CN102497694B - 基于阵列开路数目观测的数字化led驱动电路 - Google Patents

基于阵列开路数目观测的数字化led驱动电路 Download PDF

Info

Publication number
CN102497694B
CN102497694B CN201110359623.4A CN201110359623A CN102497694B CN 102497694 B CN102497694 B CN 102497694B CN 201110359623 A CN201110359623 A CN 201110359623A CN 102497694 B CN102497694 B CN 102497694B
Authority
CN
China
Prior art keywords
circuit
resistance
capacitor
diode
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110359623.4A
Other languages
English (en)
Other versions
CN102497694A (zh
Inventor
张相军
徐殿国
佟德军
朱辉
孙希艳
杨华
王懿杰
王斌泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201110359623.4A priority Critical patent/CN102497694B/zh
Publication of CN102497694A publication Critical patent/CN102497694A/zh
Application granted granted Critical
Publication of CN102497694B publication Critical patent/CN102497694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

基于阵列开路数目观测的数字化LED驱动电路,它涉及LED驱动电路。它解决了效果不好或控制电路相当复杂的缺陷。它包括功率因数校正电路、半桥谐振电路、若干个开路故障检测电路、电流采样电路和控制电路;它提供自动检测LED中的开路故障,并根据开路LED串数目自动调整电流闭环参考值的方法。兼顾了电路的简单化和低成本,解决了上述矛盾。对于LED灯可靠性提高、低成本实现具有重要的意义。由于在电流调节过程中,LED阵列的供电电压变化范围不大,按照每只LED的额定电流得到LED的电阻值。根据并联支路正常工作的情况,谐振电感和第四电容的值,进而计算出不同开路LED串联单元下总电流参考值。通过检测开路LED串联单元的数目来调整开关频率,从而实现恒流驱动。

Description

基于阵列开路数目观测的数字化LED驱动电路
技术领域
本发明涉及一种LED驱动电路。
背景技术
随着LED封装技术的不断成熟和制造工艺的不断改进,在照明领域,大功率的LED开始得到大批量的应用。我国在2009年实施“十城万盏”工程推动我国LED的发展。LED街道照明得到了较快的发展,目前,在很多城市都已经推出LED街道照明示范街道。
街道照明用LED光源的功率大多数处于100W-200W之间,由于LED单颗功率等级偏低,因此,需要通过串并联组成LED阵列。对于LED来说,最优的驱动方式是恒流供电,然而目前街道照明中的LED路灯还有很多采用的是恒压驱动器,这对于LED的寿命具有极大的影响。
LED常见的失效情况是开路,串联支路中一旦有某只LED开路,则整路LED都会熄灭。由于在大功率照明应用中,并联支路较多,为每一支路提供独立的驱动器固然可以实现各支路的独立恒流和开路保护,但是会使得LED驱动器体积过大。在集中驱动情况下,很难实现各串LED支路的独立恒流调节。
如果采用总电流闭环,一旦多并联支路中有某一串LED开路,则其他并联支路中的供电电流势必会增大,就会造成连锁反应,其它有并联支路会因为电流增大而陆续出现开路故障,直至全部并联支路开路。
实际上,这个问题早已引起人们的注意,也已经有相当多的应对方案,也能够查阅到很多相关的专利和文献。纵观这些文献和专利,要么效果不好,要么控制电路相当复杂,对于一些低成本的LED灯来说显然是不合适的。
发明内容
本发明为了解决效果不好或控制电路相当复杂的缺陷,而提出了一种基于阵列开路数目观测的数字化LED驱动电路。
本发明的基于阵列开路数目观测的数字化LED驱动电路包括功率因数校正电路、半桥谐振电路、若干个开路故障检测电路、电流采样电路和控制电路;功率因数校正电路的输入端与交流电源连接,半桥谐振电路包括第一电容C1至第四电容C4、第一场效应管Q1、第二场效应管Q2、第一电阻R1至第三电阻R3、电感L1和第一二极管D1至第四二极管D4;功率因数校正电路的一个输出端同时与第一电容C1的一端、第一场效应管Q1的漏极和第一电阻R1的一端连接,第一电阻R1的另一端与第二电容C2的一端连接,第二电容C2的另一端同时与第一场效应管Q1的源极、第二场效应管Q2的漏极、第二电阻R2的一端和第四电容C4的一端连接,第二电阻R2的另一端与第三电容C3的一端连接,第三电容C3的另一端同时与第一场效应管Q1的源极和第三电阻R3的一端连接,第三电阻R3的另一端、第一电容C1的另一端、第二二极管D2的阳极、第四二极管D4的阴极和功率因数校正电路(1)的另一个输出端同时接模拟地,第四电容C4的另一端与电感L1的一端连接,电感L1的另一端同时与第一二极管D1的阳极和第三二极管D3的阴极连接,第一二极管D1的阴极与第二二极管D2的阴极连接为半桥谐振电路的一个输出端,第三二极管D3的阳极和第四二极管D4的阳极连接为半桥谐振电路的另一个输出端,半桥谐振电路的两个输出端分别为LED阵列中每一路LED串提供工作电源,每一个开路故障检测电路通过两个输入端串联在LED阵列中每一路LED串的供电电源回路上,控制电路包括驱动放大电路、单片机和低通滤波器LPF;低通滤波器LPF,用于对半桥母线电流采样值滤波获得平均有功电流分量,发送给单片机判断是否存在故障,低通滤波器LPF的故障信号输出端与单片机的故障信号输入端连接,单片机的电流信号输入端为控制电路的电流信号输入端,单片机的两个控制信号输出端分别与驱动放大电路的两个输入端连接,驱动放大电路的两个输出端为控制电路的两个控制信号输出端,每一个开路故障检测电路的开路信号输出端分别与单片机的一个开路信号输入端连接,控制电路的两个控制信号输出端分别与第一场效应管Q1的栅极和第二场效应管Q2的栅极连接,电流采样电路的电流信号输出端与控制电路的电流信号输入端连接,电流采样电路用于获得所有LED串联单元的总电流信号。
本发明的目的就是克服以上现有技术的不足,提供一种可以自动检测LED中的开路故障,并根据开路LED串数目自动调整电流闭环参考值的方法。本发明兼顾了电路的简单化和低成本,解决了上述矛盾。对于LED灯可靠性提高、低成本实现具有重要的意义。
由于在电流调节过程中,LED阵列的供电电压变化范围不大,按照每只LED的额定电流得到LED的电阻值。根据并联支路正常工作的情况,谐振电感L1和第四电容C4的值,进而计算出不同开路LED串联单元下的总电流参考值。通过检测开路LED串联单元的数目来调整开关频率,从而实现恒流驱动。
附图说明
图1是本发明的基于阵列开路数目观测的数字化LED驱动电路结构示意图;图2是本发明的基于阵列开路数目观测的数字化LED驱动电路的电路图;图3是单片机25的外围器件电路图。
具体实施方式
具体实施方式一:结合图1说明本实施方式,本实施方式包括功率因数校正电路1、半桥谐振电路2、若干个开路故障检测电路3、电流采样电路4和控制电路5;功率因数校正电路1的输入端与交流电源连接,半桥谐振电路2包括第一电容C1至第四电容C4、第一场效应管Q1、第二场效应管Q2、第一电阻R1至第三电阻R3、电感L1和第一二极管D1至第四二极管D4;功率因数校正电路1的一个输出端同时与第一电容C1的一端、第一场效应管Q1的漏极和第一电阻R1的一端连接,第一电阻R1的另一端与第二电容C2的一端连接,第二电容C2的另一端同时与第一场效应管Q1的源极、第二场效应管Q2的漏极、第二电阻R2的一端和第四电容C4的一端连接,第二电阻R2的另一端与第三电容C3的一端连接,第三电容C3的另一端同时与第一场效应管Q1的源极和第三电阻R3的一端连接,第三电阻R3的另一端、第一电容C1的另一端、第二二极管D2的阳极、第四二极管D4的阴极和功率因数校正电路1的另一个输出端同时接模拟地,第四电容C4的另一端与电感L1的一端连接,电感L1的另一端同时与第一二极管D1的阳极和第三二极管D3的阴极连接,第一二极管D1的阴极与第二二极管D2的阴极连接为半桥谐振电路2的一个输出端,第三二极管D3的阳极和第四二极管D4的阳极连接为半桥谐振电路2的另一个输出端,半桥谐振电路2的两个输出端分别为LED阵列中每一路LED串提供工作电源,每一个开路故障检测电路3通过两个输入端串联在LED阵列中每一路LED串的供电电源回路上,每一个开路故障检测电路3的开路信号输出端与控制电路5的一个开路信号输入端连接,控制电路5的两个控制信号输出端分别与第一场效应管Q1的栅极和第二场效应管Q2的栅极连接,电流采样电路4的电流信号输出端与控制电路5的电流信号输入端连接,电流采样电路4用于获得所有LED串联单元的总电流信号。
基于阵列开路数目观测的数字化LED驱动电路采用两功率级结构,前级为功率因数校正环节,由功率因数校正电路1完成其工作。功率因数校正电路1,用于实现功率因数校正为后级提供稳定母线电压,通常采用BOOST临界导通模式的APFC。后级是半桥谐振电路2,它包括Class-D谐振逆变器和不控整流器。
具体实施方式二:结合图2说明本实施方式,本实施方式与具体实施方式一不同点在于功率因数校正电路1包括第五二极管D5至第八二极管D8、第八电容C8至第十四电容C14、第九电阻R9至第二十电阻R20、第一芯片U1、第五三极管Q5、变压器LM3和第六场效应管Q6;第五二极管D5的阳极与第七二极管D7的阴极连接为功率因数校正电路1的一个输入端,第六二极管D6的阳极与第八二极管D8的阴极连接为功率因数校正电路1的另一个输入端,第五二极管D5的阴极、第六二极管D6的阴极、第八电容C8的一端、第九电阻R9的一端同时与变压器LM3的输入绕组的一个输入端连接,第七二极管D7的阳极、第八二极管D8的阳极、第八电容C8的另一端、第九电容C9的一端、第十一电阻R11的一端和第一芯片U1的管脚6同时接模拟地,第九电阻R9的另一端与第十电阻R10的一端连接,第十电阻R10的另一端、第九电容C9的另一端、第十一电阻R11的另一端同时与第一芯片U1的管脚3连接,变压器LM3的输出绕组的一个输出端接模拟地,变压器LM3的输出绕组的另一个输出端与第十二电阻R12的一端连接,变压器LM3的输出绕组的另一个输出端与变压器LM3的输入绕组的一个输入端为同名端,第十二电阻R12的另一端与第一芯片U1的管脚5连接,第一芯片U1的管脚8与第十电容C10的一端连接,第十电容C10的另一端接模拟地,第一芯片U1的管脚2与第十一电容C11的一端连接,第十一电容C11的另一端接模拟地,变压器LM3的输入绕组的另一个输入端同时与第九二极管D9的阳极和第六场效应管Q6的漏极连接,第六场效应管Q6的栅极同时与第五三极管Q5的发射极、第十四电阻R14的一端和第十三电阻R13的一端连接,第十三电阻R13的另一端同时与第五三极管Q5的基极和第一芯片U1的管脚7连接,第十四电阻R14的另一端同时与第五三极管Q5的集电极、第六场效应管Q6的源极、第十五电阻R15的一端和第十六电阻R16的一端连接,第十五电阻R15的另一端同时与第十二电容C12的一端和第一芯片U1的管脚4连接,第十二电容C12的另一端、第十六电阻R16的另一端、第十三电容C13的一端、第十九电阻R19的一端、第十四电容C14的一端和第二十电阻R20的一端接模拟地,并为功率因数校正电路1的另一个输出端,第九二极管D9的阴极同时与第十七电阻R17的一端、第十四电容C14的另一端和第二十电阻R20的另一端连接为功率因数校正电路1的一个输出端,第十七电阻R17的另一端同时与第十八电阻R18的一端、第十三电容C13的另一端和第一芯片U1的管脚1连接,第十八电阻R18的另一端与第十九电阻R19的另一端连接。第一芯片U1采用MC33262P集成电路。其它组成和连接方式与具体实施方式一相同。
具体实施方式三:结合图1和图2说明本实施方式,本实施方式与具体实施方式一或二不同点在于开路故障检测电路3包括第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7和光耦U;第四电阻R4的一端与第七电阻R7的一端连接为开路故障检测电路3的一个输入端,第七电阻R7的另一端与光耦U的一个输入端连接为开路故障检测电路3的另一个输入端,光耦U的另一个输入端与第四电阻R4的另一端连接,光耦U的一个输出端与第六电阻R6的一端接模拟地,第六电阻R6的另一端同时与光耦U的另一个输出端和第五电阻R5的一端连接为开路故障检测电路3的开路信号输出端,第五电阻R5的另一端接13V电源。其它组成和连接方式与具体实施方式一或二相同。
开路故障检测电路3采用光耦作为隔离判断电路来进行故障检测,将检测到的各支路信号送入控制电路5。光耦U采用PIC817集成电路,作为隔离判断电路。当光耦输入侧二极管饱和导通时,输出侧三极管饱和导通,开路信号电压为高电平。而当LED串中出现开路故障时,光耦输入侧二极管截止,输出侧三极管截止,开路信号为低电平。控制电路5通过判断各开路信号输入端(数字输入端口)的电平即可判断开路的LED串的数目。
具体实施方式四:结合图2说明本实施方式,本实施方式与具体实施方式三不同点在于控制电路5包括驱动放大电路51、单片机52和低通滤波器LPF53;低通滤波器LPF53,用于对半桥母线电流采样值滤波获得平均有功电流分量,发送给单片机52判断是否存在故障,该分量与母线电压乘积即相当于半桥谐振电路所消耗的有功。由于母线电压恒定,因此,该分量可指示有功消耗。当负载端出现短路或者完全开路故障,如果忽略无源器件损耗和开关器件的损耗,认为半桥环节没有有功消耗。一旦检测出这一分量过小,就认为发生了上述故障,予以保护。低通滤波器LPF53的故障信号输出端与单片机52的故障信号输入端连接,单片机52的电流信号输入端为控制电路5的电流信号输入端,单片机52的两个控制信号输出端分别与驱动放大电路51的两个输入端连接,驱动放大电路51的两个输出端为控制电路5的两个控制信号输出端。其它组成和连接方式与具体实施方式三相同。
单片机52采用飞思卡尔公司的MC68HC908KX8单片机作为控制芯片。通过一个电阻和电容进行滤波后送入单片机52中,如图3所示。
控制电路5采用单片机52作为控制核心,通过开路故障检测电路3获取各支路的开路情况,并自动的调整电流闭环参考值。
控制电路5的工作原理为单片机52首先根据开路信号输入端(数字输入端口)的电平判断当前开路的LED串的数目,修改闭环电流给定,然后调用闭环调节程序,通过调节半桥谐振电路2的开关频率,从而调节剩余支路的总电流来提高LED串工作的可靠性。
具体实施方式五:本实施方式与具体实施方式一、二或四不同点在于电流采样电路4采用的是电流互感器实现,采样整流器输入侧的交流电流,将电流变为电压信号,通过半波整流和低通滤波之后获得LED串的总电流信息送到控制电路5中。其它组成和连接方式与具体实施方式一、二或四相同。
具体实施方式六:结合图1和图2说明本实施方式,本实施方式与具体实施方式五不同点在于功率因数校正电路1的输入端与交流电源之间串联有EMI滤波器6。其它组成和连接方式与具体实施方式五相同。
具体实施方式七:结合图1、图2和图3说明本实施方式,本实施方式与上述具体实施方式不同点在于图1中的为112W的基于阵列开路数目观测的数字化LED驱动电路结构示意图,驱动的为LED阵列为14串、8路并联阵列;功率因数校正电路1采用的电路是Boost临界导通模式APFC,输出电压为400V。LED阵列的供电电压变化范围不大,因此假定LED阵列为一个恒压负载,其值设为48V。根据LED的额定的灯电流330mA计算出每串的LED串的电阻值140Ω,8路并联支路的总的等效阻抗为17.5Ω。假定8路支路都正常工作时的开关频率是35kHz,进而可计算出谐振电容和谐振电感的值。从而可以得到不同开路串数下对应的开关频率,如表1所示。
表1不同开路串数下对应的开关频率
以一条支路为例,当本并联支路中未有开路的LED时,闭环控制的330mA的电流在由R4和R7以及光耦输入侧的二极管组成的并联电路中产生压降,足以使输入侧二极管饱和导通。当光耦输入侧二极管饱和导通时,输出侧三极管饱和,开路信号电压为高电平。而当本路LED串中出现开路故障,则光耦输入侧二极管截止,输出侧三极管截止,开路信号为低电平。然后再通过一个电阻和电容进行滤波后送入单片机52中。同理,剩余的七路也是通过这种方式产生故障检测信号的。单片机52通过判断这8路数字输入端口的电平即可判断开路的LED串数,进而控制闭环总电流的值。
电流互感器两端并联第三十一电阻R31,将电流信号转换为电压信号,再经过第十二二极管D12实现半波整流。然后再通过第三十电阻R30、第二十九电阻R29及第二十四电容C24、第二十五电容C25进行低通滤波之后送到单片机25的AD口。为防止此电压信号高于5V,需要加第十二极管D10和第十一二极管D11进行钳位,如图2所示。如果采用各支路分别进行恒流控制,随着LED串联数目的增多,各支路独立恒流的方法越来越不现实。因此,本发明中采用全部支路总电流控制的方式。单片机25首先根据数字输入端口的电平判断当前开路的LED串数目,根据表1中不同的开路数去调用相应的闭环调节子程序,即执行不同的开关频率,并修改闭环电流给定,通过调节谐振DC-DC变换器的频率,调节剩余支路的总电流从而实现恒流控制。
其它组成和连接方式与上述具体实施方式相同。
本发明内容不仅限于上述各实施方式的内容,其中一个或几个具体实施方式的组合同样也可以实现发明的目的。

Claims (8)

1.基于阵列开路数目观测的数字化LED驱动电路,其特征在于它包括功率因数校正电路(1)、半桥谐振电路(2)、若干个开路故障检测电路(3)、电流采样电路(4)和控制电路(5);功率因数校正电路(1)的输入端与交流电源连接,半桥谐振电路(2)包括第一电容C1至第四电容C4、第一场效应管Q1、第二场效应管Q2、第一电阻R1至第三电阻R3、电感L1和第一二极管D1至第四二极管D4;功率因数校正电路(1)的一个输出端同时与第一电容C1的一端、第一场效应管Q1的漏极和第一电阻R1的一端连接,第一电阻R1的另一端与第二电容C2的一端连接,第二电容C2的另一端同时与第一场效应管Q1的源极、第二场效应管Q2的漏极、第二电阻R2的一端和第四电容C4的一端连接,第二电阻R2的另一端与第三电容C3的一端连接,第三电容C3的另一端同时与第一场效应管Q1的源极和第三电阻R3的一端连接,第三电阻R3的另一端、第一电容C1的另一端、第二二极管D2的阳极、第四二极管D4的阴极和功率因数校正电路(1)的另一个输出端同时接模拟地,第四电容C4的另一端与电感L1的一端连接,电感L1的另一端同时与第一二极管D1的阳极和第三二极管D3的阴极连接,第一二极管D1的阴极与第二二极管D2的阴极连接为半桥谐振电路(2)的一个输出端,第三二极管D3的阳极和第四二极管D4的阳极连接为半桥谐振电路(2)的另一个输出端,半桥谐振电路(2)的两个输出端分别为LED阵列中每一路LED串提供工作电源,每一个开路故障检测电路(3)通过两个输入端串联在LED阵列中每一路LED串的供电电源回路上,控制电路(5)包括驱动放大电路(51)、单片机(52)和低通滤波器LPF(53);低通滤波器LPF(53),用于对半桥母线电流采样值滤波获得平均有功电流分量,发送给单片机(52)判断是否存在故障,低通滤波器LPF(53)的故障信号输出端与单片机(52)的故障信号输入端连接,单片机(52)的电流信号输入端为控制电路(5)的电流信号输入端,单片机(52)的两个控制信号输出端分别与驱动放大电路(51)的两个输入端连接,驱动放大电路(51)的两个输出端为控制电路(5)的两个控制信号输出端,每一个开路故障检测电路(3)的开路信号输出端分别与单片机(52)的一个开路信号输入端连接,控制电路(5)的两个控制信号输出端分别与第一场效应管Q1的栅极和第二场效应管Q2的栅极连接,电流采样电路(4)的电流信号输出端与控制电路(5)的电流信号输入端连接,电流采样电路(4)用于获得所有LED串联单元的总电流信号。
2.根据权利要求1所述的基于阵列开路数目观测的数字化LED驱动电路,其特征在于功率因数校正电路(1)包括第五二极管D5至第八二极管D8、第八电容C8至第十四电容C14、第九电阻R9至第二十电阻R20、第一芯片U1、第五三极管Q5、变压器LM3和第六场效应管Q6;第五二极管D5的阳极与第七二极管D7的阴极连接为功率因数校正电路(1)的一个输入端,第六二极管D6的阳极与第八二极管D8的阴极连接为功率因数校正电路(1)的另一个输入端,第五二极管D5的阴极、第六二极管D6的阴极、第八电容C8的一端、第九电阻R9的一端同时与变压器LM3的输入绕组的一个输入端连接,第七二极管D7的阳极、第八二极管D8的阳极、第八电容C8的另一端、第九电容C9的一端、第十一电阻R11的一端和第一芯片U1的管脚6同时接模拟地,第九电阻R9的另一端与第十电阻R10的一端连接,第十电阻R10的另一端、第九电容C9的另一端、第十一电阻R11的另一端同时与第一芯片U1的管脚3连接,变压器LM3的输出绕组的一个输出端接模拟地,变压器LM3的输出绕组的另一个输出端与第十二电阻R12的一端连接,变压器LM3的输出绕组的另一个输出端与变压器LM3的输入绕组的一个输入端为同名端,第十二电阻R12的另一端与第一芯片U1的管脚5连接,第一芯片U1的管脚8与第十电容C10的一端连接,第十电容C10的另一端接模拟地,第一芯片U1的管脚2与第十一电容C11的一端连接,第十一电容C11的另一端接模拟地,变压器LM3的输入绕组的另一个输入端同时与第九二极管D9的阳极和第六场效应管Q6的漏极连接,第六场效应管Q6的栅极同时与第五三极管Q5的发射极、第十四电阻R14的一端和第十三电阻R13的一端连接,第十三电阻R13的另一端同时与第五三极管Q5的基极和第一芯片U1的管脚7连接,第十四电阻R14的另一端同时与第五三极管Q5的集电极、第六场效应管Q6的源极、第十五电阻R15的一端和第十六电阻R16的一端连接,第十五电阻R15的另一端同时与第十二电容C12的一端和第一芯片U1的管脚4连接,第十二电容C12的另一端、第十六电阻R16的另一端、第十三电容C13的一端、第十九电阻R19的一端、第十四电容C14的一端和第二十电阻R20的一端接模拟地,并为功率因数校正电路(1)的另一个输出端,第九二极管D9的阴极同时与第十七电阻R17的一端、第十四电容C14的另一端和第二十电阻R20的另一端连接为功率因数校正电路(1)的一个输出端,第十七电阻R17的另一端同时与第十八电阻R18的一端、第十三电容C13的另一端和第一芯片U1的管脚1连接,第十八电阻R18的另一端与第十九电阻R19的另一端连接。
3.根据权利要求1或2所述的基于阵列开路数目观测的数字化LED驱动电路,其特征在于开路故障检测电路(3)包括第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7和光耦U;第四电阻R4的一端与第七电阻R7的一端连接为开路故障检测电路(3)的一个输入端,第七电阻R7的另一端与光耦U的一个输入端连接为开路故障检测电路(3)的另一个输入端,光耦U的另一个输入端与第四电阻R4的另一端连接,光耦U的一个输出端与第六电阻R6的一端接模拟地,第六电阻R6的另一端同时与光耦U的另一个输出端和第五电阻R5的一端连接为开路故障检测电路(3)的开路信号输出端,第五电阻R5的另一端接15V电源。
4.根据权利要求3所述的基于阵列开路数目观测的数字化LED驱动电路,其特征在于单片机(52)采用飞思卡尔公司的MC68HC908KX8单片机。
5.根据权利要求1、2或4所述的基于阵列开路数目观测的数字化LED驱动电路,其特征在于电流采样电路(4)采用的是电流互感器实现。
6.根据权利要求5所述的基于阵列开路数目观测的数字化LED驱动电路,其特征在于光耦U采用PIC817集成电路。
7.根据权利要求6所述的基于阵列开路数目观测的数字化LED驱动电路,其特征在于功率因数校正电路(1)的输入端与交流电源之间串联有EMI滤波器(6)。
8.根据权利要求1、2、6或7所述的基于阵列开路数目观测的数字化LED驱动电路,其特征在于第一芯片U1采用MC33262P集成电路。
CN201110359623.4A 2011-11-14 2011-11-14 基于阵列开路数目观测的数字化led驱动电路 Active CN102497694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110359623.4A CN102497694B (zh) 2011-11-14 2011-11-14 基于阵列开路数目观测的数字化led驱动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110359623.4A CN102497694B (zh) 2011-11-14 2011-11-14 基于阵列开路数目观测的数字化led驱动电路

Publications (2)

Publication Number Publication Date
CN102497694A CN102497694A (zh) 2012-06-13
CN102497694B true CN102497694B (zh) 2014-08-13

Family

ID=46189470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110359623.4A Active CN102497694B (zh) 2011-11-14 2011-11-14 基于阵列开路数目观测的数字化led驱动电路

Country Status (1)

Country Link
CN (1) CN102497694B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234154B2 (ja) * 2013-10-15 2017-11-22 三菱電機株式会社 光源制御装置及び光源制御方法
JP2016071981A (ja) * 2014-09-29 2016-05-09 三菱電機株式会社 光源制御装置および光源制御方法
CN108055718B (zh) * 2017-11-17 2021-02-02 广州视源电子科技股份有限公司 Led并联均流控制方法、系统及电路
CN108718109A (zh) * 2018-06-14 2018-10-30 河南华盛隆源电气有限公司 一种馈线终端及残压模块检测电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336031A (zh) * 2008-06-02 2008-12-31 哈尔滨工业大学 一种用于投影仪的金属卤化物灯的电子镇流器
CN101902857A (zh) * 2010-07-16 2010-12-01 合肥美亚光电技术有限责任公司 一种智能led恒流驱动电路
US20110037399A1 (en) * 2009-08-13 2011-02-17 Novatek Microelectronics Corp. Dimmer circuit of light emitting diode and isolated voltage generator and dimmer method thereof
CN102003689A (zh) * 2009-09-02 2011-04-06 联咏科技股份有限公司 具有同时检测开路及短路功能的发光二极管装置及其方法
US20110101880A1 (en) * 2009-11-04 2011-05-05 International Rectifier Corporation Driver circuit with an increased power factor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336031A (zh) * 2008-06-02 2008-12-31 哈尔滨工业大学 一种用于投影仪的金属卤化物灯的电子镇流器
US20110037399A1 (en) * 2009-08-13 2011-02-17 Novatek Microelectronics Corp. Dimmer circuit of light emitting diode and isolated voltage generator and dimmer method thereof
CN102003689A (zh) * 2009-09-02 2011-04-06 联咏科技股份有限公司 具有同时检测开路及短路功能的发光二极管装置及其方法
US20110101880A1 (en) * 2009-11-04 2011-05-05 International Rectifier Corporation Driver circuit with an increased power factor
CN101902857A (zh) * 2010-07-16 2010-12-01 合肥美亚光电技术有限责任公司 一种智能led恒流驱动电路

Also Published As

Publication number Publication date
CN102497694A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
CN202721866U (zh) 一种新型兼容led灯管的驱动电路
CN202005042U (zh) 一种高功率因数的新型led驱动电路
CN201813599U (zh) Led调光电源
CN102497694B (zh) 基于阵列开路数目观测的数字化led驱动电路
CN101835317A (zh) 一种具有智能调光功能的反激式路灯照明led恒流驱动电源
CN102014557A (zh) Led调光电源
CN107086026B (zh) 一种驱动led背光的恒流电路及电视机
CN107172755A (zh) 一种led灯条网络过流保护电路、驱动电源和电视机
CN104578341B (zh) 一种基于移相全桥电路死区时间可调的车载充电机
CN102869173A (zh) 一种led驱动电源装置
CN102711310A (zh) 一种led驱动电路及灯具
CN106658838A (zh) 照明装置、控制芯片、线性调光系统及线性调光方法
CN207216474U (zh) 一种电流采样转换电路以及led恒流电源
CN207731625U (zh) 基于spi通信的多路背光控制装置
CN201467542U (zh) 直流电子镇流器及其半桥逆变lc串联谐振电路
CN206498577U (zh) 一种用于电子镇流器输入的led光源驱动控制电路
CN206024154U (zh) Led调光装置及led驱动电源
CN201298957Y (zh) 一种分段调光电子镇流器调光控制信号控制电路
CN207612441U (zh) Led并联均流电路
CN205987508U (zh) 一种基于电子镇流器控制电子控制电路的装置及照明灯具
CN206196097U (zh) 照明装置、控制芯片及线性调光系统
CN206685951U (zh) 一种适用于风电变桨系统的超级电容充电器
CN205040055U (zh) 发光二极管驱动电路
CN102340237B (zh) 一种驱动电路
CN202759649U (zh) 一种led灯管整流滤波电路及恒流led灯管电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant