝合金及其制备方法

Country Status (1)

Country Link
CN (1) CN102505084B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107739931B (zh) * 2017-08-29 2019-09-27 宁波华源精特金属制品有限公司 一种抗拉增强型机器人手臂及其制备方法
CN114855035B (zh) * 2022-05-26 2023-05-19 扬州工业职业技术学院 耐热高强度汽车轮毂铝合金材料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984111A (zh) * 2010-12-06 2011-03-09 天津锐新电子热传技术股份有限公司 汽车保险杠次受力构件的铝合金型材及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100200A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp 軸受用アルミニウム合金

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984111A (zh) * 2010-12-06 2011-03-09 天津锐新电子热传技术股份有限公司 汽车保险杠次受力构件的铝合金型材及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2007-100200A 2007.04.19

Also Published As

Publication number Publication date
CN102505084A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
CN102424924B (zh) 添加WN2和LiBH4粉末的高强度铝合金及其制备方法
CN102433475B (zh) 一种高强高硬铝合金及其制备方法
CN103060642A (zh) 碳氮化物复合处理的高强度铝合金及其制备方法
CN102443725B (zh) 一种用AlH3处理的高强度铝合金
CN102433472B (zh) 一种高强度铝合金的熔炼和铸造方法
CN102418007B (zh) 一种以WB和LiH粉末处理的高温铝合金及其制备方法
CN102146530A (zh) 镁及镁合金晶粒细化剂及其制备方法
CN102660693B (zh) 采用TiN及BeH2粉末处理的铝合金及其制备方法
CN102517475B (zh) 一种掺杂ZrC的高强度铝合金及其制备方法
CN103233138B (zh) Mg-Al系镁合金用晶粒细化剂及其制备方法
CN102534310B (zh) 掺杂Mo2C及MgH2的高强度铝合金
CN102505084B (zh) 添加TaC的高强度铝合金及其制备方法
CN110592442B (zh) 一种低导热高韧性的铝锰钴系压铸铝合金及其制备工艺
CN102418009B (zh) 一种可消解高硬度化合物的铝合金及其熔炼方法
CN102418008B (zh) 一种用HfC去除夹杂的高强度铝合金及其制备方法
CN102433471A (zh) 一种高韧性的铝合金及其制备方法
CN102433469B (zh) 一种与vc共溶的铝合金的熔炼方法
CN102517476B (zh) 一种减小疏松和缩松的高强度铝合金及其制备方法
CN102433470B (zh) 一种与TiAlN和CaH3粉末共溶的铝合金及熔炼方法
CN102424925B (zh) 掺杂Co2N的铝合金及其熔炼方法
CN102433474B (zh) 掺杂NaH的高强度铝合金及其熔炼方法
CN102433473B (zh) 掺杂WB及NaBH4的高强度铝合金及其制备方法
WO2012027992A1 (zh) 铝-锆-碳中间合金的制备方法
CN102418011B (zh) 一种添加AlCrN及RbH的高强度铝合金及其制备方法
CN102560199A (zh) 采用 TiSiN和EuH2粉末处理的铝合金及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: GUIZHOU ALUMINUM MATERIALS ENGINEERING TECHNOLOGY

Free format text: FORMER OWNER: GUIZHOU HUAKE ALUMINIUM MATERIAL ENGINEERING TECHNOLOGY RESEARCH CO., LTD.

Effective date: 20141031

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 550014 GUIYANG, GUIZHOU PROVINCE TO: 550018 GUIYANG, GUIZHOU PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20141031

Address after: 550018 Guizhou national hi tech Zone, Jinyang science and Technology Industrial Park, standard workshop, auxiliary room, B665 room

Patentee after: Guizhou Aluminum Materials Engineering Technology Research Center Co., Ltd.

Address before: 550014, Guizhou, Guiyang province Baiyun District aluminum alloy factory Road South Hospital

Patentee before: Guizhou Huake Aluminium Material Engineering Technology Research Co., Ltd.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130626

Termination date: 20131222