CN102500362A - Catalyst for removing H2S in coal gas by catalytic oxidation and its preparation method and application - Google Patents
Catalyst for removing H2S in coal gas by catalytic oxidation and its preparation method and application Download PDFInfo
- Publication number
- CN102500362A CN102500362A CN2011103939164A CN201110393916A CN102500362A CN 102500362 A CN102500362 A CN 102500362A CN 2011103939164 A CN2011103939164 A CN 2011103939164A CN 201110393916 A CN201110393916 A CN 201110393916A CN 102500362 A CN102500362 A CN 102500362A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- coal gas
- activated carbon
- active carbon
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000003034 coal gas Substances 0.000 title claims abstract description 9
- 230000003197 catalytic effect Effects 0.000 title claims description 11
- 230000003647 oxidation Effects 0.000 title description 6
- 238000007254 oxidation reaction Methods 0.000 title description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 69
- 238000006477 desulfuration reaction Methods 0.000 claims abstract description 21
- 230000023556 desulfurization Effects 0.000 claims abstract description 21
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 14
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 14
- 239000011148 porous material Substances 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 230000001590 oxidative effect Effects 0.000 claims abstract 5
- 239000007789 gas Substances 0.000 claims description 23
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims 5
- 230000004913 activation Effects 0.000 claims 1
- 238000005470 impregnation Methods 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 19
- 229910052717 sulfur Inorganic materials 0.000 abstract description 14
- 239000011593 sulfur Substances 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 239000003245 coal Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000002309 gasification Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004625 Ce—Zr Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
一种催化氧化脱除煤气中H2S的催化剂以金属氧化物为活性组分,活性炭为载体,各组分的重量百分比为:活性炭95.0%~99.9%,金属氧化物0.1%~5%,活性炭是比表面积为850~900m2/g,总孔容为0.45cm3/g,微孔容为0.154cm3/g,金属氧化物为Fe、V、Mn、Cu、Ce或Co的氧化物。本发明具有制备方法简单,显著地提高了活性炭的脱硫活性和选择性,极大地提高了脱硫剂的穿透硫容的优点。A catalyst for catalyzing and oxidizing the removal of H2S in coal gas uses metal oxides as active components and activated carbon as a carrier, and the weight percentages of each component are: activated carbon 95.0% to 99.9%, metal oxides 0.1% to 5%, Activated carbon has a specific surface area of 850-900m 2 /g, a total pore volume of 0.45cm 3 /g, a micropore volume of 0.154cm 3 /g, and metal oxides of Fe, V, Mn, Cu, Ce or Co. . The invention has the advantages of simple preparation method, remarkably improved desulfurization activity and selectivity of activated carbon, and greatly improved breakthrough sulfur capacity of desulfurizer.
Description
技术领域 technical field
本发明属于一种催化剂及制备方法和应用,具体的说涉及一种催化氧化脱除煤气中H2S的催化剂及制备方法和应用。The invention belongs to a catalyst, a preparation method and an application, in particular to a catalyst, a preparation method and an application for catalytic oxidation removal of H2S in coal gas.
背景技术 Background technique
以煤气化为基础的洁净煤技术是实现煤炭高效、环保利用的主要途径之一。硫化物是煤气中的主要污染物之一,会造成设备腐蚀、催化剂中毒和环境污染等问题,因此是洁净煤技术的关键问题实现煤气中硫化物的经济高效脱除。目前工业大规模脱硫大多采用低温甲醇法,但该工艺为国外专利技术,且由于操作温度低,造成投资高、能耗高等问题,特别是用于煤气化多联产系统时,造成了煤气显热损失,降低系统热效率。金属氧化物作为脱硫剂用于高温煤气脱硫(>400℃),经过硫化反应脱除硫化物,是当前煤气脱硫技术的前沿和发展方向,但由于脱硫剂强度要求高、上游高温除尘技术发展的瓶颈等技术难题,不能适应工业应用要求。当前,先进加压气化技术(shell、Texaco)经加压水洗净化后,煤气温度仍可达200℃左右,开发净化温度中低温下的高效脱硫剂更具应用价值。Clean coal technology based on coal gasification is one of the main ways to realize efficient and environmentally friendly utilization of coal. Sulfide is one of the main pollutants in gas, which can cause problems such as equipment corrosion, catalyst poisoning and environmental pollution. Therefore, it is a key issue in clean coal technology to achieve economical and efficient removal of sulfide in gas. At present, large-scale industrial desulfurization mostly adopts the low-temperature methanol method, but this process is a foreign patented technology, and due to the low operating temperature, it causes problems such as high investment and high energy consumption, especially when it is used in a coal gasification polygeneration system, resulting in significant gas emissions. Heat loss reduces system thermal efficiency. Metal oxides are used as desulfurizers for high-temperature gas desulfurization (>400°C), and the removal of sulfide through vulcanization reaction is the frontier and development direction of current gas desulfurization technology. Technical problems such as bottlenecks cannot meet the requirements of industrial applications. At present, after the advanced pressurized gasification technology (shell, Texaco) is washed and purified by pressurized water, the temperature of the gas can still reach about 200°C. It is more valuable to develop high-efficiency desulfurizers at medium and low purification temperatures.
活性炭(AC)具有较大的比表面积和孔容,具有很好的吸附和催化反应活性,可以吸附煤气中的硫化氢并将其氧化为单质硫,单质硫储存在活性炭的孔隙结构中。活性炭低温脱硫剂已在工业上应用,但使用温度一般不超过60℃。高温会造成脱硫剂硫容和脱硫精度的迅速下降,而且脱硫剂动力学性能和再生性能差。因此,仅适合于合成气的精脱硫,对高温、高硫的粗煤气并不适合。通过制备方法优化、表面改性的方法提高活性炭对热煤气中硫化物的脱除效果。美国橡树岭国家实验室近年来对活性炭用于燃料气脱硫的研究结果表明,活性炭可以将硫化氢选择性催化氧化为单质硫,但硫容相对较低。金属氧化物对硫化物有很好催化氧化选择性,Fe2O3、CuO、V2O3、Al2O3、TiO2、Ce-Zr基催化剂具有很好的克劳斯反应活性,而且也可用用直接催化氧化硫化氢生成单质硫。因此,开发担载金属氧化物的活性炭催化吸附脱硫剂,利用担载的金属氧化物提高活性炭对硫化物的脱除效率和反应的选择性,并利用活性炭的吸附能力把单质硫吸附储存在孔道结构中,得到高价值的单质硫资源。Activated carbon (AC) has a large specific surface area and pore volume, and has good adsorption and catalytic reactivity. It can absorb hydrogen sulfide in gas and oxidize it to elemental sulfur, which is stored in the pore structure of activated carbon. Activated carbon low-temperature desulfurizers have been used in industry, but the operating temperature generally does not exceed 60°C. High temperature will cause a rapid decline in the sulfur capacity and desulfurization accuracy of the desulfurizer, and the kinetic performance and regeneration performance of the desulfurizer are poor. Therefore, it is only suitable for fine desulfurization of syngas, but not suitable for high-temperature, high-sulfur raw gas. The removal effect of activated carbon on sulfide in hot coal gas was improved by optimizing the preparation method and surface modification. In recent years, Oak Ridge National Laboratory in the United States has used activated carbon for fuel gas desulfurization. The research results show that activated carbon can selectively catalyze the oxidation of hydrogen sulfide to elemental sulfur, but the sulfur capacity is relatively low. Metal oxides have good catalytic oxidation selectivity to sulfide, Fe 2 O 3 , CuO, V 2 O 3 , Al 2 O 3 , TiO 2 , Ce-Zr based catalysts have good Claus reaction activity, and It can also be used to directly catalyze the oxidation of hydrogen sulfide to generate elemental sulfur. Therefore, the development of activated carbon catalytic adsorption desulfurizer loaded with metal oxides, the use of loaded metal oxides to improve the removal efficiency of activated carbon for sulfide and the selectivity of the reaction, and use the adsorption capacity of activated carbon to store elemental sulfur in the pores In the structure, high-value elemental sulfur resources are obtained.
发明内容 Contents of the invention
本发明的目的是提供一种高效脱除煤气中H2S的催化剂及其制备方法和应用。The object of the present invention is to provide a catalyst for efficiently removing H 2 S in coal gas, its preparation method and application.
本发明用于催化氧化脱除H2S的催化剂是催化剂以金属氧化物为活性组分,活性炭为载体,各组分的重量百分比为:活性炭95.0%~99.9%,金属氧化物0.1%~5%。The catalyst used for catalytic oxidation to remove H 2 S in the present invention is that the catalyst uses metal oxide as the active component and activated carbon as the carrier, and the weight percentage of each component is: activated carbon 95.0%-99.9%, metal oxide 0.1%-5 %.
如上所述的活性炭是比表面积为850~900m2/g,总孔容为0.45cm3/g,微孔容为0.154cm3/g。The above activated carbon has a specific surface area of 850-900m 2 /g, a total pore volume of 0.45cm 3 /g, and a micropore volume of 0.154cm 3 /g.
如上所述的金属氧化物为Fe、V、Mn、Cu、Ce或Co的氧化物。The metal oxides mentioned above are oxides of Fe, V, Mn, Cu, Ce or Co.
本发明催化剂的制备方法如下:The preparation method of catalyst of the present invention is as follows:
按催化剂组成,将活性炭等体积浸渍在活性组分可溶盐的溶液中,然后室温放置室温下3-6h;将浸渍过的活性炭先在50-60℃恒温干燥4-10h,并在100-110℃继续干燥4-10h,然后在300-600℃的温度及氮气气氛中活化3-6h,得到所需催化剂。According to the composition of the catalyst, impregnate the equal volume of activated carbon in the solution of the soluble salt of the active component, and then place it at room temperature for 3-6 hours; Continue drying at 110° C. for 4-10 hours, and then activate at 300-600° C. and nitrogen atmosphere for 3-6 hours to obtain the desired catalyst.
如上所述的活性组分可溶盐Ce(NO3)3·6H2O,Fe(NO3)3·9H2O,Cu(NO3)2·3H2O,Co(NO3)2·6H2O,Mn(NO3)2或NH4VO3。Active ingredient soluble salts as described above Ce(NO 3 ) 3 6H 2 O, Fe(NO 3 ) 3 9H 2 O, Cu(NO 3 ) 2 3H 2 O, Co(NO 3 ) 2 . 6H 2 O, Mn(NO 3 ) 2 or NH 4 VO 3 .
本发明催化剂的应用方法是将该催化剂装入固定床或流化床反应器中,在常压,150-250℃,空速1000-8000h-1条件下,通入氧气,通入氧气的量为O2∶H2S摩尔比为1-2∶1-2,催化脱除气体中的H2S。The application method of the catalyst of the present invention is to load the catalyst into a fixed-bed or fluidized-bed reactor, and feed oxygen under normal pressure, 150-250°C, and a space velocity of 1000-8000h The molar ratio of O 2 : H 2 S is 1-2: 1-2, and the H 2 S in the gas is catalytically removed.
本发明具有以下优点:The present invention has the following advantages:
1.该催化剂制备方法简单,通过对活性炭浸渍相应的金属氧化物改性,显著地提高了活性炭的脱硫活性和选择性,极大地提高了脱硫剂的穿透硫容。1. The preparation method of the catalyst is simple. By impregnating the activated carbon with corresponding metal oxide modification, the desulfurization activity and selectivity of the activated carbon are significantly improved, and the breakthrough sulfur capacity of the desulfurizer is greatly improved.
2.适用于在150-250℃下,微量氧存在下,高效地脱除H2S,可有效利用煤气中显热。2. It is suitable for efficiently removing H 2 S at 150-250°C in the presence of trace oxygen, and can effectively utilize the sensible heat in the gas.
3.脱硫后的产物主要硫磺,吸附在催化剂的孔道中,可有效实现单质硫的回收利用。3. The product after desulfurization is mainly sulfur, which is adsorbed in the pores of the catalyst, which can effectively realize the recovery and utilization of elemental sulfur.
具体实施方式 Detailed ways
计算穿透硫容和脱硫效率,以定义出口H2S浓度达到100ppm时为穿透浓度,计算穿透硫容和脱硫效率。Calculate the breakthrough sulfur capacity and desulfurization efficiency to define the breakthrough concentration when the outlet H 2 S concentration reaches 100ppm, and calculate the breakthrough sulfur capacity and desulfurization efficiency.
实施例1Example 1
将锰浓度的为0.0212g/ml的Mn(NO3)2溶液,等体积均匀浸渍到30~60目5g的活性炭上,室温放置6h,60℃干燥10h,100℃干燥10h,然后再400℃氮气气氛下煅烧4h,即得到质量百分比为1%的Mn/AC催化剂。该催化剂装入固定床反应器中,反应温度控制在180℃,空速3000h-1,原料气中H2S含量3000ppm,通入O2/H2S比为1∶1的O2,平衡气N2,其穿透硫容为14.2%,脱硫效率为99.2%。Impregnate equal volumes of Mn(NO 3 ) 2 solution with a manganese concentration of 0.0212g/ml on 30-60 mesh 5g activated carbon, place at room temperature for 6h, dry at 60°C for 10h, and dry at 100°C for 10h, then reheat at 400°C Calcined for 4 hours under nitrogen atmosphere, that is, a Mn/AC catalyst with a mass percentage of 1% was obtained. The catalyst is loaded into a fixed-bed reactor, the reaction temperature is controlled at 180°C, the space velocity is 3000h -1 , the H 2 S content in the feed gas is 3000ppm, the O 2 /H 2 S ratio of 1:1 is introduced into O 2 , and the equilibrium The gas N 2 has a breakthrough sulfur capacity of 14.2% and a desulfurization efficiency of 99.2%.
实施例2Example 2
将铁浓度的为0.00343g/ml的Fe(NO3)3溶液,等体积均匀浸渍到30~60目的5g活性炭上,室温放置3h,60℃干燥8h,100℃干燥10h,然后再300℃氮气气氛下煅烧3h,即得到质量百分比为0.1%的Fe/AC催化剂。该催化剂装入固定床反应器中,反应温度控制在150℃,空速8000h-1,原料气中H2S含量2500ppm,通入O2/H2S比为1∶2的O2,CO30%,H240%,CO221%,CH41.7%,平衡气N2。其穿透硫容为5.82%,脱硫效率为99.2%。Evenly impregnate an equal volume of Fe(NO 3 ) 3 solution with an iron concentration of 0.00343g/ml onto 5g of activated carbon of 30-60 meshes, place at room temperature for 3 hours, dry at 60°C for 8 hours, dry at 100°C for 10 hours, and then re-introduce nitrogen at 300°C Calcined for 3 hours under the atmosphere to obtain a Fe/AC catalyst with a mass percentage of 0.1%. The catalyst is loaded into a fixed bed reactor, the reaction temperature is controlled at 150°C, the space velocity is 8000h -1 , the H 2 S content in the feed gas is 2500ppm, and the O 2 /H 2 S ratio of 1:2 is introduced into O 2 , CO30 %, H 2 40%, CO 2 21%, CH 4 1.7%, balance gas N 2 . Its breakthrough sulfur capacity is 5.82%, and its desulfurization efficiency is 99.2%.
实施例3Example 3
将一钒浓度的为0.0747g/ml的NH4VO3草酸溶液,等体积均匀浸渍到30~60目的5g活性炭上,室温放置3h,50℃干燥4h,100℃干燥8h,然后再450℃氮气气氛下煅烧3h,即得到质量百分比为5%的V/AC催化剂。该催化剂装入固定床反应器中,反应温度控制在250℃,空速8000h-1,原料气中H2S含量2500ppm,通入O2/H2S比为1∶2的O2,CO30%,H240%,CO221%,CH41.7%,平衡气N2。其穿透硫容为3.82%,脱硫效率为96.5%。Impregnate an equal volume of NH 4 VO 3 oxalic acid solution with a vanadium concentration of 0.0747g/ml onto 5g of activated carbon of 30-60 meshes, place it at room temperature for 3 hours, dry at 50°C for 4 hours, and dry at 100°C for 8 hours, and then re-air it with nitrogen at 450°C. Calcined for 3 hours under atmosphere to obtain a V/AC catalyst with a mass percentage of 5%. The catalyst is loaded into a fixed bed reactor, the reaction temperature is controlled at 250°C, the space velocity is 8000h -1 , the H 2 S content in the feed gas is 2500ppm, and the O 2 /H 2 S ratio of 1:2 is introduced into O 2 , CO30 %, H 2 40%, CO 2 21%, CH 4 1.7%, balance gas N 2 . Its breakthrough sulfur capacity is 3.82%, and its desulfurization efficiency is 96.5%.
实施例4Example 4
将钒浓度的为0.0201g/ml的Ce(NO3)3溶液,等体积均匀浸渍到30~60目的5g活性炭上,室温放置3h,50℃干燥10h,110℃干燥10h,然后再500℃氮气气氛下煅烧3h,即得到质量百分比为1%的Ce/AC催化剂。该催化剂装入流化床反应器中,反应温度控制在250℃,空速3000h-1,原料气中H2S含量3000ppm,通入O2/H2S比为2∶1的O2,平衡气N2。其穿透硫容为4.85%,脱硫效率为98.5%。Evenly impregnate an equal volume of Ce(NO 3 ) 3 solution with a vanadium concentration of 0.0201g/ml onto 5g of activated carbon of 30-60 meshes, place it at room temperature for 3 hours, dry at 50°C for 10 hours, and dry at 110°C for 10 hours, and then re-introduce it under nitrogen at 500°C. Calcined for 3 hours under atmosphere to obtain a Ce/AC catalyst with a mass percentage of 1%. The catalyst is loaded into a fluidized bed reactor, the reaction temperature is controlled at 250°C, the space velocity is 3000h -1 , the H2S content in the feed gas is 3000ppm, the O2 / H2S ratio is 2: 1 , and the balance gas N 2 . Its breakthrough sulfur capacity is 4.85%, and its desulfurization efficiency is 98.5%.
实施例5Example 5
配制铜浓度的为0.0247g/ml的Cu(NO3)2溶液,等体积均匀浸渍到30~60目的5g活性炭上,室温放置6h,50℃干燥10h,110℃干燥4h,然后再300℃氮气气氛下煅烧6h,即得到质量百分比为1%的Cu/AC催化剂。该催化剂装入流化床反应器中,反应温度控制在150℃,空速3000h-1,原料气中H2S含量3000ppm,通入O2/H2S比为2∶1的O2,平衡气N2。其穿透硫容为13.8%,脱硫效率为99.1%。Prepare a Cu(NO 3 ) 2 solution with a copper concentration of 0.0247g/ml, impregnate an equal volume onto 5g of activated carbon of 30-60 mesh, place it at room temperature for 6 hours, dry it at 50°C for 10 hours, dry it at 110°C for 4 hours, and then re-air it with nitrogen at 300°C. Calcined for 6 hours under the atmosphere to obtain a Cu/AC catalyst with a mass percentage of 1%. The catalyst is loaded into a fluidized bed reactor, the reaction temperature is controlled at 150°C, the space velocity is 3000h -1 , the H 2 S content in the feed gas is 3000ppm, and O 2 with a ratio of O 2 /H 2 S of 2:1 is introduced, Balance gas N 2 . Its breakthrough sulfur capacity is 13.8%, and its desulfurization efficiency is 99.1%.
实施例6Example 6
配制钴浓度的为0.0247g/ml的Co(NO3)2溶液,等体积均匀浸渍到30~60目的5g活性炭上,室温放置5h,50℃干燥10h,110℃干燥10h,然后再300℃氮气气氛下煅烧6h,即得到质量百分比为1%的Co/AC催化剂。该催化剂装入流化床反应器中,反应温度控制在150℃,空速3000h-1,原料气中H2S含量3000ppm,通入O2/H2S比为1∶2的O2,平衡气N2。其穿透硫容为4.81%,脱硫效率为97.1%。Prepare a Co(NO 3 ) 2 solution with a cobalt concentration of 0.0247g/ml, impregnate an equal volume on 5g of activated carbon of 30-60 mesh, place it at room temperature for 5 hours, dry it at 50°C for 10 hours, dry it at 110°C for 10 hours, and then re-air it with nitrogen at 300°C. Calcined for 6 hours under the atmosphere to obtain a Co/AC catalyst with a mass percentage of 1%. The catalyst is loaded into a fluidized bed reactor, the reaction temperature is controlled at 150°C, the space velocity is 3000h -1 , the H 2 S content in the feed gas is 3000ppm, and O 2 with an O 2 /H 2 S ratio of 1:2 is introduced, Balance gas N 2 . Its breakthrough sulfur capacity is 4.81%, and its desulfurization efficiency is 97.1%.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103939164A CN102500362A (en) | 2011-12-02 | 2011-12-02 | Catalyst for removing H2S in coal gas by catalytic oxidation and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103939164A CN102500362A (en) | 2011-12-02 | 2011-12-02 | Catalyst for removing H2S in coal gas by catalytic oxidation and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102500362A true CN102500362A (en) | 2012-06-20 |
Family
ID=46212529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103939164A Pending CN102500362A (en) | 2011-12-02 | 2011-12-02 | Catalyst for removing H2S in coal gas by catalytic oxidation and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102500362A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103706353A (en) * | 2013-12-19 | 2014-04-09 | 绍兴文理学院 | AlMn composite pillared clay supported CrCe catalyst, and preparation method and application of catalyst |
CN104785236A (en) * | 2015-04-21 | 2015-07-22 | 太原理工大学 | Mesoporous desulfurizer carrier and preparation method thereof |
CN105032389A (en) * | 2015-07-24 | 2015-11-11 | 四川大学 | Mn-Ce bimetal doped activated carbon base desulfurization catalyst and preparation method thereof |
CN105802676A (en) * | 2016-04-21 | 2016-07-27 | 安庆师范学院 | A method for simultaneously removing H2S and Hg0 from coal gas using Fe2O3/carbonaceous carrier catalyst |
CN105903324A (en) * | 2016-05-18 | 2016-08-31 | 天津普瑞特净化技术有限公司 | Copper oxide loaded active carbon desulfurizing agent and preparation process thereof |
CN109225137A (en) * | 2018-10-31 | 2019-01-18 | 榆林学院 | A kind of preparation method of the cobalt improved apricot shell active carbon of chlorination |
CN113522348A (en) * | 2020-04-14 | 2021-10-22 | 中国石油化工股份有限公司 | Hydrogen sulfide remover and preparation method and application thereof |
CN114192175A (en) * | 2021-12-30 | 2022-03-18 | 福州大学 | A metal-doped ordered mesoporous carbon desulfurization catalyst and its preparation method and application |
CN116371392A (en) * | 2023-03-07 | 2023-07-04 | 中国科学院过程工程研究所 | Integrated desulfurization and decyanation catalyst and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1597094A (en) * | 2004-08-02 | 2005-03-23 | 中国科学院山西煤炭化学研究所 | Honey comb shaped active carbon base catalyst used for sulfur removal and nitrate removal and its preparation and application |
CN101259408A (en) * | 2008-04-15 | 2008-09-10 | 中国科学院山西煤炭化学研究所 | Catalyst for low-temperature removal of flue gas NOx, preparation method and application |
-
2011
- 2011-12-02 CN CN2011103939164A patent/CN102500362A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1597094A (en) * | 2004-08-02 | 2005-03-23 | 中国科学院山西煤炭化学研究所 | Honey comb shaped active carbon base catalyst used for sulfur removal and nitrate removal and its preparation and application |
CN101259408A (en) * | 2008-04-15 | 2008-09-10 | 中国科学院山西煤炭化学研究所 | Catalyst for low-temperature removal of flue gas NOx, preparation method and application |
Non-Patent Citations (4)
Title |
---|
《化学工程》 20101031 方惠斌 等, "活性炭担载金属氧化物用于热煤气脱硫" 第56-59页 第38卷, 第10期 * |
《煤炭转化》 20100731 张郃 等, "活性炭脱除煤气中H_2S的气氛影响及动力学研究" 第23-28页 第33卷, 第3期 * |
张郃 等,: ""活性炭脱除煤气中H_2S的气氛影响及动力学研究"", 《煤炭转化》 * |
方惠斌 等,: ""活性炭担载金属氧化物用于热煤气脱硫"", 《化学工程》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103706353A (en) * | 2013-12-19 | 2014-04-09 | 绍兴文理学院 | AlMn composite pillared clay supported CrCe catalyst, and preparation method and application of catalyst |
CN103706353B (en) * | 2013-12-19 | 2015-09-23 | 绍兴文理学院 | AlMn composite axis system load C rCe catalyst, preparation method and application thereof |
CN104785236A (en) * | 2015-04-21 | 2015-07-22 | 太原理工大学 | Mesoporous desulfurizer carrier and preparation method thereof |
CN105032389A (en) * | 2015-07-24 | 2015-11-11 | 四川大学 | Mn-Ce bimetal doped activated carbon base desulfurization catalyst and preparation method thereof |
CN105802676A (en) * | 2016-04-21 | 2016-07-27 | 安庆师范学院 | A method for simultaneously removing H2S and Hg0 from coal gas using Fe2O3/carbonaceous carrier catalyst |
CN105903324A (en) * | 2016-05-18 | 2016-08-31 | 天津普瑞特净化技术有限公司 | Copper oxide loaded active carbon desulfurizing agent and preparation process thereof |
CN109225137A (en) * | 2018-10-31 | 2019-01-18 | 榆林学院 | A kind of preparation method of the cobalt improved apricot shell active carbon of chlorination |
CN113522348A (en) * | 2020-04-14 | 2021-10-22 | 中国石油化工股份有限公司 | Hydrogen sulfide remover and preparation method and application thereof |
CN113522348B (en) * | 2020-04-14 | 2023-09-05 | 中国石油化工股份有限公司 | Hydrogen sulfide remover and preparation method and application thereof |
CN114192175A (en) * | 2021-12-30 | 2022-03-18 | 福州大学 | A metal-doped ordered mesoporous carbon desulfurization catalyst and its preparation method and application |
CN116371392A (en) * | 2023-03-07 | 2023-07-04 | 中国科学院过程工程研究所 | Integrated desulfurization and decyanation catalyst and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102500362A (en) | Catalyst for removing H2S in coal gas by catalytic oxidation and its preparation method and application | |
CN102357364B (en) | Preparation for the absorbent charcoal based catalyst of flue gas selective reduction desulfurization | |
Wang et al. | Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal | |
CN101318130A (en) | Activated carbon-based catalyst for hydrolysis and catalysis of carbonyl sulfide at low temperature and preparation method thereof | |
CN105032403A (en) | Catalyst used for low temperature desulphurization and denitration of flue gas and preparation method thereof | |
CN103373706B (en) | A kind of methane reforming hydrogen production process and device | |
CN101804289B (en) | Preparation, application and regeneration method of flue gas desulfurizing agent | |
CN103157480B (en) | Vanadium oxide/iron oxide denitration catalyst, preparation method and application thereof | |
CN104741000B (en) | A kind of application of composite bed low temperature SCR denitration catalyst | |
CN104841441B (en) | The method for preparing catalyst of hydrolysis oxidation coupled method purification HCN a kind of and application | |
CN102824909A (en) | Catalyst for low-temperature catalytic combustion of volatile organic compounds and preparation method thereof | |
CN101259408A (en) | Catalyst for low-temperature removal of flue gas NOx, preparation method and application | |
CN102513145A (en) | Fe molecular sieve catalyst for purifying NOx in acrylonitrile oxidization tail gas and preparation method of Fe molecular sieve catalyst | |
CN101428237A (en) | Urea supported carbon based denitration catalyst, preparation and application method thereof | |
CN106311245A (en) | Preparation method for lignite semi-coke-based denitration agent used for low-temperature catalytic oxidation | |
CN101735861B (en) | Zinc oxide medium and high temperature coal gas fine desulfurizer and preparation method | |
CN101544914A (en) | Method and device for thermally desulfurizing by synthesis gas dry method and reclaiming sulfur | |
CN109576003A (en) | A method of removing sulfide and Recovered sulphur from coal gas | |
CN100553747C (en) | Utilize humates simultaneously desulfurizing and denitrating to produce the method for compound fertilizer | |
Wang et al. | Recent advance for NOx removal with carbonaceous material for low-temperature NH3-SCR reaction | |
Li et al. | Study on simultaneous removal of SO2 and NOx from sintering flue gas over Fe-Mn/AC catalyst | |
CN113813966B (en) | Biomass charcoal-based functional material for catalytic oxidation of formaldehyde and preparation method and application thereof | |
CN113546644B (en) | Preparation method and application of catalyst for deep removal of organic sulfur from coke oven gas | |
CN102500372A (en) | Copper oxide loaded attapulgite catalyst and preparation method and applications thereof | |
CN102350342B (en) | Catalyst for selective catalytic reduction of NOx at low temperature with high activity and strong sulfur resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120620 |